This change introduces functions and in one case, a class, to support
the `VK_KHR_sampler_ycbcr_conversion` extension. Except in the case of
GBGR8 and BGRG8 formats, for which Metal natively supports implicit
chroma reconstruction, we're on our own here. We have to do everything
ourselves. Much of the complexity comes from the need to support
multiple planes, which must now be passed to functions that use the
corresponding combined image-samplers. The rest is from the actual
Y'CbCr conversion itself, which requires additional post-processing of
the sample retrieved from the image.
Passing sampled images to a function was a particular problem. To
support this, I've added a new class which is emitted to MSL shaders
that pass sampled images with Y'CbCr conversions attached around. It
can handle sampled images with or without Y'CbCr conversion. This is an
awful abomination that should not exist, but I'm worried that there's
some shader out there which does this. This support requires Metal 2.0
to work properly, because it uses default-constructed texture objects,
which were only added in MSL 2. I'm not even going to get into arrays of
combined image-samplers--that's a whole other can of worms. They are
deliberately unsupported in this change.
I've taken the liberty of refactoring the support for texture swizzling
while I'm at it. It's now treated as a post-processing step similar to
Y'CbCr conversion. I'd like to think this is cleaner than having
everything in `to_function_name()`/`to_function_args()`. It still looks
really hairy, though. I did, however, get rid of the explicit type
arguments to `spvGatherSwizzle()`/`spvGatherCompareSwizzle()`.
Update the C API. In addition to supporting this new functionality, add
some compiler options that I added in previous changes, but for which I
neglected to update the C API.
This subtle bug removed any expression validation for trivially swizzled
variables. Make usage suppression a more explicit concept rather than
just hacking off forwarded_temporaries.
There is some fallout here with loop generation since our expression
invalidation is currently a bit too naive to handle loops properly.
The forwarding bug masked this problem until now.
If part of the loop condition is also used in the body, we end up
reading an invalid expression, which in turn forces a temporary to be
generated in the condition block, not good. We'll need to be smarter
here ...
This extension provides a new operation which causes a fragment to be
discarded without terminating the fragment shader invocation. The
invocation for the discarded fragment becomes a helper invocation, so
that derivatives will remain defined. The old `HelperInvocation` builtin
becomes undefined when this occurs, so a second new instruction queries
the current helper invocation status.
This is only fully supported for GLSL. HLSL doesn't support the
`IsHelperInvocation` operation and MSL doesn't support the
`DemoteToHelperInvocation` op.
Fixes#1052.
This decoration might only be present for the very last ID which is
consumed by a sampling or Load/Store instruction. To make sure our
access chains are emitted correctly, we have to back-propagate this
decoration.
MSL generally emits the aliases, which means we cannot always place the
master type first, unlike GLSL and HLSL. The logic fix is just to
reorder after we have tagged types with packing information, rather than
doing it in the parser fixup.
MSL does not seem to have a qualifier for this, but HLSL SM 5.1 does.
glslangValidator for HLSL does not support this, so skip any validation,
but it passes in FXC.
Buffer objects can contain arbitrary pointers to blocks.
We can also implement ConvertPtrToU and ConvertUToPtr.
The latter can cast a uint64_t to any type as it pleases,
so we will need to generate fake buffer reference blocks to be able to
cast the type.
- Replace ostringstream with custom implementation.
~30% performance uplift on vector-shuffle-oom test.
Allocations are measurably reduced in Valgrind.
- Replace std::vector with SmallVector.
Classic malloc optimization, small vectors are backed by inline data.
~ 7-8% gain on vector-shuffle-oom on GCC 8 on Linux.
- Use an object pool for IVariant type.
We generally allocate a lot of SPIR* objects. We can amortize these
allocations neatly by pooling them.
- ~15% overall uplift on ./test_shaders.py --iterations 10000 shaders/.
We had a bug where error conditions in DoWhileLoop emit path would not
detect that statements were being emitted due to the masking behavior
which happens when force_recompile is true. Fix this.
Also, refactor force_recompile into member functions so we can properly
break on any situation where this is set, without having to rely on
watchpoints in debuggers.
This is a pragmatic trick to avoid symbol collision where a project
links against SPIRV-Cross statically, while linking to other projects
which also use SPIRV-Cross statically. We can end up with very awkward
symbol collisions which can resolve themselves silently because
SPIRV-Cross is pulled in as necessary. To fix this, we must use
different symbols and embed two copies of SPIRV-Cross in this scenario,
now with different namespaces, which in turn leads to different symbols.
We have an edge case where the array is declared with a concrete size,
but in GLSL we must emit an unsized array, which breaks array copies.
Deal explicitly with this.
This adds a new C API for SPIRV-Cross which is intended to be stable,
both API and ABI wise.
The C++ API has been refactored a bit to make the C wrapper easier and
cleaner to write. Especially the vertex attribute / resource interfaces
for MSL has been rewritten to avoid taking mutable pointers into the
interface. This would be very annoying to wrap and it didn't fit well
with the rest of the C++ API to begin with. While doing this, I went
ahead and removed all the old deprecated interfaces.
The CMake build system has also seen an overhaul.
It is now possible to build static/shared/CLI separately with -D
options.
The shared library only exposes the C API, as it is the only ABI-stable
API. pkg-configs as well as CMake modules are exported and installed for
the shared library configuration.
We were using std::locale::global() to force a C locale which is not
safe when SPIRV-Cross is used in a multi-threaded environment.
To fix this, we could tap into various per-platform specific locale
handling to get safe thread-local locales, but since locales only affect
the decimal point in floats, we simply query the locale instead and do
the necessary radix replacement ourselves, without touching the locale.
This should be much safer and cleaner than the alternative.
When we force recompile, the old var.self name we used as a fallback
name might have been disturbed, so we should recover certain names back
to their original form in case we are forced to take a recompile to make
the naming algorithm more deterministic.
Storage was in place already, so mostly just dealing with bitcasts and
constants.
Simplies some of the bitcasting logic, and this exposed some bugs in the
implementation. Refactor to use correct width integers with explicit bitcast opcodes.