Code to reproduce the NeurIPS 2019 paper "Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck" by Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin and Katja Hofmann.
Перейти к файлу
maximilianigl 6b3a58bfc2
Merge pull request #8 from KaiyangZhou/master
plot generalization gap for Coinrun
2020-06-28 08:40:22 +01:00
coinrun plot generalization gap 2020-06-27 22:07:31 +01:00
gym-minigrid Added detailed_multiroom_results.py 2020-03-07 21:22:28 +00:00
torch_rl Added fully_observable_environment=True to detailed_multiroom_results.py 2020-03-07 21:40:40 +00:00
toy-classification Fixed imports and other errors in experiments.py, also added a --cuda parser option. 2020-05-17 22:53:39 +02:00
.gitignore Added set_start_method(fork) to allow running on Mac 2020-03-07 20:52:03 +00:00
CODE_OF_CONDUCT.md Initial commit 2019-10-09 07:17:25 -07:00
LICENSE.txt Updating License 2019-10-18 17:26:00 +01:00
README.md Updating readme 2019-10-15 17:29:03 -07:00
SECURITY.md Initial commit 2019-10-09 07:17:27 -07:00

README.md

Introduction

This is the codebase for the NeurIPS 2019 paper "Generalization in Reinforcement Learning with Selective Noise Injection and Information Bottleneck" which was work done by Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin and Katja Hofmann during Maximilian's internship at Microsoft Research Cambridge (UK).

It comprises several sub-projects:

  1. toy-classification contains code for the classification experiment in the paper
  2. gym-minigrid contains the grid-world environment and is adapted from https://github.com/maximecb/gym-minigrid (BSD 3-Clause license)
  3. torch_rl contains the agent and training code to run on the gym-minigrid environment and is adapted from https://github.com/lcswillems/rl-starter-files (MIT license)
  4. coinrun contains the code for the main results on the coinrun domain. It is code adapted from https://github.com/openai/coinrun (MIT license)

Toy Classification Taks

To run the experiment, use

python experiment.py --iterate_fpc

or

python experiment.py --iterate_dps

. Using the addition --cuda uses GPUs. Hyperparameters for dropout, vib and l2w (=weight decay) can be set using --dropout_rate, --vib_beta and --l2w_beta. Other hyperparameters like learning rate, model size and number of epochs are hardcoded as variables in the python file.

For --iterate_fpc, the script iterates over the number of different patterns the encoding function f uses, with values [2, 4, 8, 16, 32, 64]. For --iterate_dps it iterates over the number of training data-points in [64, 128, 256, 512, 1024, 2048]. Both iterate over all 4 regularization techniques [VIB, L2W, Dropout, None]. Results will be saved in results/, with one *.npy file for each combination, with the used hyperparameters indicated in the filename.

Plotting

To plot the results use

python plots.py --plot_fc

or

python plots.py --plot_dbs

and it will look through the results/ folder for previously generated *.npy files. You can use --fixed_vib_param, --fixed_dropout_param, --fixed_l2w_param, to only plot the line for one value instead of all available values of the respective regularization technique.

Grid-world environment

First, install gym-minigrid with

cd gym-minigrid
pip install -e .

The original gym-minigrid is modified by adding Multiroom environments MiniGrid-MultiRoom-N2r-v0 and MiniGrid-MultiRoom-N3r-v0, as well as MiniGrid-Choice-9x9-v0 (which was not used, though).

Then also install the torch_rl:

cd ../torch_rl/torch_rl
pip install -e .

Furthermore, you'll need to set the "TORCH_RL_STORAGE" environmental variable, which determines where the results will be stored, e.g. by including export TORCH_RL_STORAGE=~/results in your ~/.bashrc.

The results from the paper can then be reproduced by running from the (outer!) torch_rl directory:

python -m scripts.train --frames 100000000 --algo ppo --env MiniGrid-MultiRoom-N3r-v0 --model N3r-vib1e6 --save-interval 100 --tb --fullObs --model_type default2 --use_bottleneck --beta 0.000001
python -m scripts.train --frames 100000000 --algo ppo --env MiniGrid-MultiRoom-N3r-v0 --model N3r-vibS1e6 --save-interval 100 --tb --fullObs --model_type default2 --use_bottleneck --beta 0.000001 --sni_type vib
python -m scripts.train --frames 100000000 --algo ppo --env MiniGrid-MultiRoom-N3r-v0 --model N3r-Plain --save-interval 100 --tb --fullObs --model_type default2
python -m scripts.train --frames 100000000 --algo ppo --env MiniGrid-MultiRoom-N3r-v0 --model N3r-l2w1e4 --save-interval 100 --tb --fullObs --model_type default2 --use_l2w --beta 0.0001
python -m scripts.train --frames 100000000 --algo ppo --env MiniGrid-MultiRoom-N3r-v0 --model N3r-dout0.2 --save-interval 100 --tb --fullObs --model_type default2 --use_dropout 0.2
python -m scripts.train --frames 100000000 --algo ppo --env MiniGrid-MultiRoom-N3r-v0 --model N3r-doutS0.2 --save-interval 100 --tb --fullObs --model_type default2 --use_dropout 0.2 --sni_type dropout

When using multiple runs, make sure to change the --model name, which determines the folder name of the results and also make sure to specify different random seeds using --seed <nr>.

Plotting

To plot the results, modify the plots.py file by changing the path, as well as the experiments dictionary to specify which subfolders in path you would like to plot.

Coinrun

Please follow the installation instructions taken from the original repo to install the requirements:

# Linux
apt-get install mpich build-essential qt5-default pkg-config
# Mac
brew install qt open-mpi pkg-config

cd coinrun
pip install tensorflow==1.12.0  # or tensorflow-gpu
pip install -r requirements.txt
pip install -e .

Also, in coinrun/coinrun/config.py set the self.WORKDIR and self.TB_DIR variables.

Reproducing Results

To reproduce the results, run on a NC24 with 4 GPUs (3 will be used for training, one for testing):

RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id baseline --num-levels 500 --test --long --l2 0.0001 -uda 1
RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id ibac-sni-lambda0.5 --num-levels 500 --test --long --l2 0.0001 -uda 1 --beta 0.0001 --nr-samples 12 --sni
RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id ibac-sni-lambda1.0 --num-levels 500 --test --l2 0.0001 -uda 1 --beta-l2a 0.0001 --long
RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id ibac --num-levels 500 --test --long --l2 0.0001 -uda 1 --beta 0.0001 --nr-samples 12
RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id dropout0.2-sni-lambda0.5 --num-levels 500 --test --long --l2 0.0001 -uda 1 --dropout 0.2 --sni2
RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id dropout0.2-sni-lambda1.0 --num-levels 500 --test --long --l2 0.0001 -uda 1 --dropout 0.2 --openai
RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id dropout0.2 --num-levels 500 --test --long --l2 0.0001 -uda 1 --dropout 0.2
RCALL_NUM_GPU=4 mpiexec -n 4 python3 -m coinrun.train_agent --run-id batchnorm --num-levels 500 --test --long --l2 0.0001 -uda 1 -norm 1

where all the results are including weight decay (--l2 0.0001) and data augmentation (-uda 1). Batchnorm is -norm 1, Dropout is --dropout 0.2, VIB is --beta 0.0001, L2 on Activations is --beta-l2a 0.0001 which corresponds to VIB-SNI with lambda=1. For dropout, we can either use SNI with lambda=0.5 by using --sni2 or with lamda=1.0 by using --openai.

The experiments, especially with the --long flag, take a while. If it's run on the VMs, it will likely crash at some point (around 6pm is particularly likely), probably because the servers are preemtible. If they do, you can restart with the additional arguments --restore-id <run-id> and --restore-step <step> where you can read out the step from the tensor-board plot.

Plotting

A note on the tensorboard plots: For each run, you will see 4 different folders 'name_0', 'name_1', etc.. The 'name_0' version is the performance on the training set. The 'name_1' version is the performance on the test set. Furthermore, to compare to the paper you'll need to multiply the number of frames by 3, as tensorboard reports the frames per worker, whereas the paper reports the total number of frames used for training.

Using plots.py, fill in the path variable, as well as plotname, plotname_kl and the experiments dictionary where each entry corresponds to one line which will be the average over all run-ids listed in the corresponding list (see the script for examples.)