Upgrade azure-cli and azureml-sdk. Remove workarounds got feedback 20566

This commit is contained in:
Mario Bourgoin 2019-11-26 20:24:34 +00:00
Родитель 778724418f
Коммит 1ed6f37d99
2 изменённых файлов: 11 добавлений и 15 удалений

Просмотреть файл

@ -292,7 +292,7 @@
"metadata": {},
"source": [
"## Create AML Pipeline Tuning Step <a id='aml_pipeline_tune_step'></a>\n",
"We create a HyperDrive step in the AML pipeline to perform a search for hyperparameters. The `tune_estimators` pipeline parameter that controls the number of estimators used in tuning deliberately has a low default value for the speed of pipeline testing. The `tune_steps_data` output pipeline data is only used to synchronize with the next pipeline step."
"We create a HyperDrive step in the AML pipeline to perform a search for hyperparameters. The `tune_estimators` pipeline parameter that controls the number of estimators used in tuning deliberately has a low default value for the speed of pipeline testing."
]
},
{
@ -302,7 +302,6 @@
"outputs": [],
"source": [
"tune_step_name=\"tune_model\"\n",
"tune_steps_data = PipelineData(\"tune_steps_data\", datastore=ds)\n",
"tune_estimators = PipelineParameter(name=\"tune_estimators\", default_value=1) # Set to 1000 when running the pipeline.\n",
"tune_step = HyperDriveStep(\n",
" name=tune_step_name,\n",
@ -310,7 +309,6 @@
" estimator_entry_script_arguments=[\"--data-folder\", data_folder,\n",
" \"--estimators\", tune_estimators],\n",
" inputs=[data_folder],\n",
" outputs=[tune_steps_data],\n",
" allow_reuse=False)"
]
},
@ -404,7 +402,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Creating PythonScript Step for AML pipeline to get the best run's hyperparameters. The `tune_steps_data` input pipeline data is only used to synchronize with the previous pipeline step."
"Creating PythonScript Step for AML pipeline to get the best run's hyperparameters."
]
},
{
@ -428,10 +426,10 @@
" arguments=[\"--hd-step\", tune_step_name,\n",
" \"--output-steps-data\", bh_steps_data,\n",
" \"--hyperparameters\", bh_hyperparameters_file],\n",
" inputs=[tune_steps_data],\n",
" outputs=[bh_steps_data],\n",
" runconfig=bh_run_config,\n",
" allow_reuse=False)"
" allow_reuse=False)\n",
"bh_step.run_after(tune_step)"
]
},
{
@ -439,7 +437,7 @@
"metadata": {},
"source": [
"## Create AML Pipeline Best Model Step <a id='aml_pipeline_estimator_step'></a>\n",
"This step passes the hyperparameters file from the previous step to the training script to create the best model. The `best_estimators` pipeline parameter that controls the number of estimators used in getting the best model deliberately has a low default value for the speed of pipeline testing. The `bm_steps_data` output pipeline data is only used to synchronize with the next pipeline step."
"This step passes the hyperparameters file from the previous step to the training script to create the best model. The `best_estimators` pipeline parameter that controls the number of estimators used in getting the best model deliberately has a low default value for the speed of pipeline testing."
]
},
{
@ -449,7 +447,6 @@
"outputs": [],
"source": [
"bm_step_name=\"best_model\"\n",
"bm_steps_data = PipelineData(\"bm_steps_data\", datastore=ds)\n",
"bm_estimators = PipelineParameter(name=\"best_estimators\", default_value=1) # Set to 8000 when running the pipeline\n",
"bm_estimator = Estimator(source_directory=os.path.join('.', 'scripts'), # Use a new Estimator as a bug workaround\n",
" entry_script='TrainClassifier.py',\n",
@ -467,7 +464,6 @@
" \"--save\", model_name],\n",
" compute_target=compute_target,\n",
" inputs=[data_folder, bh_steps_data],\n",
" outputs=[bm_steps_data],\n",
" allow_reuse=False)"
]
},
@ -532,7 +528,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Creating PythonScript Step for AML pipeline to register the best model. The `bm_steps_data` input pipeline data is only used to synchronize with the previous pipeline step."
"Creating PythonScript Step for AML pipeline to register the best model."
]
},
{
@ -554,9 +550,9 @@
" arguments=[\"--es-step\", bm_step_name,\n",
" \"--outputs\", \"outputs\",\n",
" \"--model-name\", model_name],\n",
" inputs=[bm_steps_data],\n",
" runconfig=rm_run_config,\n",
" allow_reuse=False)"
" allow_reuse=False)\n",
"rm_step.run_after(bm_step)"
]
},
{
@ -671,7 +667,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
"version": "3.6.7"
}
},
"nbformat": 4,

Просмотреть файл

@ -11,5 +11,5 @@ dependencies:
- lightgbm==2.2.1
- pip:
- prompt_toolkit==2.0.9
- azure-cli==2.0.75
- azureml-sdk[notebooks]==1.0.69
- azure-cli==2.0.77
- azureml-sdk[notebooks]==1.0.76