MLOpsSamples/notebooks
Eimhin (A-VEE-N) McManus 6adb7a4ca3 add reco_utils path 2019-05-07 00:47:42 +01:00
..
reco_utils Creation 2019-05-03 15:59:39 -04:00
scripts Creation 2019-05-03 15:59:39 -04:00
README.md Creation 2019-05-03 15:59:39 -04:00
dkn_synthetic.ipynb add reco_utils path 2019-05-07 00:47:42 +01:00
fastai_movielens.ipynb add reco_utils path 2019-05-07 00:47:42 +01:00
ncf_movielens.ipynb add reco_utils path 2019-05-07 00:47:42 +01:00
rbm_movielens.ipynb add reco_utils path 2019-05-07 00:47:42 +01:00
sar_movielens.ipynb add reco_utils path 2019-05-07 00:47:42 +01:00
wide_deep_movielens.ipynb add reco_utils path 2019-05-07 00:47:42 +01:00
xdeepfm_synthetic.ipynb add reco_utils path 2019-05-07 00:47:42 +01:00

README.md

Run your notebooks as-is on AzureML Service

This folder demonstrates how to build, train and test notebooks from our Recommendation Project project so you can make your own Recommendation system.

We use MLOps to manually or automatically trigger builds due to Github PRs and changes. The control plane is in DevOps and AzureML Service provides numerous capabilities to track your assets when running Jupyter notebooks local or in the cloud.

AzureML improves your MLOps experience!

Build Definitions

Run Recommender Notebooks

Validate Notebook Changes