DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks.
machine-learning
data-science
causal-inference
causality
treatment-effects
bayesian-networks
causal-machine-learning
causal-models
do-calculus
graphical-models
python3
Обновлено 2024-11-22 19:51:17 +03:00
Hummingbird compiles trained ML models into tensor computation for faster inference.
Обновлено 2024-11-16 00:52:33 +03:00
Python package for graph statistics
Обновлено 2024-10-09 19:41:04 +03:00
A python library for intelligently building networks and network embeddings, and for analyzing connected data.
Обновлено 2024-07-11 21:49:18 +03:00
TensorFlow 2 library implementing Graph Neural Networks
Обновлено 2023-07-13 16:47:00 +03:00
Multi-Task Deep Neural Networks for Natural Language Understanding
Обновлено 2023-06-13 00:28:35 +03:00
We design an effective Relation-Aware Global Attention (RGA) module for CNNs to globally infer the attention.
Обновлено 2023-06-12 21:55:25 +03:00
View Adaptive Neural Networks for High Performance Skeleton-based Human Action Recognition
Обновлено 2023-06-12 21:55:25 +03:00
TensorFlow implementations of Graph Neural Networks
Обновлено 2022-11-28 22:09:39 +03:00
Source code for paper Conservative Uncertainty Estimation By Fitting Prior Networks (ICLR 2020)
Обновлено 2022-11-28 22:09:08 +03:00
LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks
Обновлено 2022-08-30 11:00:20 +03:00
A PyTorch Graph Neural Network Library
Обновлено 2022-02-01 20:31:29 +03:00
Deep Learning for Seismic Imaging and Interpretation
microsoft
deep-learning
computer-vision
neural-networks
segmentation
seismic-processing
seismic
seismic-data
seismic-imaging
seismic-inversion
Обновлено 2020-09-19 01:18:20 +03:00
This is the implementation of CVPR2020 paper “Semantics-Guided Neural Networks for Efficient Skeleton-Based Human Action Recognition”.
Обновлено 2020-04-17 10:08:50 +03:00
[ICCV 2019] Recursive Cascaded Networks for Unsupervised Medical Image Registration
Обновлено 2019-12-08 09:48:23 +03:00
Sample Code for Gated Graph Neural Networks
Обновлено 2019-10-10 12:27:15 +03:00
Keras implementations of Generative Adversarial Networks.
Обновлено 2019-09-13 17:32:32 +03:00