Перейти к файлу
Eric StJohn 3c36429f19
Add archived message
2022-03-14 12:52:42 -07:00
Microsoft.ML.Onnx.TestModels adding file for test, and deleting file taken from onnx example 2020-02-13 14:50:21 -08:00
Microsoft.ML.TensorFlow.TestModels update tests 2020-11-04 04:44:10 +00:00
Microsoft.ML.TestDatabases/TestDatabases Add SQLite version of the Iris Dataset 2020-05-01 16:44:19 -07:00
Microsoft.ML.TestModels/TestModels Added normalizer model which was created with version "verWrittenCur: 0x00010001" 2019-10-11 15:29:47 -07:00
.gitignore Update README and add .gitignore 2018-08-24 09:09:12 -07:00
CODE-OF-CONDUCT.md Link Code of Conduct (#23) 2020-04-07 21:17:54 -05:00
LICENSE Update LICENSE 2018-08-24 12:48:30 -07:00
Microsoft.ML.Onnx.TestModels.nuspec update onnx version 2020-05-06 15:45:36 -07:00
Microsoft.ML.TensorFlow.TestModels.nuspec upgrade tensorflow test model nuget version 2020-11-04 21:19:59 +00:00
Microsoft.ML.TestDatabases.nuspec Update TestDatabases version (#25) 2020-05-02 13:51:08 -07:00
Microsoft.ML.TestModels.nuspec Update version number 2020-02-13 15:08:41 -08:00
README.md Add archived message 2022-03-14 12:52:42 -07:00

README.md

machinelearning-testdata

This repository has been archived and is no longer used.

This repository stores binary data that is consumed by tests in the dotnet/machinelearning repository.

MICROSOFT PROVIDES THE DATASETS ON AN "AS IS" BASIS. MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, GUARANTEES OR CONDITIONS WITH RESPECT TO YOUR USE OF THE DATASETS. TO THE EXTENT PERMITTED UNDER YOUR LOCAL LAW, MICROSOFT DISCLAIMS ALL LIABILITY FOR ANY DAMAGES OR LOSSES, INLCUDING DIRECT, CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL OR PUNITIVE, RESULTING FROM YOUR USE OF THE DATASETS.

The datasets are provided under the original terms that Microsoft received such datasets. See below for more information about each dataset.

MNIST

MNIST data originally from NIST and modified by Chris Burges, Corinna Cortes, and Yann LeCun. http://yann.lecun.com/exdb/mnist/

More information: https://en.wikipedia.org/wiki/MNIST_database

CIFAR-10

More information: https://www.cs.toronto.edu/~kriz/cifar.html

SqueezeNet

Originally released in 2016, developed by researchers at DeepScale, University of California, Berkeley, and Stanford University.

More information: https://en.wikipedia.org/wiki/SqueezeNet, https://github.com/onnx/models/tree/master/squeezenet