Whitespace
This commit is contained in:
Родитель
c0c4c5d9eb
Коммит
1a199c5241
|
@ -143,7 +143,7 @@ public:
|
|||
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
|
||||
{
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto result = ValueTensorFor(rank, fr);
|
||||
auto result = ValueTensorFor(rank, fr);
|
||||
auto input0 = InputRef(0).ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
auto input1 = InputRef(1).ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
result.AssignDifferenceOf(input0, input1);
|
||||
|
@ -193,7 +193,7 @@ public:
|
|||
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
|
||||
{
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto result = ValueTensorFor(rank, fr);
|
||||
auto result = ValueTensorFor(rank, fr);
|
||||
auto input0 = InputRef(0).ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
auto input1 = InputRef(1).ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
result.AssignElementwiseProductOf(input0, input1);
|
||||
|
@ -203,7 +203,7 @@ public:
|
|||
{
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto gradient = GradientTensorFor(rank, fr);
|
||||
auto inputGradient = Input(inputIndex)->GradientTensorFor(rank, fr.AllowBroadcast());
|
||||
auto inputGradient = Input(inputIndex)->GradientTensorFor(rank, fr.AllowBroadcast());
|
||||
auto otherInputValue = Input(1 - inputIndex)->ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
|
||||
// if reduction then mask the respective input(s) (zero out the gaps)
|
||||
|
@ -689,7 +689,7 @@ public:
|
|||
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
|
||||
{
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto output = ValueTensorFor( rank, fr);
|
||||
auto output = ValueTensorFor( rank, fr);
|
||||
auto input = TensorView<ElemType>(InputRef(0).ValuePtr(), GetTransposedTensorSliceFor(rank, fr));
|
||||
output.AssignCopyOf(input);
|
||||
}
|
||||
|
@ -697,7 +697,7 @@ public:
|
|||
virtual void /*ComputationNode::*/ BackpropTo(const size_t inputIndex, const FrameRange& fr) override
|
||||
{
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto outputGradient = GradientTensorFor( rank, fr);
|
||||
auto outputGradient = GradientTensorFor( rank, fr);
|
||||
auto inputGradient = TensorView<ElemType>(InputRef(0).GradientPtr(), GetTransposedTensorSliceFor(rank, fr));
|
||||
inputGradient.AddCopyOf(outputGradient);
|
||||
}
|
||||
|
|
|
@ -50,7 +50,7 @@ public:
|
|||
virtual void /*ComputationNode::*/ ForwardProp(const FrameRange& fr) override
|
||||
{
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto result = ValueTensorFor(rank, fr);
|
||||
auto result = ValueTensorFor(rank, fr);
|
||||
auto input = InputRef(0).ValueTensorFor(rank, fr);
|
||||
result.DoUnaryOpOf(0, input, 1, opForward, opSum);
|
||||
}
|
||||
|
@ -61,7 +61,7 @@ public:
|
|||
|
||||
// get the args
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto sliceOutputGrad = GradientTensorFor(rank, fr); // propagate from this one...
|
||||
auto sliceOutputGrad = GradientTensorFor(rank, fr); // propagate from this one...
|
||||
auto sliceInputGrad = InputRef(0).GradientTensorFor(rank, fr); // ...to this one
|
||||
|
||||
GradientOperationType opTypeHolder = opType; // preventing pragma warning C4127
|
||||
|
@ -544,10 +544,10 @@ public:
|
|||
if (inputIndex == 2)
|
||||
{
|
||||
size_t rank = DetermineElementwiseTensorRank();
|
||||
auto gradient = GradientTensorFor(rank, fr);
|
||||
auto gradient = GradientTensorFor(rank, fr);
|
||||
auto inputGradient = InputRef(inputIndex).GradientTensorFor(rank, fr.AllowBroadcast());
|
||||
auto input = InputRef(inputIndex).ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
auto output = ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
auto output = ValueTensorFor(rank, fr.AllowBroadcast());
|
||||
|
||||
inputGradient.AddCopyIfEqualOf(input, output, gradient);
|
||||
}
|
||||
|
|
|
@ -126,7 +126,7 @@ template <class ElemType>
|
|||
fprintf(stderr, "] %ls %s--> %s\n", m_message.c_str(), logGradientInstead ? "(gradient) " : "", InputRef(0).FormatOperationPrototype("").c_str());
|
||||
InputRef(0).WriteMinibatchWithFormatting(stderr, fr, m_onlyUpToRow, m_onlyUpToT, m_formattingOptions.transpose, m_formattingOptions.isCategoryLabel, m_formattingOptions.isSparse, m_labelMapping,
|
||||
sequenceSeparator, sequencePrologue, sequenceEpilogue, elementSeparator, sampleSeparator,
|
||||
valueFormatString, logGradientInstead);
|
||||
valueFormatString, logGradientInstead);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче