Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
/*
|
|
|
|
* Client side of key exchange for the SSH-2 transport protocol (RFC 4253).
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include "putty.h"
|
|
|
|
#include "ssh.h"
|
|
|
|
#include "sshbpp.h"
|
|
|
|
#include "sshppl.h"
|
|
|
|
#include "sshcr.h"
|
|
|
|
#include "storage.h"
|
|
|
|
#include "ssh2transport.h"
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
#include "mpint.h"
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
2018-12-29 15:00:03 +03:00
|
|
|
void ssh2kex_coroutine(struct ssh2_transport_state *s, bool *aborted)
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
{
|
|
|
|
PacketProtocolLayer *ppl = &s->ppl; /* for ppl_logevent */
|
|
|
|
PktIn *pktin;
|
|
|
|
PktOut *pktout;
|
|
|
|
|
|
|
|
crBegin(s->crStateKex);
|
|
|
|
|
|
|
|
if (s->kex_alg->main_type == KEXTYPE_DH) {
|
|
|
|
/*
|
|
|
|
* Work out the number of bits of key we will need from the
|
|
|
|
* key exchange. We start with the maximum key length of
|
|
|
|
* either cipher...
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int csbits, scbits;
|
|
|
|
|
|
|
|
csbits = s->out.cipher ? s->out.cipher->real_keybits : 0;
|
|
|
|
scbits = s->in.cipher ? s->in.cipher->real_keybits : 0;
|
|
|
|
s->nbits = (csbits > scbits ? csbits : scbits);
|
|
|
|
}
|
|
|
|
/* The keys only have hlen-bit entropy, since they're based on
|
|
|
|
* a hash. So cap the key size at hlen bits. */
|
|
|
|
if (s->nbits > s->kex_alg->hash->hlen * 8)
|
|
|
|
s->nbits = s->kex_alg->hash->hlen * 8;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we're doing Diffie-Hellman group exchange, start by
|
|
|
|
* requesting a group.
|
|
|
|
*/
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Doing Diffie-Hellman group exchange");
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGEX;
|
|
|
|
/*
|
|
|
|
* Work out how big a DH group we will need to allow that
|
|
|
|
* much data.
|
|
|
|
*/
|
|
|
|
s->pbits = 512 << ((s->nbits - 1) / 64);
|
|
|
|
if (s->pbits < DH_MIN_SIZE)
|
|
|
|
s->pbits = DH_MIN_SIZE;
|
|
|
|
if (s->pbits > DH_MAX_SIZE)
|
|
|
|
s->pbits = DH_MAX_SIZE;
|
|
|
|
if ((s->ppl.remote_bugs & BUG_SSH2_OLDGEX)) {
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp, SSH2_MSG_KEX_DH_GEX_REQUEST_OLD);
|
|
|
|
put_uint32(pktout, s->pbits);
|
|
|
|
} else {
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp, SSH2_MSG_KEX_DH_GEX_REQUEST);
|
|
|
|
put_uint32(pktout, DH_MIN_SIZE);
|
|
|
|
put_uint32(pktout, s->pbits);
|
|
|
|
put_uint32(pktout, DH_MAX_SIZE);
|
|
|
|
}
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEX_DH_GEX_GROUP) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman group, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->p = get_mp_ssh2(pktin);
|
|
|
|
s->g = get_mp_ssh2(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse Diffie-Hellman group packet");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->dh_ctx = dh_setup_gex(s->p, s->g);
|
|
|
|
s->kex_init_value = SSH2_MSG_KEX_DH_GEX_INIT;
|
|
|
|
s->kex_reply_value = SSH2_MSG_KEX_DH_GEX_REPLY;
|
2018-11-18 16:39:46 +03:00
|
|
|
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Doing Diffie-Hellman key exchange using %d-bit "
|
|
|
|
"modulus and hash %s with a server-supplied group",
|
|
|
|
dh_modulus_bit_size(s->dh_ctx),
|
|
|
|
s->kex_alg->hash->text_name);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
} else {
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_DHGROUP;
|
|
|
|
s->dh_ctx = dh_setup_group(s->kex_alg);
|
|
|
|
s->kex_init_value = SSH2_MSG_KEXDH_INIT;
|
|
|
|
s->kex_reply_value = SSH2_MSG_KEXDH_REPLY;
|
2018-11-18 16:39:46 +03:00
|
|
|
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Doing Diffie-Hellman key exchange using %d-bit "
|
|
|
|
"modulus and hash %s with standard group \"%s\"",
|
|
|
|
dh_modulus_bit_size(s->dh_ctx),
|
|
|
|
s->kex_alg->hash->text_name,
|
|
|
|
s->kex_alg->groupname);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now generate and send e for Diffie-Hellman.
|
|
|
|
*/
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
|
|
|
|
s->e = dh_create_e(s->dh_ctx, s->nbits * 2);
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, s->kex_init_value);
|
|
|
|
put_mp_ssh2(pktout, s->e);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_WAITING);
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != s->kex_reply_value) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman reply, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
|
|
|
|
s->f = get_mp_ssh2(pktin);
|
|
|
|
s->sigdata = get_string(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse Diffie-Hellman reply packet");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
const char *err = dh_validate_f(s->dh_ctx, s->f);
|
|
|
|
if (err) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Diffie-Hellman reply failed "
|
|
|
|
"validation: %s", err);
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s->K = dh_find_K(s->dh_ctx, s->f);
|
|
|
|
|
|
|
|
/* We assume everything from now on will be quick, and it might
|
|
|
|
* involve user interaction. */
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_NOT);
|
|
|
|
|
|
|
|
put_stringpl(s->exhash, s->hostkeydata);
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
if (!(s->ppl.remote_bugs & BUG_SSH2_OLDGEX))
|
|
|
|
put_uint32(s->exhash, DH_MIN_SIZE);
|
|
|
|
put_uint32(s->exhash, s->pbits);
|
|
|
|
if (!(s->ppl.remote_bugs & BUG_SSH2_OLDGEX))
|
|
|
|
put_uint32(s->exhash, DH_MAX_SIZE);
|
|
|
|
put_mp_ssh2(s->exhash, s->p);
|
|
|
|
put_mp_ssh2(s->exhash, s->g);
|
|
|
|
}
|
|
|
|
put_mp_ssh2(s->exhash, s->e);
|
|
|
|
put_mp_ssh2(s->exhash, s->f);
|
|
|
|
|
|
|
|
dh_cleanup(s->dh_ctx);
|
|
|
|
s->dh_ctx = NULL;
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
mp_free(s->f); s->f = NULL;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
mp_free(s->g); s->g = NULL;
|
|
|
|
mp_free(s->p); s->p = NULL;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
} else if (s->kex_alg->main_type == KEXTYPE_ECDH) {
|
|
|
|
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Doing ECDH key exchange with curve %s and hash %s",
|
|
|
|
ssh_ecdhkex_curve_textname(s->kex_alg),
|
|
|
|
s->kex_alg->hash->text_name);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_ECDHKEX;
|
|
|
|
|
|
|
|
s->ecdh_key = ssh_ecdhkex_newkey(s->kex_alg);
|
|
|
|
if (!s->ecdh_key) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "Unable to generate key for ECDH");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEX_ECDH_INIT);
|
|
|
|
{
|
|
|
|
strbuf *pubpoint = strbuf_new();
|
|
|
|
ssh_ecdhkex_getpublic(s->ecdh_key, BinarySink_UPCAST(pubpoint));
|
|
|
|
put_stringsb(pktout, pubpoint);
|
|
|
|
}
|
|
|
|
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEX_ECDH_REPLY) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting ECDH reply, type %d (%s)", pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, s->hostkeydata);
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
|
|
|
|
|
|
|
|
{
|
|
|
|
strbuf *pubpoint = strbuf_new();
|
|
|
|
ssh_ecdhkex_getpublic(s->ecdh_key, BinarySink_UPCAST(pubpoint));
|
|
|
|
put_string(s->exhash, pubpoint->u, pubpoint->len);
|
|
|
|
strbuf_free(pubpoint);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ptrlen keydata = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, keydata);
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
s->K = ssh_ecdhkex_getkey(s->ecdh_key, keydata);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
if (!get_err(pktin) && !s->K) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received invalid elliptic curve "
|
|
|
|
"point in ECDH reply");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
s->sigdata = get_string(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Unable to parse ECDH reply packet");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
ssh_ecdhkex_freekey(s->ecdh_key);
|
|
|
|
s->ecdh_key = NULL;
|
|
|
|
#ifndef NO_GSSAPI
|
|
|
|
} else if (s->kex_alg->main_type == KEXTYPE_GSS) {
|
|
|
|
ptrlen data;
|
|
|
|
|
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_GSSKEX;
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
|
|
|
s->init_token_sent = false;
|
|
|
|
s->complete_rcvd = false;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
s->hkey = NULL;
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
s->keystr = NULL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Work out the number of bits of key we will need from the
|
|
|
|
* key exchange. We start with the maximum key length of
|
|
|
|
* either cipher...
|
|
|
|
*
|
|
|
|
* This is rote from the KEXTYPE_DH section above.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int csbits, scbits;
|
|
|
|
|
|
|
|
csbits = s->out.cipher->real_keybits;
|
|
|
|
scbits = s->in.cipher->real_keybits;
|
|
|
|
s->nbits = (csbits > scbits ? csbits : scbits);
|
|
|
|
}
|
|
|
|
/* The keys only have hlen-bit entropy, since they're based on
|
|
|
|
* a hash. So cap the key size at hlen bits. */
|
|
|
|
if (s->nbits > s->kex_alg->hash->hlen * 8)
|
|
|
|
s->nbits = s->kex_alg->hash->hlen * 8;
|
|
|
|
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
/*
|
|
|
|
* Work out how big a DH group we will need to allow that
|
|
|
|
* much data.
|
|
|
|
*/
|
|
|
|
s->pbits = 512 << ((s->nbits - 1) / 64);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Doing GSSAPI (with Kerberos V5) Diffie-Hellman "
|
|
|
|
"group exchange, with minimum %d bits", s->pbits);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXGSS_GROUPREQ);
|
|
|
|
put_uint32(pktout, s->pbits); /* min */
|
|
|
|
put_uint32(pktout, s->pbits); /* preferred */
|
|
|
|
put_uint32(pktout, s->pbits * 2); /* max */
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
|
|
|
crMaybeWaitUntilV(
|
|
|
|
(pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEXGSS_GROUP) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting Diffie-Hellman group, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->p = get_mp_ssh2(pktin);
|
|
|
|
s->g = get_mp_ssh2(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse Diffie-Hellman group packet");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
s->dh_ctx = dh_setup_gex(s->p, s->g);
|
|
|
|
} else {
|
|
|
|
s->dh_ctx = dh_setup_group(s->kex_alg);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Using GSSAPI (with Kerberos V5) Diffie-Hellman with"
|
|
|
|
" standard group \"%s\"", s->kex_alg->groupname);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Doing GSSAPI (with Kerberos V5) Diffie-Hellman key "
|
|
|
|
"exchange with hash %s", s->kex_alg->hash->text_name);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
/* Now generate e for Diffie-Hellman. */
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_CPU);
|
|
|
|
s->e = dh_create_e(s->dh_ctx, s->nbits * 2);
|
|
|
|
|
|
|
|
if (s->shgss->lib->gsslogmsg)
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("%s", s->shgss->lib->gsslogmsg);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
|
|
|
/* initial tokens are empty */
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_rcvtok);
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_sndtok);
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->mic);
|
|
|
|
s->gss_stat = s->shgss->lib->acquire_cred(
|
|
|
|
s->shgss->lib, &s->shgss->ctx, &s->gss_cred_expiry);
|
|
|
|
if (s->gss_stat != SSH_GSS_OK) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh,
|
|
|
|
"GSSAPI key exchange failed to initialise");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* now enter the loop */
|
|
|
|
assert(s->shgss->srv_name);
|
|
|
|
do {
|
|
|
|
/*
|
|
|
|
* When acquire_cred yields no useful expiration, go with the
|
|
|
|
* service ticket expiration.
|
|
|
|
*/
|
|
|
|
s->gss_stat = s->shgss->lib->init_sec_context(
|
|
|
|
s->shgss->lib, &s->shgss->ctx, s->shgss->srv_name,
|
|
|
|
s->gss_delegate, &s->gss_rcvtok, &s->gss_sndtok,
|
|
|
|
(s->gss_cred_expiry == GSS_NO_EXPIRATION ?
|
|
|
|
&s->gss_cred_expiry : NULL), NULL);
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_rcvtok);
|
|
|
|
|
|
|
|
if (s->gss_stat == SSH_GSS_S_COMPLETE && s->complete_rcvd)
|
|
|
|
break; /* MIC is verified after the loop */
|
|
|
|
|
|
|
|
if (s->gss_stat != SSH_GSS_S_COMPLETE &&
|
|
|
|
s->gss_stat != SSH_GSS_S_CONTINUE_NEEDED) {
|
|
|
|
if (s->shgss->lib->display_status(
|
|
|
|
s->shgss->lib, s->shgss->ctx,
|
|
|
|
&s->gss_buf) == SSH_GSS_OK) {
|
|
|
|
char *err = s->gss_buf.value;
|
|
|
|
ssh_sw_abort(s->ppl.ssh,
|
|
|
|
"GSSAPI key exchange failed to initialise "
|
|
|
|
"context: %s", err);
|
|
|
|
sfree(err);
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(s->gss_stat == SSH_GSS_S_COMPLETE ||
|
|
|
|
s->gss_stat == SSH_GSS_S_CONTINUE_NEEDED);
|
|
|
|
|
|
|
|
if (!s->init_token_sent) {
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
|
|
|
s->init_token_sent = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp,
|
|
|
|
SSH2_MSG_KEXGSS_INIT);
|
|
|
|
if (s->gss_sndtok.length == 0) {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange failed: "
|
|
|
|
"no initial context token");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
put_string(pktout,
|
|
|
|
s->gss_sndtok.value, s->gss_sndtok.length);
|
|
|
|
put_mp_ssh2(pktout, s->e);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
s->shgss->lib->free_tok(s->shgss->lib, &s->gss_sndtok);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("GSSAPI key exchange initialised");
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
} else if (s->gss_sndtok.length != 0) {
|
|
|
|
pktout = ssh_bpp_new_pktout(
|
|
|
|
s->ppl.bpp, SSH2_MSG_KEXGSS_CONTINUE);
|
|
|
|
put_string(pktout,
|
|
|
|
s->gss_sndtok.value, s->gss_sndtok.length);
|
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
s->shgss->lib->free_tok(s->shgss->lib, &s->gss_sndtok);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (s->gss_stat == SSH_GSS_S_COMPLETE && s->complete_rcvd)
|
|
|
|
break;
|
|
|
|
|
|
|
|
wait_for_gss_token:
|
|
|
|
crMaybeWaitUntilV(
|
|
|
|
(pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
switch (pktin->type) {
|
|
|
|
case SSH2_MSG_KEXGSS_CONTINUE:
|
|
|
|
data = get_string(pktin);
|
|
|
|
s->gss_rcvtok.value = (char *)data.ptr;
|
|
|
|
s->gss_rcvtok.length = data.len;
|
|
|
|
continue;
|
|
|
|
case SSH2_MSG_KEXGSS_COMPLETE:
|
Convert a lot of 'int' variables to 'bool'.
My normal habit these days, in new code, is to treat int and bool as
_almost_ completely separate types. I'm still willing to use C's
implicit test for zero on an integer (e.g. 'if (!blob.len)' is fine,
no need to spell it out as blob.len != 0), but generally, if a
variable is going to be conceptually a boolean, I like to declare it
bool and assign to it using 'true' or 'false' rather than 0 or 1.
PuTTY is an exception, because it predates the C99 bool, and I've
stuck to its existing coding style even when adding new code to it.
But it's been annoying me more and more, so now that I've decided C99
bool is an acceptable thing to require from our toolchain in the first
place, here's a quite thorough trawl through the source doing
'boolification'. Many variables and function parameters are now typed
as bool rather than int; many assignments of 0 or 1 to those variables
are now spelled 'true' or 'false'.
I managed this thorough conversion with the help of a custom clang
plugin that I wrote to trawl the AST and apply heuristics to point out
where things might want changing. So I've even managed to do a decent
job on parts of the code I haven't looked at in years!
To make the plugin's work easier, I pushed platform front ends
generally in the direction of using standard 'bool' in preference to
platform-specific boolean types like Windows BOOL or GTK's gboolean;
I've left the platform booleans in places they _have_ to be for the
platform APIs to work right, but variables only used by my own code
have been converted wherever I found them.
In a few places there are int values that look very like booleans in
_most_ of the places they're used, but have a rarely-used third value,
or a distinction between different nonzero values that most users
don't care about. In these cases, I've _removed_ uses of 'true' and
'false' for the return values, to emphasise that there's something
more subtle going on than a simple boolean answer:
- the 'multisel' field in dialog.h's list box structure, for which
the GTK front end in particular recognises a difference between 1
and 2 but nearly everything else treats as boolean
- the 'urgent' parameter to plug_receive, where 1 vs 2 tells you
something about the specific location of the urgent pointer, but
most clients only care about 0 vs 'something nonzero'
- the return value of wc_match, where -1 indicates a syntax error in
the wildcard.
- the return values from SSH-1 RSA-key loading functions, which use
-1 for 'wrong passphrase' and 0 for all other failures (so any
caller which already knows it's not loading an _encrypted private_
key can treat them as boolean)
- term->esc_query, and the 'query' parameter in toggle_mode in
terminal.c, which _usually_ hold 0 for ESC[123h or 1 for ESC[?123h,
but can also hold -1 for some other intervening character that we
don't support.
In a few places there's an integer that I haven't turned into a bool
even though it really _can_ only take values 0 or 1 (and, as above,
tried to make the call sites consistent in not calling those values
true and false), on the grounds that I thought it would make it more
confusing to imply that the 0 value was in some sense 'negative' or
bad and the 1 positive or good:
- the return value of plug_accepting uses the POSIXish convention of
0=success and nonzero=error; I think if I made it bool then I'd
also want to reverse its sense, and that's a job for a separate
piece of work.
- the 'screen' parameter to lineptr() in terminal.c, where 0 and 1
represent the default and alternate screens. There's no obvious
reason why one of those should be considered 'true' or 'positive'
or 'success' - they're just indices - so I've left it as int.
ssh_scp_recv had particularly confusing semantics for its previous int
return value: its call sites used '<= 0' to check for error, but it
never actually returned a negative number, just 0 or 1. Now the
function and its call sites agree that it's a bool.
In a couple of places I've renamed variables called 'ret', because I
don't like that name any more - it's unclear whether it means the
return value (in preparation) for the _containing_ function or the
return value received from a subroutine call, and occasionally I've
accidentally used the same variable for both and introduced a bug. So
where one of those got in my way, I've renamed it to 'toret' or 'retd'
(the latter short for 'returned') in line with my usual modern
practice, but I haven't done a thorough job of finding all of them.
Finally, one amusing side effect of doing this is that I've had to
separate quite a few chained assignments. It used to be perfectly fine
to write 'a = b = c = TRUE' when a,b,c were int and TRUE was just a
the 'true' defined by stdbool.h, that idiom provokes a warning from
gcc: 'suggest parentheses around assignment used as truth value'!
2018-11-02 22:23:19 +03:00
|
|
|
s->complete_rcvd = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
s->f = get_mp_ssh2(pktin);
|
|
|
|
data = get_string(pktin);
|
|
|
|
s->mic.value = (char *)data.ptr;
|
|
|
|
s->mic.length = data.len;
|
|
|
|
/* Save expiration time of cred when delegating */
|
|
|
|
if (s->gss_delegate && s->gss_cred_expiry != GSS_NO_EXPIRATION)
|
|
|
|
s->gss_cred_expiry = s->gss_cred_expiry;
|
|
|
|
/* If there's a final token we loop to consume it */
|
|
|
|
if (get_bool(pktin)) {
|
|
|
|
data = get_string(pktin);
|
|
|
|
s->gss_rcvtok.value = (char *)data.ptr;
|
|
|
|
s->gss_rcvtok.length = data.len;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case SSH2_MSG_KEXGSS_HOSTKEY:
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
if (s->hostkey_alg) {
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg,
|
|
|
|
s->hostkeydata);
|
|
|
|
put_string(s->exhash,
|
|
|
|
s->hostkeydata.ptr, s->hostkeydata.len);
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Can't loop as we have no token to pass to
|
|
|
|
* init_sec_context.
|
|
|
|
*/
|
|
|
|
goto wait_for_gss_token;
|
|
|
|
case SSH2_MSG_KEXGSS_ERROR:
|
|
|
|
/*
|
|
|
|
* We have no use for the server's major and minor
|
|
|
|
* status. The minor status is really only
|
|
|
|
* meaningful to the server, and with luck the major
|
|
|
|
* status means something to us (but not really all
|
|
|
|
* that much). The string is more meaningful, and
|
|
|
|
* hopefully the server sends any error tokens, as
|
|
|
|
* that will produce the most useful information for
|
|
|
|
* us.
|
|
|
|
*/
|
|
|
|
get_uint32(pktin); /* server's major status */
|
|
|
|
get_uint32(pktin); /* server's minor status */
|
|
|
|
data = get_string(pktin);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("GSSAPI key exchange failed; "
|
|
|
|
"server's message: %.*s", PTRLEN_PRINTF(data));
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
/* Language tag, but we have no use for it */
|
|
|
|
get_string(pktin);
|
|
|
|
/*
|
|
|
|
* Wait for an error token, if there is one, or the
|
|
|
|
* server's disconnect. The error token, if there
|
|
|
|
* is one, must follow the SSH2_MSG_KEXGSS_ERROR
|
|
|
|
* message, per the RFC.
|
|
|
|
*/
|
|
|
|
goto wait_for_gss_token;
|
|
|
|
default:
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet "
|
|
|
|
"during GSSAPI key exchange, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
} while (s->gss_rcvtok.length ||
|
|
|
|
s->gss_stat == SSH_GSS_S_CONTINUE_NEEDED ||
|
|
|
|
!s->complete_rcvd);
|
|
|
|
|
|
|
|
s->K = dh_find_K(s->dh_ctx, s->f);
|
|
|
|
|
|
|
|
/* We assume everything from now on will be quick, and it might
|
|
|
|
* involve user interaction. */
|
|
|
|
seat_set_busy_status(s->ppl.seat, BUSY_NOT);
|
|
|
|
|
|
|
|
if (!s->hkey)
|
|
|
|
put_stringz(s->exhash, "");
|
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
|
|
|
/* min, preferred, max */
|
|
|
|
put_uint32(s->exhash, s->pbits);
|
|
|
|
put_uint32(s->exhash, s->pbits);
|
|
|
|
put_uint32(s->exhash, s->pbits * 2);
|
|
|
|
|
|
|
|
put_mp_ssh2(s->exhash, s->p);
|
|
|
|
put_mp_ssh2(s->exhash, s->g);
|
|
|
|
}
|
|
|
|
put_mp_ssh2(s->exhash, s->e);
|
|
|
|
put_mp_ssh2(s->exhash, s->f);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* MIC verification is done below, after we compute the hash
|
|
|
|
* used as the MIC input.
|
|
|
|
*/
|
|
|
|
|
|
|
|
dh_cleanup(s->dh_ctx);
|
|
|
|
s->dh_ctx = NULL;
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
mp_free(s->f); s->f = NULL;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
if (dh_is_gex(s->kex_alg)) {
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
mp_free(s->g); s->g = NULL;
|
|
|
|
mp_free(s->p); s->p = NULL;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
} else {
|
|
|
|
ptrlen rsakeydata;
|
|
|
|
|
|
|
|
assert(s->kex_alg->main_type == KEXTYPE_RSA);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Doing RSA key exchange with hash %s",
|
|
|
|
s->kex_alg->hash->text_name);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
s->ppl.bpp->pls->kctx = SSH2_PKTCTX_RSAKEX;
|
|
|
|
/*
|
|
|
|
* RSA key exchange. First expect a KEXRSA_PUBKEY packet
|
|
|
|
* from the server.
|
|
|
|
*/
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEXRSA_PUBKEY) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting RSA public key, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->hostkeydata = get_string(pktin);
|
|
|
|
put_stringpl(s->exhash, s->hostkeydata);
|
|
|
|
s->hkey = ssh_key_new_pub(s->hostkey_alg, s->hostkeydata);
|
|
|
|
|
|
|
|
rsakeydata = get_string(pktin);
|
|
|
|
|
2019-01-02 00:07:48 +03:00
|
|
|
s->rsa_kex_key = ssh_rsakex_newkey(rsakeydata);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
if (!s->rsa_kex_key) {
|
|
|
|
ssh_proto_error(s->ppl.ssh,
|
|
|
|
"Unable to parse RSA public key packet");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
put_stringpl(s->exhash, rsakeydata);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Next, set up a shared secret K, of precisely KLEN -
|
|
|
|
* 2*HLEN - 49 bits, where KLEN is the bit length of the
|
|
|
|
* RSA key modulus and HLEN is the bit length of the hash
|
|
|
|
* we're using.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int klen = ssh_rsakex_klen(s->rsa_kex_key);
|
|
|
|
int nbits = klen - (2*s->kex_alg->hash->hlen*8 + 49);
|
|
|
|
int i, byte = 0;
|
2019-01-02 11:39:16 +03:00
|
|
|
strbuf *buf, *outstr;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
s->K = mp_power_2(nbits - 1);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
|
|
|
for (i = 0; i < nbits; i++) {
|
|
|
|
if ((i & 7) == 0) {
|
|
|
|
byte = random_byte();
|
|
|
|
}
|
Complete rewrite of PuTTY's bignum library.
The old 'Bignum' data type is gone completely, and so is sshbn.c. In
its place is a new thing called 'mp_int', handled by an entirely new
library module mpint.c, with API differences both large and small.
The main aim of this change is that the new library should be free of
timing- and cache-related side channels. I've written the code so that
it _should_ - assuming I haven't made any mistakes - do all of its
work without either control flow or memory addressing depending on the
data words of the input numbers. (Though, being an _arbitrary_
precision library, it does have to at least depend on the sizes of the
numbers - but there's a 'formal' size that can vary separately from
the actual magnitude of the represented integer, so if you want to
keep it secret that your number is actually small, it should work fine
to have a very long mp_int and just happen to store 23 in it.) So I've
done all my conditionalisation by means of computing both answers and
doing bit-masking to swap the right one into place, and all loops over
the words of an mp_int go up to the formal size rather than the actual
size.
I haven't actually tested the constant-time property in any rigorous
way yet (I'm still considering the best way to do it). But this code
is surely at the very least a big improvement on the old version, even
if I later find a few more things to fix.
I've also completely rewritten the low-level elliptic curve arithmetic
from sshecc.c; the new ecc.c is closer to being an adjunct of mpint.c
than it is to the SSH end of the code. The new elliptic curve code
keeps all coordinates in Montgomery-multiplication transformed form to
speed up all the multiplications mod the same prime, and only converts
them back when you ask for the affine coordinates. Also, I adopted
extended coordinates for the Edwards curve implementation.
sshecc.c has also had a near-total rewrite in the course of switching
it over to the new system. While I was there, I've separated ECDSA and
EdDSA more completely - they now have separate vtables, instead of a
single vtable in which nearly every function had a big if statement in
it - and also made the externally exposed types for an ECDSA key and
an ECDH context different.
A minor new feature: since the new arithmetic code includes a modular
square root function, we can now support the compressed point
representation for the NIST curves. We seem to have been getting along
fine without that so far, but it seemed a shame not to put it in,
since it was suddenly easy.
In sshrsa.c, one major change is that I've removed the RSA blinding
step in rsa_privkey_op, in which we randomise the ciphertext before
doing the decryption. The purpose of that was to avoid timing leaks
giving away the plaintext - but the new arithmetic code should take
that in its stride in the course of also being careful enough to avoid
leaking the _private key_, which RSA blinding had no way to do
anything about in any case.
Apart from those specific points, most of the rest of the changes are
more or less mechanical, just changing type names and translating code
into the new API.
2018-12-31 16:53:41 +03:00
|
|
|
mp_set_bit(s->K, i, (byte >> (i & 7)) & 1);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encode this as an mpint.
|
|
|
|
*/
|
|
|
|
buf = strbuf_new();
|
|
|
|
put_mp_ssh2(buf, s->K);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Encrypt it with the given RSA key.
|
|
|
|
*/
|
2019-01-02 11:39:16 +03:00
|
|
|
outstr = ssh_rsakex_encrypt(s->rsa_kex_key, s->kex_alg->hash,
|
|
|
|
ptrlen_from_strbuf(buf));
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* And send it off in a return packet.
|
|
|
|
*/
|
|
|
|
pktout = ssh_bpp_new_pktout(s->ppl.bpp, SSH2_MSG_KEXRSA_SECRET);
|
2019-01-02 11:39:16 +03:00
|
|
|
put_stringpl(pktout, ptrlen_from_strbuf(outstr));
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
pq_push(s->ppl.out_pq, pktout);
|
|
|
|
|
2019-01-02 11:39:16 +03:00
|
|
|
put_stringsb(s->exhash, outstr); /* frees outstr */
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
|
|
|
strbuf_free(buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
ssh_rsakex_freekey(s->rsa_kex_key);
|
|
|
|
s->rsa_kex_key = NULL;
|
|
|
|
|
|
|
|
crMaybeWaitUntilV((pktin = ssh2_transport_pop(s)) != NULL);
|
|
|
|
if (pktin->type != SSH2_MSG_KEXRSA_DONE) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Received unexpected packet when "
|
|
|
|
"expecting RSA kex signature, type %d (%s)",
|
|
|
|
pktin->type,
|
|
|
|
ssh2_pkt_type(s->ppl.bpp->pls->kctx,
|
|
|
|
s->ppl.bpp->pls->actx,
|
|
|
|
pktin->type));
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
s->sigdata = get_string(pktin);
|
|
|
|
if (get_err(pktin)) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Unable to parse RSA kex signature");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ssh2transport_finalise_exhash(s);
|
|
|
|
|
|
|
|
#ifndef NO_GSSAPI
|
|
|
|
if (s->kex_alg->main_type == KEXTYPE_GSS) {
|
|
|
|
Ssh_gss_buf gss_buf;
|
|
|
|
SSH_GSS_CLEAR_BUF(&s->gss_buf);
|
|
|
|
|
|
|
|
gss_buf.value = s->exchange_hash;
|
|
|
|
gss_buf.length = s->kex_alg->hash->hlen;
|
|
|
|
s->gss_stat = s->shgss->lib->verify_mic(
|
|
|
|
s->shgss->lib, s->shgss->ctx, &gss_buf, &s->mic);
|
|
|
|
if (s->gss_stat != SSH_GSS_OK) {
|
|
|
|
if (s->shgss->lib->display_status(
|
|
|
|
s->shgss->lib, s->shgss->ctx, &s->gss_buf) == SSH_GSS_OK) {
|
|
|
|
char *err = s->gss_buf.value;
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange MIC was "
|
|
|
|
"not valid: %s", err);
|
|
|
|
sfree(err);
|
|
|
|
} else {
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "GSSAPI key exchange MIC was "
|
|
|
|
"not valid");
|
|
|
|
}
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-10-29 22:50:29 +03:00
|
|
|
s->gss_kex_used = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
|
|
|
|
/*-
|
|
|
|
* If this the first KEX, save the GSS context for "gssapi-keyex"
|
|
|
|
* authentication.
|
|
|
|
*
|
|
|
|
* http://tools.ietf.org/html/rfc4462#section-4
|
|
|
|
*
|
|
|
|
* This method may be used only if the initial key exchange was
|
|
|
|
* performed using a GSS-API-based key exchange method defined in
|
|
|
|
* accordance with Section 2. The GSS-API context used with this
|
|
|
|
* method is always that established during an initial GSS-API-based
|
|
|
|
* key exchange. Any context established during key exchange for the
|
|
|
|
* purpose of rekeying MUST NOT be used with this method.
|
|
|
|
*/
|
|
|
|
if (s->got_session_id) {
|
|
|
|
s->shgss->lib->release_cred(s->shgss->lib, &s->shgss->ctx);
|
|
|
|
}
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("GSSAPI Key Exchange complete!");
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
s->dh_ctx = NULL;
|
|
|
|
|
|
|
|
/* In GSS keyex there's no hostkey signature to verify */
|
|
|
|
if (s->kex_alg->main_type != KEXTYPE_GSS) {
|
|
|
|
if (!s->hkey) {
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Server's host key is invalid");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!ssh_key_verify(
|
|
|
|
s->hkey, s->sigdata,
|
|
|
|
make_ptrlen(s->exchange_hash, s->kex_alg->hash->hlen))) {
|
|
|
|
#ifndef FUZZING
|
|
|
|
ssh_proto_error(s->ppl.ssh, "Signature from server's host key "
|
|
|
|
"is invalid");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
s->keystr = (s->hkey ? ssh_key_cache_str(s->hkey) : NULL);
|
|
|
|
#ifndef NO_GSSAPI
|
|
|
|
if (s->gss_kex_used) {
|
|
|
|
/*
|
|
|
|
* In a GSS-based session, check the host key (if any) against
|
|
|
|
* the transient host key cache.
|
|
|
|
*/
|
|
|
|
if (s->kex_alg->main_type == KEXTYPE_GSS) {
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We've just done a GSS key exchange. If it gave us a
|
|
|
|
* host key, store it.
|
|
|
|
*/
|
|
|
|
if (s->hkey) {
|
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("GSS kex provided fallback host key:");
|
|
|
|
ppl_logevent("%s", s->fingerprint);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
ssh_transient_hostkey_cache_add(s->thc, s->hkey);
|
|
|
|
} else if (!ssh_transient_hostkey_cache_non_empty(s->thc)) {
|
|
|
|
/*
|
|
|
|
* But if it didn't, then we currently have no
|
|
|
|
* fallback host key to use in subsequent non-GSS
|
|
|
|
* rekeys. So we should immediately trigger a non-GSS
|
|
|
|
* rekey of our own, to set one up, before the session
|
|
|
|
* keys have been used for anything else.
|
|
|
|
*
|
|
|
|
* This is similar to the cross-certification done at
|
|
|
|
* user request in the permanent host key cache, but
|
|
|
|
* here we do it automatically, once, at session
|
|
|
|
* startup, and only add the key to the transient
|
|
|
|
* cache.
|
|
|
|
*/
|
|
|
|
if (s->hostkey_alg) {
|
2018-10-29 22:50:29 +03:00
|
|
|
s->need_gss_transient_hostkey = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* If we negotiated the "null" host key algorithm
|
|
|
|
* in the key exchange, that's an indication that
|
|
|
|
* no host key at all is available from the server
|
|
|
|
* (both because we listed "null" last, and
|
|
|
|
* because RFC 4462 section 5 says that a server
|
|
|
|
* MUST NOT offer "null" as a host key algorithm
|
|
|
|
* unless that is the only algorithm it provides
|
|
|
|
* at all).
|
|
|
|
*
|
|
|
|
* In that case we actually _can't_ perform a
|
|
|
|
* non-GSSAPI key exchange, so it's pointless to
|
|
|
|
* attempt one proactively. This is also likely to
|
|
|
|
* cause trouble later if a rekey is required at a
|
|
|
|
* moment whne GSS credentials are not available,
|
|
|
|
* but someone setting up a server in this
|
|
|
|
* configuration presumably accepts that as a
|
|
|
|
* consequence.
|
|
|
|
*/
|
|
|
|
if (!s->warned_about_no_gss_transient_hostkey) {
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("No fallback host key available");
|
2018-10-29 22:50:29 +03:00
|
|
|
s->warned_about_no_gss_transient_hostkey = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* We've just done a fallback key exchange, so make
|
|
|
|
* sure the host key it used is in the cache of keys
|
|
|
|
* we previously received in GSS kexes.
|
|
|
|
*
|
|
|
|
* An exception is if this was the non-GSS key exchange we
|
|
|
|
* triggered on purpose to populate the transient cache.
|
|
|
|
*/
|
|
|
|
assert(s->hkey); /* only KEXTYPE_GSS lets this be null */
|
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
|
|
|
|
|
|
|
if (s->need_gss_transient_hostkey) {
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Post-GSS rekey provided fallback host key:");
|
|
|
|
ppl_logevent("%s", s->fingerprint);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
ssh_transient_hostkey_cache_add(s->thc, s->hkey);
|
2018-10-29 22:50:29 +03:00
|
|
|
s->need_gss_transient_hostkey = false;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
} else if (!ssh_transient_hostkey_cache_verify(s->thc, s->hkey)) {
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Non-GSS rekey after initial GSS kex "
|
|
|
|
"used host key:");
|
|
|
|
ppl_logevent("%s", s->fingerprint);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
ssh_sw_abort(s->ppl.ssh, "Server's host key did not match any "
|
|
|
|
"used in previous GSS kex");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
#endif /* NO_GSSAPI */
|
|
|
|
if (!s->got_session_id) {
|
|
|
|
/*
|
|
|
|
* Make a note of any other host key formats that are available.
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
int i, j, nkeys = 0;
|
|
|
|
char *list = NULL;
|
|
|
|
for (i = 0; i < lenof(ssh2_hostkey_algs); i++) {
|
|
|
|
if (ssh2_hostkey_algs[i].alg == s->hostkey_alg)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
for (j = 0; j < s->n_uncert_hostkeys; j++)
|
|
|
|
if (s->uncert_hostkeys[j] == i)
|
|
|
|
break;
|
|
|
|
|
|
|
|
if (j < s->n_uncert_hostkeys) {
|
|
|
|
char *newlist;
|
|
|
|
if (list)
|
|
|
|
newlist = dupprintf(
|
|
|
|
"%s/%s", list,
|
|
|
|
ssh2_hostkey_algs[i].alg->ssh_id);
|
|
|
|
else
|
|
|
|
newlist = dupprintf(
|
|
|
|
"%s", ssh2_hostkey_algs[i].alg->ssh_id);
|
|
|
|
sfree(list);
|
|
|
|
list = newlist;
|
|
|
|
nkeys++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (list) {
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Server also has %s host key%s, but we "
|
|
|
|
"don't know %s", list,
|
|
|
|
nkeys > 1 ? "s" : "",
|
|
|
|
nkeys > 1 ? "any of them" : "it");
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
sfree(list);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Authenticate remote host: verify host key. (We've already
|
|
|
|
* checked the signature of the exchange hash.)
|
|
|
|
*/
|
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Host key fingerprint is:");
|
|
|
|
ppl_logevent("%s", s->fingerprint);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
/* First check against manually configured host keys. */
|
|
|
|
s->dlgret = verify_ssh_manual_host_key(
|
|
|
|
s->conf, s->fingerprint, s->hkey);
|
|
|
|
if (s->dlgret == 0) { /* did not match */
|
|
|
|
ssh_sw_abort(s->ppl.ssh, "Host key did not appear in manually "
|
|
|
|
"configured list");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
} else if (s->dlgret < 0) { /* none configured; use standard handling */
|
|
|
|
s->dlgret = seat_verify_ssh_host_key(
|
|
|
|
s->ppl.seat, s->savedhost, s->savedport,
|
|
|
|
ssh_key_cache_id(s->hkey), s->keystr, s->fingerprint,
|
|
|
|
ssh2_transport_dialog_callback, s);
|
|
|
|
#ifdef FUZZING
|
|
|
|
s->dlgret = 1;
|
|
|
|
#endif
|
|
|
|
crMaybeWaitUntilV(s->dlgret >= 0);
|
|
|
|
if (s->dlgret == 0) {
|
|
|
|
ssh_user_close(s->ppl.ssh,
|
|
|
|
"User aborted at host key verification");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
/*
|
|
|
|
* Save this host key, to check against the one presented in
|
|
|
|
* subsequent rekeys.
|
|
|
|
*/
|
|
|
|
s->hostkey_str = s->keystr;
|
|
|
|
s->keystr = NULL;
|
|
|
|
} else if (s->cross_certifying) {
|
2018-12-01 17:39:23 +03:00
|
|
|
assert(s->hkey);
|
|
|
|
assert(ssh_key_alg(s->hkey) == s->cross_certifying);
|
|
|
|
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
s->fingerprint = ssh2_fingerprint(s->hkey);
|
Start using C99 variadic macros.
In the past, I've had a lot of macros which you call with double
parentheses, along the lines of debug(("format string", params)), so
that the inner parens protect the commas and permit the macro to treat
the whole printf-style argument list as one macro argument.
That's all very well, but it's a bit inconvenient (it doesn't leave
you any way to implement such a macro by prepending another argument
to the list), and now this code base's rules allow C99isms, I can
switch all those macros to using a single pair of parens, using the
C99 ability to say '...' in the parameter list of the #define and get
at the corresponding suffix of the arguments as __VA_ARGS__.
So I'm doing it. I've made the following printf-style macros variadic:
bpp_logevent, ppl_logevent, ppl_printf and debug.
While I'm here, I've also fixed up a collection of conditioned-out
calls to debug() in the Windows front end which were clearly expecting
a macro with a different calling syntax, because they had an integer
parameter first. If I ever have a need to condition those back in,
they should actually work now.
2018-12-08 23:32:31 +03:00
|
|
|
ppl_logevent("Storing additional host key for this host:");
|
|
|
|
ppl_logevent("%s", s->fingerprint);
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
sfree(s->fingerprint);
|
|
|
|
s->fingerprint = NULL;
|
|
|
|
store_host_key(s->savedhost, s->savedport,
|
|
|
|
ssh_key_cache_id(s->hkey), s->keystr);
|
|
|
|
/*
|
|
|
|
* Don't forget to store the new key as the one we'll be
|
|
|
|
* re-checking in future normal rekeys.
|
|
|
|
*/
|
|
|
|
s->hostkey_str = s->keystr;
|
|
|
|
s->keystr = NULL;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* In a rekey, we never present an interactive host key
|
|
|
|
* verification request to the user. Instead, we simply
|
|
|
|
* enforce that the key we're seeing this time is identical to
|
|
|
|
* the one we saw before.
|
|
|
|
*/
|
2018-12-01 17:39:23 +03:00
|
|
|
assert(s->keystr); /* filled in by prior key exchange */
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
if (strcmp(s->hostkey_str, s->keystr)) {
|
|
|
|
#ifndef FUZZING
|
|
|
|
ssh_sw_abort(s->ppl.ssh,
|
|
|
|
"Host key was different in repeat key exchange");
|
2018-12-29 15:00:03 +03:00
|
|
|
*aborted = true;
|
Move client-specific SSH code into new files.
This is a major code reorganisation in preparation for making this
code base into one that can build an SSH server as well as a client.
(Mostly for purposes of using the server as a regression test suite
for the client, though I have some other possible uses in mind too.
However, it's currently no part of my plan to harden the server to the
point where it can sensibly be deployed in a hostile environment.)
In this preparatory commit, I've broken up the SSH-2 transport and
connection layers, and the SSH-1 connection layer, into multiple
source files, with each layer having its own header file containing
the shared type definitions. In each case, the new source file
contains code that's specific to the client side of the protocol, so
that a new file can be swapped in in its place when building the
server.
Mostly this is just a straightforward moving of code without changing
it very much, but there are a couple of actual changes in the process:
The parsing of SSH-2 global-request and channel open-messages is now
done by a new pair of functions in the client module. For channel
opens, I've invented a new union data type to be the return value from
that function, representing either failure (plus error message),
success (plus Channel instance to manage the new channel), or an
instruction to hand the channel over to a sharing downstream (plus a
pointer to the downstream in question).
Also, the tree234 of remote port forwardings in ssh2connection is now
initialised on first use by the client-specific code, so that's where
its compare function lives. The shared ssh2connection_free() still
takes responsibility for freeing it, but now has to check if it's
non-null first.
The outer shell of the ssh2_lportfwd_open method, for making a
local-to-remote port forwarding, is still centralised in
ssh2connection.c, but the part of it that actually constructs the
outgoing channel-open message has moved into the client code, because
that will have to change depending on whether the channel-open has to
have type direct-tcpip or forwarded-tcpip.
In the SSH-1 connection layer, half the filter_queue method has moved
out into the new client-specific code, but not all of it -
bidirectional channel maintenance messages are still handled
centrally. One exception is SSH_MSG_PORT_OPEN, which can be sent in
both directions, but with subtly different semantics - from server to
client, it's referring to a previously established remote forwarding
(and must be rejected if there isn't one that matches it), but from
client to server it's just a "direct-tcpip" request with no prior
context. So that one is in the client-specific module, and when I add
the server code it will have its own different handler.
2018-10-20 19:57:37 +03:00
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sfree(s->keystr);
|
|
|
|
s->keystr = NULL;
|
|
|
|
if (s->hkey) {
|
|
|
|
ssh_key_free(s->hkey);
|
|
|
|
s->hkey = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
crFinishV;
|
|
|
|
}
|