DeepSpeed/deepspeed/__init__.py

367 строки
15 KiB
Python
Executable File

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import sys
import types
import json
from typing import Optional, Union
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from packaging import version as pkg_version
# Skip Triton import for AMD due to pytorch-triton-rocm module breaking device API in DeepSpeed
if not (hasattr(torch.version, 'hip') and torch.version.hip is not None):
try:
import triton # noqa: F401 # type: ignore
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
else:
HAS_TRITON = False
from . import ops
from . import module_inject
from .accelerator import get_accelerator
from .constants import TORCH_DISTRIBUTED_DEFAULT_PORT
from .runtime.engine import DeepSpeedEngine, DeepSpeedOptimizerCallable, DeepSpeedSchedulerCallable
from .runtime.engine import ADAM_OPTIMIZER, LAMB_OPTIMIZER
from .runtime.hybrid_engine import DeepSpeedHybridEngine
from .runtime.pipe.engine import PipelineEngine
from .inference.engine import InferenceEngine
from .inference.config import DeepSpeedInferenceConfig
from .runtime.lr_schedules import add_tuning_arguments
from .runtime.config import DeepSpeedConfig, DeepSpeedConfigError
from .runtime.activation_checkpointing import checkpointing
from .ops.transformer import DeepSpeedTransformerLayer, DeepSpeedTransformerConfig
from .module_inject import replace_transformer_layer, revert_transformer_layer
from .utils import log_dist, OnDevice, logger
from .comm.comm import init_distributed
from .runtime import zero
from .runtime.compiler import is_compile_supported
from .pipe import PipelineModule
from .git_version_info import version, git_hash, git_branch
def _parse_version(version_str):
'''Parse a version string and extract the major, minor, and patch versions.'''
ver = pkg_version.parse(version_str)
return ver.major, ver.minor, ver.micro
# Export version information
__version__ = version
__version_major__, __version_minor__, __version_patch__ = _parse_version(__version__)
__git_hash__ = git_hash
__git_branch__ = git_branch
# Set to torch's distributed package or deepspeed.comm based inside DeepSpeedEngine init
dist = None
def initialize(args=None,
model: torch.nn.Module = None,
optimizer: Optional[Union[Optimizer, DeepSpeedOptimizerCallable]] = None,
model_parameters: Optional[torch.nn.Module] = None,
training_data: Optional[torch.utils.data.Dataset] = None,
lr_scheduler: Optional[Union[_LRScheduler, DeepSpeedSchedulerCallable]] = None,
distributed_port: int = TORCH_DISTRIBUTED_DEFAULT_PORT,
mpu=None,
dist_init_required: Optional[bool] = None,
collate_fn=None,
config=None,
mesh_param=None,
config_params=None):
"""Initialize the DeepSpeed Engine.
Arguments:
args: an object containing local_rank and deepspeed_config fields.
This is optional if `config` is passed.
model: Required: nn.module class before apply any wrappers
optimizer: Optional: a user defined Optimizer or Callable that returns an Optimizer object.
This overrides any optimizer definition in the DeepSpeed json config.
model_parameters: Optional: An iterable of torch.Tensors or dicts.
Specifies what Tensors should be optimized.
training_data: Optional: Dataset of type torch.utils.data.Dataset
lr_scheduler: Optional: Learning Rate Scheduler Object or a Callable that takes an Optimizer and returns a Scheduler object.
The scheduler object should define a get_lr(), step(), state_dict(), and load_state_dict() methods
distributed_port: Optional: Master node (rank 0)'s free port that needs to be used for communication during distributed training
mpu: Optional: A model parallelism unit object that implements
get_{model,data}_parallel_{rank,group,world_size}()
dist_init_required: Optional: None will auto-initialize torch distributed if needed,
otherwise the user can force it to be initialized or not via boolean.
collate_fn: Optional: Merges a list of samples to form a
mini-batch of Tensor(s). Used when using batched loading from a
map-style dataset.
config: Optional: Instead of requiring args.deepspeed_config you can pass your deepspeed config
as an argument instead, as a path or a dictionary.
config_params: Optional: Same as `config`, kept for backwards compatibility.
Returns:
A tuple of ``engine``, ``optimizer``, ``training_dataloader``, ``lr_scheduler``
* ``engine``: DeepSpeed runtime engine which wraps the client model for distributed training.
* ``optimizer``: Wrapped optimizer if a user defined ``optimizer`` is supplied, or if
optimizer is specified in json config else ``None``.
* ``training_dataloader``: DeepSpeed dataloader if ``training_data`` was supplied,
otherwise ``None``.
* ``lr_scheduler``: Wrapped lr scheduler if user ``lr_scheduler`` is passed, or
if ``lr_scheduler`` specified in JSON configuration. Otherwise ``None``.
"""
log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__,
__git_branch__),
ranks=[0])
# Disable zero.Init context if it's currently enabled
zero.partition_parameters.shutdown_init_context()
assert model is not None, "deepspeed.initialize requires a model"
global dist
from deepspeed import comm as dist
dist_backend = get_accelerator().communication_backend_name()
dist.init_distributed(dist_backend=dist_backend,
distributed_port=distributed_port,
dist_init_required=dist_init_required)
##TODO: combine reuse mpu as mesh device and vice versa
# Set config using config_params for backwards compat
if config is None and config_params is not None:
config = config_params
mesh_device = None
if mesh_param:
logger.info(f"mesh_param to Initialize mesh device: {mesh_param}")
mesh_device = dist.initialize_mesh_device(mesh_param, ("data_parallel", "sequence_parallel"))
#if config file has sequence parallelize and data parallelize, then use them to initialize mesh device
elif config is not None:
if "sequence_parallel_size" in config and "data_parallel_size" in config:
logger.info(f"config to Initialize mesh device: {config}")
mesh_device = dist.initialize_mesh_device((config["data_parallel_size"], config["sequence_parallel_size"]), \
("data_parallel", "sequence_parallel"))
# Check for deepscale_config for backwards compat
if hasattr(args, "deepscale_config") and args.deepscale_config is not None:
logger.warning("************ --deepscale_config is deprecated, please use --deepspeed_config ************")
if hasattr(args, "deepspeed_config"):
assert (args.deepspeed_config
is None), "Not sure how to proceed, we were given both a deepscale_config and deepspeed_config"
args.deepspeed_config = args.deepscale_config
args.deepscale_config = None
# Check that we have only one config passed
if hasattr(args, "deepspeed_config") and args.deepspeed_config is not None:
assert config is None, "Not sure how to proceed, we were given deepspeed configs in the deepspeed arguments and deepspeed.initialize() function call"
config = args.deepspeed_config
assert config is not None, "DeepSpeed requires --deepspeed_config to specify configuration file"
if not isinstance(model, PipelineModule):
config_class = DeepSpeedConfig(config, mpu, mesh_device=mesh_device)
if config_class.hybrid_engine.enabled:
engine = DeepSpeedHybridEngine(args=args,
model=model,
optimizer=optimizer,
model_parameters=model_parameters,
training_data=training_data,
lr_scheduler=lr_scheduler,
mpu=mpu,
dist_init_required=dist_init_required,
collate_fn=collate_fn,
config=config,
config_class=config_class)
else:
engine = DeepSpeedEngine(args=args,
model=model,
optimizer=optimizer,
model_parameters=model_parameters,
training_data=training_data,
lr_scheduler=lr_scheduler,
mpu=mpu,
dist_init_required=dist_init_required,
collate_fn=collate_fn,
config=config,
mesh_device=mesh_device,
config_class=config_class)
else:
assert mpu is None, "mpu must be None with pipeline parallelism"
mpu = model.mpu()
config_class = DeepSpeedConfig(config, mpu)
engine = PipelineEngine(args=args,
model=model,
optimizer=optimizer,
model_parameters=model_parameters,
training_data=training_data,
lr_scheduler=lr_scheduler,
mpu=mpu,
dist_init_required=dist_init_required,
collate_fn=collate_fn,
config=config,
config_class=config_class)
# Restore zero.Init context if necessary
zero.partition_parameters.restore_init_context()
return_items = [
engine,
engine.optimizer,
engine.training_dataloader,
engine.lr_scheduler,
]
return tuple(return_items)
def _add_core_arguments(parser):
r"""Helper (internal) function to update an argument parser with an argument group of the core DeepSpeed arguments.
The core set of DeepSpeed arguments include the following:
1) --deepspeed: boolean flag to enable DeepSpeed
2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime.
This is a helper function to the public add_config_arguments()
Arguments:
parser: argument parser
Return:
parser: Updated Parser
"""
group = parser.add_argument_group('DeepSpeed', 'DeepSpeed configurations')
group.add_argument('--deepspeed',
default=False,
action='store_true',
help='Enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)')
group.add_argument('--deepspeed_config', default=None, type=str, help='DeepSpeed json configuration file.')
group.add_argument('--deepscale',
default=False,
action='store_true',
help='Deprecated enable DeepSpeed (helper flag for user code, no impact on DeepSpeed backend)')
group.add_argument('--deepscale_config',
default=None,
type=str,
help='Deprecated DeepSpeed json configuration file.')
return parser
def add_config_arguments(parser):
r"""Update the argument parser to enabling parsing of DeepSpeed command line arguments.
The set of DeepSpeed arguments include the following:
1) --deepspeed: boolean flag to enable DeepSpeed
2) --deepspeed_config <json file path>: path of a json configuration file to configure DeepSpeed runtime.
Arguments:
parser: argument parser
Return:
parser: Updated Parser
"""
parser = _add_core_arguments(parser)
return parser
def default_inference_config():
"""
Return a default DeepSpeed inference configuration dictionary.
"""
return DeepSpeedInferenceConfig().dict()
def init_inference(model, config=None, **kwargs):
"""Initialize the DeepSpeed InferenceEngine.
Description: all four cases are valid and supported in DS init_inference() API.
# Case 1: user provides no config and no kwargs. Default config will be used.
.. code-block:: python
generator.model = deepspeed.init_inference(generator.model)
string = generator("DeepSpeed is")
print(string)
# Case 2: user provides a config and no kwargs. User supplied config will be used.
.. code-block:: python
generator.model = deepspeed.init_inference(generator.model, config=config)
string = generator("DeepSpeed is")
print(string)
# Case 3: user provides no config and uses keyword arguments (kwargs) only.
.. code-block:: python
generator.model = deepspeed.init_inference(generator.model,
tensor_parallel={"tp_size": world_size},
dtype=torch.half,
replace_with_kernel_inject=True)
string = generator("DeepSpeed is")
print(string)
# Case 4: user provides config and keyword arguments (kwargs). Both config and kwargs are merged and kwargs take precedence.
.. code-block:: python
generator.model = deepspeed.init_inference(generator.model, config={"dtype": torch.half}, replace_with_kernel_inject=True)
string = generator("DeepSpeed is")
print(string)
Arguments:
model: Required: original nn.module object without any wrappers
config: Optional: instead of arguments, you can pass in a DS inference config dict or path to JSON file
Returns:
A deepspeed.InferenceEngine wrapped model.
"""
log_dist("DeepSpeed info: version={}, git-hash={}, git-branch={}".format(__version__, __git_hash__,
__git_branch__),
ranks=[0])
# Load config_dict from config first
if config is None:
config = {}
if isinstance(config, str):
with open(config, "r") as f:
config_dict = json.load(f)
elif isinstance(config, dict):
config_dict = config
else:
raise ValueError(f"'config' argument expected string or dictionary, got {type(config)}")
# Update with values from kwargs, ensuring no conflicting overlap between config and kwargs
overlap_keys = set(config_dict.keys()).intersection(kwargs.keys())
# If there is overlap, error out if values are different
for key in overlap_keys:
if config_dict[key] != kwargs[key]:
raise ValueError(f"Conflicting argument '{key}' in 'config':{config_dict[key]} and kwargs:{kwargs[key]}")
config_dict.update(kwargs)
ds_inference_config = DeepSpeedInferenceConfig(**config_dict)
engine = InferenceEngine(model, config=ds_inference_config)
return engine