SynthDet - An end-to-end object detection pipeline using synthetic data
Перейти к файлу
Jon Hogins 31e1650d57 Fixing lighting on foreground objects. Also making it so that local assets in the ForegroundObjectPlacementRandomizer continue to work for local testing 2021-04-22 15:09:19 -07:00
.yamato disabled CI test triggers 2021-03-22 11:32:06 -07:00
Notebooks Update SynthDet_Statistics.ipynb 2021-03-24 17:21:39 -07:00
SynthDet Fixing lighting on foreground objects. Also making it so that local assets in the ForegroundObjectPlacementRandomizer continue to work for local testing 2021-04-22 15:09:19 -07:00
com.unity.perception@7cdb600c0a Updating to use perception submodule 2021-03-31 11:11:18 -07:00
docs added missing step 2021-03-24 17:34:53 -07:00
.gitattributes changed notebook storage from lfs to plain text 2021-03-23 16:27:05 -07:00
.gitignore removed V1 and renamed V2 folder, put notebook outside unity project 2021-03-15 14:43:38 -07:00
.gitmodules Updating to use perception submodule 2021-03-31 11:11:18 -07:00
LICENSE.md Initial commit 2020-05-19 21:18:02 -07:00
README.md updated docs and randomizer names 2021-03-23 17:00:09 -07:00

README.md

SynthDet: An end-to-end object detection pipeline using synthetic data

license badge

Overview

SynthDet is an open source project that demonstrates an end-to-end object detection pipeline using synthetic image data. The project includes all the code and assets for generating a synthetic dataset in Unity. Based on recent research, SynthDet utilizes Unity's Perception package to generate highly randomized images of 63 common grocery products (example: cereal boxes and candy) and export them along with appropriate labels and annotations (2D bounding boxes). The synthetic dataset generated can then be used to train a deep learning based object detection model. This project is geared towards ML practitioners and enthusiasts who are actively exploring synthetic data or just looking to get started.

Getting started with SynthDet

Components

  • SynthDet Unity Project - Sample computer vision data generation project, demonstrating proper integration and usage of the Perception package for environment randomization and ground-truth generation.
  • 3D Assets - High quality models of 63 commonly found grocery products
  • Unity's Perception package.
  • Unity's Dataset Insights Python package

Inspiration

SynthDet was inspired by the following research paper from Google Cloud AI:

Hinterstoisser, S., Pauly, O., Heibel, H., Marek, M., & Bokeloh, M. (2019). An Annotation Saved is an Annotation Earned: Using Fully Synthetic Training for Object Instance Detection.

Unity project development

The original version of the SynthDet Unity project was developed in tandem with the early versions of Unity's Perception package. This project closely followed the synthetic data generation method introduced by the above mentioned Google Cloud AI paper. However, the original project did not use the randomization toolset that was introduced in later versions of the Perception package. To access this original project, and for more details on how it was implemented to replicate the research paper, please visit the SynthDet_Original branch of this repository. The results reported in our related blog posts were based on this original project. That said, early experiments with datasets generated using the current version of the project have shown very similar model-training performance to that of the original one.

Support

For general questions or concerns please contact the Unity Computer Vision team at computer-vision@unity3d.com.

For feedback, bugs, or other issues please file a GitHub issue and the Unity Computer Vision team will investigate the issue as soon as possible.

Citation

If you find this package useful, consider citing it using:

@misc{synthdet2020,
    title={Training a performant object detection {ML} model on synthetic data using {U}nity {P}erception tools},
    author={You-Cyuan Jhang and Adam Palmar and Bowen Li and Saurav Dhakad and Sanjay Kumar Vishwakarma and Jonathan Hogins and Adam Crespi and Chris Kerr and Sharmila Chockalingam and Cesar Romero and Alex Thaman and Sujoy Ganguly},
    howpublished = {\url{https://blogs.unity3d.com/2020/09/17/training-a-performant-object-detection-ml-model-on-synthetic-data-using-unity-computer-vision-tools/}},
    journal={Unity Technologies Blog},
    publisher={Unity Technologies},
    year={2020},
    month={Sep}
}

Additional Resources

GTC 2020: Synthetic Data: An efficient mechanism to train Perception Systems

Synthetic data: Simulating myriad possibilities to train robust machine learning models

Use Unitys computer vision tools to generate and analyze synthetic data at scale to train your ML models

Training a performant object detection ML model on synthetic data using Unity computer vision tools

License

Apache License 2.0