зеркало из https://github.com/microsoft/MMdnn.git
This commit is contained in:
Родитель
564595db1d
Коммит
18736e4e4d
|
@ -86,6 +86,7 @@ class TestKit(object):
|
|||
'mobilenet_v1_0.25' : lambda path : TestKit.Standard(path, 224),
|
||||
'mobilenet' : lambda path : TestKit.Standard(path, 224),
|
||||
'nasnet-a_large' : lambda path : TestKit.Standard(path, 331),
|
||||
'inception_resnet_v2' : lambda path : TestKit.Standard(path, 299),
|
||||
},
|
||||
|
||||
'keras' : {
|
||||
|
|
|
@ -11,6 +11,7 @@ from tensorflow.contrib.slim.nets import vgg
|
|||
from tensorflow.contrib.slim.nets import inception
|
||||
from tensorflow.contrib.slim.nets import resnet_v1
|
||||
from tensorflow.contrib.slim.nets import resnet_v2
|
||||
from mmdnn.conversion.examples.tensorflow.models import inception_resnet_v2
|
||||
from mmdnn.conversion.examples.tensorflow.models import mobilenet_v1
|
||||
from mmdnn.conversion.examples.tensorflow.models import nasnet
|
||||
slim = tf.contrib.slim
|
||||
|
@ -95,6 +96,14 @@ class tensorflow_extractor(base_extractor):
|
|||
'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 224, 224, 3]),
|
||||
'num_classes' : 1001,
|
||||
},
|
||||
'inception_resnet_v2' : {
|
||||
'url' : 'http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz',
|
||||
'filename' : 'inception_resnet_v2_2016_08_30.ckpt',
|
||||
'builder' : lambda : inception_resnet_v2.inception_resnet_v2,
|
||||
'arg_scope' : inception_resnet_v2.inception_resnet_v2_arg_scope,
|
||||
'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 299, 299, 3]),
|
||||
'num_classes' : 1001,
|
||||
},
|
||||
'nasnet-a_large' : {
|
||||
'url' : 'https://storage.googleapis.com/download.tensorflow.org/models/nasnet-a_large_04_10_2017.tar.gz',
|
||||
'filename' : 'model.ckpt',
|
||||
|
@ -102,7 +111,7 @@ class tensorflow_extractor(base_extractor):
|
|||
'arg_scope' : nasnet.nasnet_large_arg_scope,
|
||||
'input' : lambda : tf.placeholder(name='input', dtype=tf.float32, shape=[None, 331, 331, 3]),
|
||||
'num_classes' : 1001,
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,397 @@
|
|||
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Contains the definition of the Inception Resnet V2 architecture.
|
||||
|
||||
As described in http://arxiv.org/abs/1602.07261.
|
||||
|
||||
Inception-v4, Inception-ResNet and the Impact of Residual Connections
|
||||
on Learning
|
||||
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, Alex Alemi
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
slim = tf.contrib.slim
|
||||
|
||||
|
||||
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
|
||||
"""Builds the 35x35 resnet block."""
|
||||
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
|
||||
with tf.variable_scope('Branch_0'):
|
||||
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
|
||||
with tf.variable_scope('Branch_1'):
|
||||
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
|
||||
with tf.variable_scope('Branch_2'):
|
||||
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
|
||||
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
|
||||
mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_1, tower_conv2_2])
|
||||
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
|
||||
activation_fn=None, scope='Conv2d_1x1')
|
||||
scaled_up = up * scale
|
||||
if activation_fn == tf.nn.relu6:
|
||||
# Use clip_by_value to simulate bandpass activation.
|
||||
scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)
|
||||
|
||||
net += scaled_up
|
||||
if activation_fn:
|
||||
net = activation_fn(net)
|
||||
return net
|
||||
|
||||
|
||||
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
|
||||
"""Builds the 17x17 resnet block."""
|
||||
with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
|
||||
with tf.variable_scope('Branch_0'):
|
||||
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
|
||||
with tf.variable_scope('Branch_1'):
|
||||
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
|
||||
scope='Conv2d_0b_1x7')
|
||||
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
|
||||
scope='Conv2d_0c_7x1')
|
||||
mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
|
||||
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
|
||||
activation_fn=None, scope='Conv2d_1x1')
|
||||
|
||||
scaled_up = up * scale
|
||||
if activation_fn == tf.nn.relu6:
|
||||
# Use clip_by_value to simulate bandpass activation.
|
||||
scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)
|
||||
|
||||
net += scaled_up
|
||||
if activation_fn:
|
||||
net = activation_fn(net)
|
||||
return net
|
||||
|
||||
|
||||
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
|
||||
"""Builds the 8x8 resnet block."""
|
||||
with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
|
||||
with tf.variable_scope('Branch_0'):
|
||||
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
|
||||
with tf.variable_scope('Branch_1'):
|
||||
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
|
||||
scope='Conv2d_0b_1x3')
|
||||
tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
|
||||
scope='Conv2d_0c_3x1')
|
||||
mixed = tf.concat(axis=3, values=[tower_conv, tower_conv1_2])
|
||||
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
|
||||
activation_fn=None, scope='Conv2d_1x1')
|
||||
|
||||
scaled_up = up * scale
|
||||
if activation_fn == tf.nn.relu6:
|
||||
# Use clip_by_value to simulate bandpass activation.
|
||||
scaled_up = tf.clip_by_value(scaled_up, -6.0, 6.0)
|
||||
|
||||
net += scaled_up
|
||||
if activation_fn:
|
||||
net = activation_fn(net)
|
||||
return net
|
||||
|
||||
|
||||
def inception_resnet_v2_base(inputs,
|
||||
final_endpoint='Conv2d_7b_1x1',
|
||||
output_stride=16,
|
||||
align_feature_maps=False,
|
||||
scope=None,
|
||||
activation_fn=tf.nn.relu):
|
||||
"""Inception model from http://arxiv.org/abs/1602.07261.
|
||||
|
||||
Constructs an Inception Resnet v2 network from inputs to the given final
|
||||
endpoint. This method can construct the network up to the final inception
|
||||
block Conv2d_7b_1x1.
|
||||
|
||||
Args:
|
||||
inputs: a tensor of size [batch_size, height, width, channels].
|
||||
final_endpoint: specifies the endpoint to construct the network up to. It
|
||||
can be one of ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
|
||||
'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3', 'MaxPool_5a_3x3',
|
||||
'Mixed_5b', 'Mixed_6a', 'PreAuxLogits', 'Mixed_7a', 'Conv2d_7b_1x1']
|
||||
output_stride: A scalar that specifies the requested ratio of input to
|
||||
output spatial resolution. Only supports 8 and 16.
|
||||
align_feature_maps: When true, changes all the VALID paddings in the network
|
||||
to SAME padding so that the feature maps are aligned.
|
||||
scope: Optional variable_scope.
|
||||
activation_fn: Activation function for block scopes.
|
||||
|
||||
Returns:
|
||||
tensor_out: output tensor corresponding to the final_endpoint.
|
||||
end_points: a set of activations for external use, for example summaries or
|
||||
losses.
|
||||
|
||||
Raises:
|
||||
ValueError: if final_endpoint is not set to one of the predefined values,
|
||||
or if the output_stride is not 8 or 16, or if the output_stride is 8 and
|
||||
we request an end point after 'PreAuxLogits'.
|
||||
"""
|
||||
if output_stride != 8 and output_stride != 16:
|
||||
raise ValueError('output_stride must be 8 or 16.')
|
||||
|
||||
padding = 'SAME' if align_feature_maps else 'VALID'
|
||||
|
||||
end_points = {}
|
||||
|
||||
def add_and_check_final(name, net):
|
||||
end_points[name] = net
|
||||
return name == final_endpoint
|
||||
|
||||
with tf.variable_scope(scope, 'InceptionResnetV2', [inputs]):
|
||||
with slim.arg_scope([slim.conv2d, slim.max_pool2d, slim.avg_pool2d],
|
||||
stride=1, padding='SAME'):
|
||||
# 149 x 149 x 32
|
||||
net = slim.conv2d(inputs, 32, 3, stride=2, padding=padding,
|
||||
scope='Conv2d_1a_3x3')
|
||||
if add_and_check_final('Conv2d_1a_3x3', net): return net, end_points
|
||||
|
||||
# 147 x 147 x 32
|
||||
net = slim.conv2d(net, 32, 3, padding=padding,
|
||||
scope='Conv2d_2a_3x3')
|
||||
if add_and_check_final('Conv2d_2a_3x3', net): return net, end_points
|
||||
# 147 x 147 x 64
|
||||
net = slim.conv2d(net, 64, 3, scope='Conv2d_2b_3x3')
|
||||
if add_and_check_final('Conv2d_2b_3x3', net): return net, end_points
|
||||
# 73 x 73 x 64
|
||||
net = slim.max_pool2d(net, 3, stride=2, padding=padding,
|
||||
scope='MaxPool_3a_3x3')
|
||||
if add_and_check_final('MaxPool_3a_3x3', net): return net, end_points
|
||||
# 73 x 73 x 80
|
||||
net = slim.conv2d(net, 80, 1, padding=padding,
|
||||
scope='Conv2d_3b_1x1')
|
||||
if add_and_check_final('Conv2d_3b_1x1', net): return net, end_points
|
||||
# 71 x 71 x 192
|
||||
net = slim.conv2d(net, 192, 3, padding=padding,
|
||||
scope='Conv2d_4a_3x3')
|
||||
if add_and_check_final('Conv2d_4a_3x3', net): return net, end_points
|
||||
# 35 x 35 x 192
|
||||
net = slim.max_pool2d(net, 3, stride=2, padding=padding,
|
||||
scope='MaxPool_5a_3x3')
|
||||
if add_and_check_final('MaxPool_5a_3x3', net): return net, end_points
|
||||
|
||||
# 35 x 35 x 320
|
||||
with tf.variable_scope('Mixed_5b'):
|
||||
with tf.variable_scope('Branch_0'):
|
||||
tower_conv = slim.conv2d(net, 96, 1, scope='Conv2d_1x1')
|
||||
with tf.variable_scope('Branch_1'):
|
||||
tower_conv1_0 = slim.conv2d(net, 48, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv1_1 = slim.conv2d(tower_conv1_0, 64, 5,
|
||||
scope='Conv2d_0b_5x5')
|
||||
with tf.variable_scope('Branch_2'):
|
||||
tower_conv2_0 = slim.conv2d(net, 64, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv2_1 = slim.conv2d(tower_conv2_0, 96, 3,
|
||||
scope='Conv2d_0b_3x3')
|
||||
tower_conv2_2 = slim.conv2d(tower_conv2_1, 96, 3,
|
||||
scope='Conv2d_0c_3x3')
|
||||
with tf.variable_scope('Branch_3'):
|
||||
tower_pool = slim.avg_pool2d(net, 3, stride=1, padding='SAME',
|
||||
scope='AvgPool_0a_3x3')
|
||||
tower_pool_1 = slim.conv2d(tower_pool, 64, 1,
|
||||
scope='Conv2d_0b_1x1')
|
||||
net = tf.concat(
|
||||
[tower_conv, tower_conv1_1, tower_conv2_2, tower_pool_1], 3)
|
||||
|
||||
if add_and_check_final('Mixed_5b', net): return net, end_points
|
||||
# TODO(alemi): Register intermediate endpoints
|
||||
net = slim.repeat(net, 10, block35, scale=0.17,
|
||||
activation_fn=activation_fn)
|
||||
|
||||
# 17 x 17 x 1088 if output_stride == 8,
|
||||
# 33 x 33 x 1088 if output_stride == 16
|
||||
use_atrous = output_stride == 8
|
||||
|
||||
with tf.variable_scope('Mixed_6a'):
|
||||
with tf.variable_scope('Branch_0'):
|
||||
tower_conv = slim.conv2d(net, 384, 3, stride=1 if use_atrous else 2,
|
||||
padding=padding,
|
||||
scope='Conv2d_1a_3x3')
|
||||
with tf.variable_scope('Branch_1'):
|
||||
tower_conv1_0 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv1_1 = slim.conv2d(tower_conv1_0, 256, 3,
|
||||
scope='Conv2d_0b_3x3')
|
||||
tower_conv1_2 = slim.conv2d(tower_conv1_1, 384, 3,
|
||||
stride=1 if use_atrous else 2,
|
||||
padding=padding,
|
||||
scope='Conv2d_1a_3x3')
|
||||
with tf.variable_scope('Branch_2'):
|
||||
tower_pool = slim.max_pool2d(net, 3, stride=1 if use_atrous else 2,
|
||||
padding=padding,
|
||||
scope='MaxPool_1a_3x3')
|
||||
net = tf.concat([tower_conv, tower_conv1_2, tower_pool], 3)
|
||||
|
||||
if add_and_check_final('Mixed_6a', net): return net, end_points
|
||||
|
||||
# TODO(alemi): register intermediate endpoints
|
||||
with slim.arg_scope([slim.conv2d], rate=2 if use_atrous else 1):
|
||||
net = slim.repeat(net, 20, block17, scale=0.10,
|
||||
activation_fn=activation_fn)
|
||||
if add_and_check_final('PreAuxLogits', net): return net, end_points
|
||||
|
||||
if output_stride == 8:
|
||||
# TODO(gpapan): Properly support output_stride for the rest of the net.
|
||||
raise ValueError('output_stride==8 is only supported up to the '
|
||||
'PreAuxlogits end_point for now.')
|
||||
|
||||
# 8 x 8 x 2080
|
||||
with tf.variable_scope('Mixed_7a'):
|
||||
with tf.variable_scope('Branch_0'):
|
||||
tower_conv = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv_1 = slim.conv2d(tower_conv, 384, 3, stride=2,
|
||||
padding=padding,
|
||||
scope='Conv2d_1a_3x3')
|
||||
with tf.variable_scope('Branch_1'):
|
||||
tower_conv1 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv1_1 = slim.conv2d(tower_conv1, 288, 3, stride=2,
|
||||
padding=padding,
|
||||
scope='Conv2d_1a_3x3')
|
||||
with tf.variable_scope('Branch_2'):
|
||||
tower_conv2 = slim.conv2d(net, 256, 1, scope='Conv2d_0a_1x1')
|
||||
tower_conv2_1 = slim.conv2d(tower_conv2, 288, 3,
|
||||
scope='Conv2d_0b_3x3')
|
||||
tower_conv2_2 = slim.conv2d(tower_conv2_1, 320, 3, stride=2,
|
||||
padding=padding,
|
||||
scope='Conv2d_1a_3x3')
|
||||
with tf.variable_scope('Branch_3'):
|
||||
tower_pool = slim.max_pool2d(net, 3, stride=2,
|
||||
padding=padding,
|
||||
scope='MaxPool_1a_3x3')
|
||||
net = tf.concat(
|
||||
[tower_conv_1, tower_conv1_1, tower_conv2_2, tower_pool], 3)
|
||||
|
||||
if add_and_check_final('Mixed_7a', net): return net, end_points
|
||||
|
||||
# TODO(alemi): register intermediate endpoints
|
||||
net = slim.repeat(net, 9, block8, scale=0.20, activation_fn=activation_fn)
|
||||
net = block8(net, activation_fn=None)
|
||||
|
||||
# 8 x 8 x 1536
|
||||
net = slim.conv2d(net, 1536, 1, scope='Conv2d_7b_1x1')
|
||||
if add_and_check_final('Conv2d_7b_1x1', net): return net, end_points
|
||||
|
||||
raise ValueError('final_endpoint (%s) not recognized', final_endpoint)
|
||||
|
||||
|
||||
def inception_resnet_v2(inputs, num_classes=1001, is_training=True,
|
||||
dropout_keep_prob=0.8,
|
||||
reuse=None,
|
||||
scope='InceptionResnetV2',
|
||||
create_aux_logits=True,
|
||||
activation_fn=tf.nn.relu):
|
||||
"""Creates the Inception Resnet V2 model.
|
||||
|
||||
Args:
|
||||
inputs: a 4-D tensor of size [batch_size, height, width, 3].
|
||||
Dimension batch_size may be undefined. If create_aux_logits is false,
|
||||
also height and width may be undefined.
|
||||
num_classes: number of predicted classes. If 0 or None, the logits layer
|
||||
is omitted and the input features to the logits layer (before dropout)
|
||||
are returned instead.
|
||||
is_training: whether is training or not.
|
||||
dropout_keep_prob: float, the fraction to keep before final layer.
|
||||
reuse: whether or not the network and its variables should be reused. To be
|
||||
able to reuse 'scope' must be given.
|
||||
scope: Optional variable_scope.
|
||||
create_aux_logits: Whether to include the auxilliary logits.
|
||||
activation_fn: Activation function for conv2d.
|
||||
|
||||
Returns:
|
||||
net: the output of the logits layer (if num_classes is a non-zero integer),
|
||||
or the non-dropped-out input to the logits layer (if num_classes is 0 or
|
||||
None).
|
||||
end_points: the set of end_points from the inception model.
|
||||
"""
|
||||
end_points = {}
|
||||
|
||||
with tf.variable_scope(scope, 'InceptionResnetV2', [inputs],
|
||||
reuse=reuse) as scope:
|
||||
with slim.arg_scope([slim.batch_norm, slim.dropout],
|
||||
is_training=is_training):
|
||||
|
||||
net, end_points = inception_resnet_v2_base(inputs, scope=scope,
|
||||
activation_fn=activation_fn)
|
||||
|
||||
if create_aux_logits and num_classes:
|
||||
with tf.variable_scope('AuxLogits'):
|
||||
aux = end_points['PreAuxLogits']
|
||||
aux = slim.avg_pool2d(aux, 5, stride=3, padding='VALID',
|
||||
scope='Conv2d_1a_3x3')
|
||||
aux = slim.conv2d(aux, 128, 1, scope='Conv2d_1b_1x1')
|
||||
aux = slim.conv2d(aux, 768, aux.get_shape()[1:3],
|
||||
padding='VALID', scope='Conv2d_2a_5x5')
|
||||
aux = slim.flatten(aux)
|
||||
aux = slim.fully_connected(aux, num_classes, activation_fn=None,
|
||||
scope='Logits')
|
||||
end_points['AuxLogits'] = aux
|
||||
|
||||
with tf.variable_scope('Logits'):
|
||||
# TODO(sguada,arnoegw): Consider adding a parameter global_pool which
|
||||
# can be set to False to disable pooling here (as in resnet_*()).
|
||||
kernel_size = net.get_shape()[1:3]
|
||||
if kernel_size.is_fully_defined():
|
||||
net = slim.avg_pool2d(net, kernel_size, padding='VALID',
|
||||
scope='AvgPool_1a_8x8')
|
||||
else:
|
||||
net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
|
||||
end_points['global_pool'] = net
|
||||
if not num_classes:
|
||||
return net, end_points
|
||||
net = slim.flatten(net)
|
||||
net = slim.dropout(net, dropout_keep_prob, is_training=is_training,
|
||||
scope='Dropout')
|
||||
end_points['PreLogitsFlatten'] = net
|
||||
logits = slim.fully_connected(net, num_classes, activation_fn=None,
|
||||
scope='Logits')
|
||||
end_points['Logits'] = logits
|
||||
end_points['Predictions'] = tf.nn.softmax(logits, name='Predictions')
|
||||
|
||||
return logits, end_points
|
||||
inception_resnet_v2.default_image_size = 299
|
||||
|
||||
|
||||
def inception_resnet_v2_arg_scope(weight_decay=0.00004,
|
||||
batch_norm_decay=0.9997,
|
||||
batch_norm_epsilon=0.001,
|
||||
activation_fn=tf.nn.relu):
|
||||
"""Returns the scope with the default parameters for inception_resnet_v2.
|
||||
|
||||
Args:
|
||||
weight_decay: the weight decay for weights variables.
|
||||
batch_norm_decay: decay for the moving average of batch_norm momentums.
|
||||
batch_norm_epsilon: small float added to variance to avoid dividing by zero.
|
||||
activation_fn: Activation function for conv2d.
|
||||
|
||||
Returns:
|
||||
a arg_scope with the parameters needed for inception_resnet_v2.
|
||||
"""
|
||||
# Set weight_decay for weights in conv2d and fully_connected layers.
|
||||
with slim.arg_scope([slim.conv2d, slim.fully_connected],
|
||||
weights_regularizer=slim.l2_regularizer(weight_decay),
|
||||
biases_regularizer=slim.l2_regularizer(weight_decay)):
|
||||
|
||||
batch_norm_params = {
|
||||
'decay': batch_norm_decay,
|
||||
'epsilon': batch_norm_epsilon,
|
||||
'fused': None, # Use fused batch norm if possible.
|
||||
}
|
||||
# Set activation_fn and parameters for batch_norm.
|
||||
with slim.arg_scope([slim.conv2d], activation_fn=activation_fn,
|
||||
normalizer_fn=slim.batch_norm,
|
||||
normalizer_params=batch_norm_params) as scope:
|
||||
return scope
|
|
@ -3,7 +3,6 @@ import sys
|
|||
import six
|
||||
import unittest
|
||||
import numpy as np
|
||||
from six.moves import reload_module
|
||||
import tensorflow as tf
|
||||
from mmdnn.conversion.examples.imagenet_test import TestKit
|
||||
|
||||
|
@ -324,6 +323,7 @@ class TestModels(CorrectnessTest):
|
|||
'resnet_v2_50' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO: CntkEmit
|
||||
'resnet_v2_152' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO: CntkEmit
|
||||
'mobilenet_v1_1.0' : [TensorflowEmit, KerasEmit],
|
||||
# 'inception_resnet_v2' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
|
||||
# 'nasnet-a_large' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO
|
||||
},
|
||||
}
|
||||
|
|
Загрузка…
Ссылка в новой задаче