DeepSpeed/accelerator/cuda_accelerator.py

256 строки
7.8 KiB
Python

'''Copyright The Microsoft DeepSpeed Team'''
import os
import pkgutil
import importlib
from .abstract_accelerator import DeepSpeedAccelerator
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
try:
import torch.cuda
except ImportError:
pass
class CUDA_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = 'cuda'
self._communication_backend_name = 'nccl'
# begin initialize for create_op_builder()
# put all valid class name <--> class type mapping into class_dict
op_builder_dir = self.op_builder_dir()
op_builder_module = importlib.import_module(op_builder_dir)
for _, module_name, _ in pkgutil.iter_modules([os.path.dirname(op_builder_module.__file__)]):
# avoid self references
if module_name != 'all_ops' and module_name != 'builder':
module = importlib.import_module("{}.{}".format(
op_builder_dir,
module_name))
for member_name in module.__dir__():
if member_name.endswith(
'Builder'
) and member_name != "OpBuilder" and member_name != "CUDAOpBuilder" and member_name != "TorchCPUOpBuilder": # avoid abstract classes
if not member_name in self.class_dict:
self.class_dict[member_name] = getattr(module, member_name)
# end initialize for create_op_builder()
# Device APIs
def device_name(self, device_index=None):
if device_index == None:
return 'cuda'
return 'cuda:{}'.format(device_index)
def device(self, device_index=None):
return torch.cuda.device(device_index)
def set_device(self, device_index):
torch.cuda.set_device(device_index)
def current_device(self):
return torch.cuda.current_device()
def current_device_name(self):
return 'cuda:{}'.format(torch.cuda.current_device())
def device_count(self):
return torch.cuda.device_count()
def synchronize(self, device_index=None):
return torch.cuda.synchronize(device_index)
# RNG APIs
def random(self):
return torch.random
def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.cuda.set_rng_state(new_state)
return torch.cuda.set_rng_state(new_state, device_index)
def get_rng_state(self, device_index=None):
if device_index is None:
return torch.cuda.get_rng_state()
return torch.cuda.get_rng_state(device_index)
def manual_seed(self, seed):
return torch.cuda.manual_seed(seed)
def manual_seed_all(self, seed):
return torch.cuda.manual_seed_all(seed)
def initial_seed(self, seed):
return torch.cuda.initial_seed(seed)
def default_generator(self, device_index):
return torch.cuda.default_generators[device_index]
# Streams/Events
@property
def Stream(self):
return torch.cuda.Stream
def stream(self, stream):
return torch.cuda.stream(stream)
def current_stream(self, device_index=None):
return torch.cuda.current_stream(device_index)
def default_stream(self, device_index=None):
return torch.cuda.default_stream(device_index)
@property
def Event(self):
return torch.cuda.Event
# Memory management
def empty_cache(self):
return torch.cuda.empty_cache()
def memory_allocated(self, device_index=None):
return torch.cuda.memory_allocated(device_index)
def max_memory_allocated(self, device_index=None):
return torch.cuda.max_memory_allocated(device_index)
def reset_max_memory_allocated(self, device_index=None):
return torch.cuda.reset_max_memory_allocated(device_index)
def memory_cached(self, device_index=None):
return torch.cuda.memory_cached(device_index)
def max_memory_cached(self, device_index=None):
return torch.cuda.max_memory_cached(device_index)
def reset_max_memory_cached(self, device_index=None):
return torch.cuda.reset_max_memory_cached(device_index)
def memory_stats(self, device_index=None):
if hasattr(torch.cuda, 'memory_stats'):
return torch.cuda.memory_stats(device_index)
def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.cuda, 'reset_peak_memory_stats'):
return torch.cuda.reset_peak_memory_stats(device_index)
def memory_reserved(self, device_index=None):
if hasattr(torch.cuda, 'memory_reserved'):
return torch.cuda.memory_reserved(device_index)
def max_memory_reserved(self, device_index=None):
if hasattr(torch.cuda, 'max_memory_reserved'):
return torch.cuda.max_memory_reserved(device_index)
def total_memory(self, device_index=None):
return torch.cuda.get_device_properties(device_index).total_memory
# Data types
def is_bf16_supported(self):
return torch.cuda.is_bf16_supported()
def is_fp16_supported(self):
major, _ = torch.cuda.get_device_capability()
if major >= 7:
return True
else:
return False
# Misc
def amp(self):
if hasattr(torch.cuda, 'amp'):
return torch.cuda.amp
return None
def is_available(self):
return torch.cuda.is_available()
def range_push(self, msg):
if hasattr(torch.cuda.nvtx, 'range_push'):
return torch.cuda.nvtx.range_push(msg)
def range_pop(self):
if hasattr(torch.cuda.nvtx, 'range_pop'):
return torch.cuda.nvtx.range_pop()
def lazy_call(self, callback):
return torch.cuda._lazy_call(callback)
def communication_backend_name(self):
return self._communication_backend_name
# Tensor operations
@property
def BFloat16Tensor(self):
return torch.cuda.BFloat16Tensor
@property
def ByteTensor(self):
return torch.cuda.ByteTensor
@property
def DoubleTensor(self):
return torch.cuda.DoubleTensor
@property
def FloatTensor(self):
return torch.cuda.FloatTensor
@property
def HalfTensor(self):
return torch.cuda.HalfTensor
@property
def IntTensor(self):
return torch.cuda.IntTensor
@property
def LongTensor(self):
return torch.cuda.LongTensor
def pin_memory(self, tensor):
return tensor.pin_memory()
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('cuda:'):
return True
else:
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401
return "op_builder"
except ImportError:
return "deepspeed.ops.op_builder"
# dict that holds class name <--> class type mapping i.e.
# 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'>
# this dict will be filled at init stage
class_dict = {}
# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
if class_name in self.class_dict:
return self.class_dict[class_name]()
else:
return None
# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return None
def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension