Official community-driven Azure Machine Learning examples, tested with GitHub Actions.
Обновлено 2024-11-20 16:48:44 +03:00
ALICE (Automated Learning and Intelligence for Causation and Economics) is a Microsoft Research project aimed at applying Artificial Intelligence concepts to economic decision making. One of its goals is to build a toolkit that combines state-of-the-art machine learning techniques with econometrics in order to bring automation to complex causal inference problems. To date, the ALICE Python SDK (econml) implements orthogonal machine learning algorithms such as the double machine learning work of Chernozhukov et al. This toolkit is designed to measure the causal effect of some treatment variable(s) t on an outcome variable y, controlling for a set of features x.
Обновлено 2024-11-18 23:05:01 +03:00
12 Weeks, 24 Lessons, AI for All!
Обновлено 2024-11-11 22:55:47 +03:00
Python notebooks with ML and deep learning examples with Azure Machine Learning Python SDK | Microsoft
Обновлено 2024-11-04 20:20:56 +03:00
Explore machine learning and data science with Codespaces
Обновлено 2024-08-12 16:11:43 +03:00
Knowledge Extraction For Forms Accelerators & Examples
Обновлено 2024-07-09 20:31:09 +03:00
maximal update parametrization (µP)
Обновлено 2023-10-21 06:45:36 +03:00
With AutoBrewML Framework the time it takes to get production-ready ML models with great ease and efficiency highly accelerates.
Обновлено 2023-08-03 09:43:02 +03:00
FastTrack for Azure AzureML Live event
Обновлено 2023-07-28 08:06:17 +03:00
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.
Обновлено 2023-07-20 18:03:32 +03:00
Interactive Neural Machine Translation tool
Обновлено 2023-07-15 01:45:30 +03:00
Running the most popular deep learning frameworks on Azure Batch AI
Обновлено 2023-06-12 22:32:13 +03:00
End-to-End recipes for pre-training and fine-tuning BERT using Azure Machine Learning Service
Обновлено 2023-06-12 21:59:00 +03:00
Tools and Docs on the Azure Data Science Virtual Machine (http://aka.ms/dsvm)
Обновлено 2022-09-18 21:35:33 +03:00
Solution accelerator to help build Machine Learning Lineage
Обновлено 2022-09-17 00:05:08 +03:00
MCW Analyzing text with Azure Machine Learning and Cognitive Services
Обновлено 2022-07-01 19:44:55 +03:00
Deploying a Batch Scoring Pipeline for Python Models
Обновлено 2020-01-28 22:21:04 +03:00
Tutorial demonstrating how to create a semantic segmentation (pixel-level classification) model to predict land cover from aerial imagery. This model can be used to identify newly developed or flooded land. Uses ground-truth labels and processed NAIP imagery provided by the Chesapeake Conservancy.
Обновлено 2019-07-25 06:53:28 +03:00
Show how to perform fast retraining with LightGBM in different business cases
Обновлено 2019-07-18 11:16:44 +03:00