430 строки
15 KiB
Markdown
430 строки
15 KiB
Markdown
# Spartan: High-speed zkSNARKs without trusted setup
|
||
|
||
![Rust](https://github.com/microsoft/Spartan/actions/workflows/rust.yml/badge.svg)
|
||
[![](https://img.shields.io/crates/v/spartan.svg)](<(https://crates.io/crates/spartan)>)
|
||
|
||
Spartan is a high-speed zero-knowledge proof system, a cryptographic primitive that enables a prover to prove a mathematical statement to a verifier without revealing anything besides the validity of the statement. This repository provides `libspartan,` a Rust library that implements a zero-knowledge succinct non-interactive argument of knowledge (zkSNARK), which is a type of zero-knowledge proof system with short proofs and fast verification times. The details of the Spartan proof system are described in our [paper](https://eprint.iacr.org/2019/550) published at [CRYPTO 2020](https://crypto.iacr.org/2020/). The security of the Spartan variant implemented in this library is based on the discrete logarithm problem in the random oracle model.
|
||
|
||
A simple example application is proving the knowledge of a secret s such that H(s) == d for a public d, where H is a cryptographic hash function (e.g., SHA-256, Keccak). A more complex application is a database-backed cloud service that produces proofs of correct state machine transitions for auditability. See this [paper](https://eprint.iacr.org/2020/758.pdf) for an overview and this [paper](https://eprint.iacr.org/2018/907.pdf) for details.
|
||
|
||
Note that this library has _not_ received a security review or audit.
|
||
|
||
## Highlights
|
||
|
||
We now highlight Spartan's distinctive features.
|
||
|
||
- **No "toxic" waste:** Spartan is a _transparent_ zkSNARK and does not require a trusted setup. So, it does not involve any trapdoors that must be kept secret or require a multi-party ceremony to produce public parameters.
|
||
|
||
- **General-purpose:** Spartan produces proofs for arbitrary NP statements. `libspartan` supports NP statements expressed as rank-1 constraint satisfiability (R1CS) instances, a popular language for which there exists efficient transformations and compiler toolchains from high-level programs of interest.
|
||
|
||
- **Sub-linear verification costs:** Spartan is the first transparent proof system with sub-linear verification costs for arbitrary NP statements (e.g., R1CS).
|
||
|
||
- **Standardized security:** Spartan's security relies on the hardness of computing discrete logarithms (a standard cryptographic assumption) in the random oracle model. `libspartan` uses `ristretto255`, a prime-order group abstraction atop `curve25519` (a high-speed elliptic curve). We use [`curve25519-dalek`](https://docs.rs/curve25519-dalek) for arithmetic over `ristretto255`.
|
||
|
||
- **State-of-the-art performance:**
|
||
Among transparent SNARKs, Spartan offers the fastest prover with speedups of 36–152× depending on the baseline, produces proofs that are shorter by 1.2–416×, and incurs the lowest verification times with speedups of 3.6–1326×. The only exception is proof sizes under Bulletproofs, but Bulletproofs incurs slower verification both asymptotically and concretely. When compared to the state-of-the-art zkSNARK with trusted setup, Spartan’s prover is 2× faster for arbitrary R1CS instances and 16× faster for data-parallel workloads.
|
||
|
||
### Implementation details
|
||
|
||
`libspartan` uses [`merlin`](https://docs.rs/merlin/) to automate the Fiat-Shamir transform. We also introduce a new type called `RandomTape` that extends a `Transcript` in `merlin` to allow the prover's internal methods to produce private randomness using its private transcript without having to create `OsRng` objects throughout the code. An object of type `RandomTape` is initialized with a new random seed from `OsRng` for each proof produced by the library.
|
||
|
||
## Examples
|
||
|
||
To import `libspartan` into your Rust project, add the following dependency to `Cargo.toml`:
|
||
|
||
```text
|
||
spartan = "0.8.0"
|
||
```
|
||
|
||
The following example shows how to use `libspartan` to create and verify a SNARK proof.
|
||
Some of our public APIs' style is inspired by the underlying crates we use.
|
||
|
||
```rust
|
||
extern crate libspartan;
|
||
extern crate merlin;
|
||
use libspartan::{Instance, SNARKGens, SNARK};
|
||
use merlin::Transcript;
|
||
fn main() {
|
||
// specify the size of an R1CS instance
|
||
let num_vars = 1024;
|
||
let num_cons = 1024;
|
||
let num_inputs = 10;
|
||
let num_non_zero_entries = 1024;
|
||
|
||
// produce public parameters
|
||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
|
||
|
||
// ask the library to produce a synthentic R1CS instance
|
||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||
|
||
// create a commitment to the R1CS instance
|
||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||
|
||
// produce a proof of satisfiability
|
||
let mut prover_transcript = Transcript::new(b"snark_example");
|
||
let proof = SNARK::prove(&inst, &comm, &decomm, vars, &inputs, &gens, &mut prover_transcript);
|
||
|
||
// verify the proof of satisfiability
|
||
let mut verifier_transcript = Transcript::new(b"snark_example");
|
||
assert!(proof
|
||
.verify(&comm, &inputs, &mut verifier_transcript, &gens)
|
||
.is_ok());
|
||
println!("proof verification successful!");
|
||
}
|
||
```
|
||
|
||
Here is another example to use the NIZK variant of the Spartan proof system:
|
||
|
||
```rust
|
||
extern crate libspartan;
|
||
extern crate merlin;
|
||
use libspartan::{Instance, NIZKGens, NIZK};
|
||
use merlin::Transcript;
|
||
fn main() {
|
||
// specify the size of an R1CS instance
|
||
let num_vars = 1024;
|
||
let num_cons = 1024;
|
||
let num_inputs = 10;
|
||
|
||
// produce public parameters
|
||
let gens = NIZKGens::new(num_cons, num_vars, num_inputs);
|
||
|
||
// ask the library to produce a synthentic R1CS instance
|
||
let (inst, vars, inputs) = Instance::produce_synthetic_r1cs(num_cons, num_vars, num_inputs);
|
||
|
||
// produce a proof of satisfiability
|
||
let mut prover_transcript = Transcript::new(b"nizk_example");
|
||
let proof = NIZK::prove(&inst, vars, &inputs, &gens, &mut prover_transcript);
|
||
|
||
// verify the proof of satisfiability
|
||
let mut verifier_transcript = Transcript::new(b"nizk_example");
|
||
assert!(proof
|
||
.verify(&inst, &inputs, &mut verifier_transcript, &gens)
|
||
.is_ok());
|
||
println!("proof verification successful!");
|
||
}
|
||
```
|
||
|
||
Finally, we provide an example that specifies a custom R1CS instance instead of using a synthetic instance
|
||
|
||
```rust
|
||
#![allow(non_snake_case)]
|
||
extern crate curve25519_dalek;
|
||
extern crate libspartan;
|
||
extern crate merlin;
|
||
use curve25519_dalek::scalar::Scalar;
|
||
use libspartan::{InputsAssignment, Instance, SNARKGens, VarsAssignment, SNARK};
|
||
use merlin::Transcript;
|
||
use rand::rngs::OsRng;
|
||
|
||
fn main() {
|
||
// produce a tiny instance
|
||
let (
|
||
num_cons,
|
||
num_vars,
|
||
num_inputs,
|
||
num_non_zero_entries,
|
||
inst,
|
||
assignment_vars,
|
||
assignment_inputs,
|
||
) = produce_tiny_r1cs();
|
||
|
||
// produce public parameters
|
||
let gens = SNARKGens::new(num_cons, num_vars, num_inputs, num_non_zero_entries);
|
||
|
||
// create a commitment to the R1CS instance
|
||
let (comm, decomm) = SNARK::encode(&inst, &gens);
|
||
|
||
// produce a proof of satisfiability
|
||
let mut prover_transcript = Transcript::new(b"snark_example");
|
||
let proof = SNARK::prove(
|
||
&inst,
|
||
&comm,
|
||
&decomm,
|
||
assignment_vars,
|
||
&assignment_inputs,
|
||
&gens,
|
||
&mut prover_transcript,
|
||
);
|
||
|
||
// verify the proof of satisfiability
|
||
let mut verifier_transcript = Transcript::new(b"snark_example");
|
||
assert!(proof
|
||
.verify(&comm, &assignment_inputs, &mut verifier_transcript, &gens)
|
||
.is_ok());
|
||
println!("proof verification successful!");
|
||
}
|
||
|
||
fn produce_tiny_r1cs() -> (
|
||
usize,
|
||
usize,
|
||
usize,
|
||
usize,
|
||
Instance,
|
||
VarsAssignment,
|
||
InputsAssignment,
|
||
) {
|
||
// We will use the following example, but one could construct any R1CS instance.
|
||
// Our R1CS instance is three constraints over five variables and two public inputs
|
||
// (Z0 + Z1) * I0 - Z2 = 0
|
||
// (Z0 + I1) * Z2 - Z3 = 0
|
||
// Z4 * 1 - 0 = 0
|
||
|
||
// parameters of the R1CS instance rounded to the nearest power of two
|
||
let num_cons = 4;
|
||
let num_vars = 5;
|
||
let num_inputs = 2;
|
||
let num_non_zero_entries = 5;
|
||
|
||
// We will encode the above constraints into three matrices, where
|
||
// the coefficients in the matrix are in the little-endian byte order
|
||
let mut A: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||
let mut B: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||
let mut C: Vec<(usize, usize, [u8; 32])> = Vec::new();
|
||
|
||
// The constraint system is defined over a finite field, which in our case is
|
||
// the scalar field of ristreeto255/curve25519 i.e., p = 2^{252}+27742317777372353535851937790883648493
|
||
// To construct these matrices, we will use `curve25519-dalek` but one can use any other method.
|
||
|
||
// a variable that holds a byte representation of 1
|
||
let one = Scalar::ONE.to_bytes();
|
||
|
||
// R1CS is a set of three sparse matrices A B C, where is a row for every
|
||
// constraint and a column for every entry in z = (vars, 1, inputs)
|
||
// An R1CS instance is satisfiable iff:
|
||
// Az \circ Bz = Cz, where z = (vars, 1, inputs)
|
||
|
||
// constraint 0 entries in (A,B,C)
|
||
// constraint 0 is (Z0 + Z1) * I0 - Z2 = 0.
|
||
// We set 1 in matrix A for columns that correspond to Z0 and Z1
|
||
// We set 1 in matrix B for column that corresponds to I0
|
||
// We set 1 in matrix C for column that corresponds to Z2
|
||
A.push((0, 0, one));
|
||
A.push((0, 1, one));
|
||
B.push((0, num_vars + 1, one));
|
||
C.push((0, 2, one));
|
||
|
||
// constraint 1 entries in (A,B,C)
|
||
A.push((1, 0, one));
|
||
A.push((1, num_vars + 2, one));
|
||
B.push((1, 2, one));
|
||
C.push((1, 3, one));
|
||
|
||
// constraint 3 entries in (A,B,C)
|
||
A.push((2, 4, one));
|
||
B.push((2, num_vars, one));
|
||
|
||
let inst = Instance::new(num_cons, num_vars, num_inputs, &A, &B, &C).unwrap();
|
||
|
||
// compute a satisfying assignment
|
||
let mut csprng: OsRng = OsRng;
|
||
let i0 = Scalar::random(&mut csprng);
|
||
let i1 = Scalar::random(&mut csprng);
|
||
let z0 = Scalar::random(&mut csprng);
|
||
let z1 = Scalar::random(&mut csprng);
|
||
let z2 = (z0 + z1) * i0; // constraint 0
|
||
let z3 = (z0 + i1) * z2; // constraint 1
|
||
let z4 = Scalar::ZERO; //constraint 2
|
||
|
||
// create a VarsAssignment
|
||
let mut vars = vec![Scalar::ZERO.to_bytes(); num_vars];
|
||
vars[0] = z0.to_bytes();
|
||
vars[1] = z1.to_bytes();
|
||
vars[2] = z2.to_bytes();
|
||
vars[3] = z3.to_bytes();
|
||
vars[4] = z4.to_bytes();
|
||
let assignment_vars = VarsAssignment::new(&vars).unwrap();
|
||
|
||
// create an InputsAssignment
|
||
let mut inputs = vec![Scalar::ZERO.to_bytes(); num_inputs];
|
||
inputs[0] = i0.to_bytes();
|
||
inputs[1] = i1.to_bytes();
|
||
let assignment_inputs = InputsAssignment::new(&inputs).unwrap();
|
||
|
||
// check if the instance we created is satisfiable
|
||
let res = inst.is_sat(&assignment_vars, &assignment_inputs);
|
||
assert_eq!(res.unwrap(), true);
|
||
|
||
(
|
||
num_cons,
|
||
num_vars,
|
||
num_inputs,
|
||
num_non_zero_entries,
|
||
inst,
|
||
assignment_vars,
|
||
assignment_inputs,
|
||
)
|
||
}
|
||
```
|
||
|
||
For more examples, see [`examples/`](examples) directory in this repo.
|
||
|
||
## Building `libspartan`
|
||
|
||
Install [`rustup`](https://rustup.rs/)
|
||
|
||
Switch to nightly Rust using `rustup`:
|
||
|
||
```text
|
||
rustup default nightly
|
||
```
|
||
|
||
Clone the repository:
|
||
|
||
```text
|
||
git clone https://github.com/Microsoft/Spartan
|
||
cd Spartan
|
||
```
|
||
|
||
To build docs for public APIs of `libspartan`:
|
||
|
||
```text
|
||
cargo doc
|
||
```
|
||
|
||
To run tests:
|
||
|
||
```text
|
||
RUSTFLAGS="-C target_cpu=native" cargo test
|
||
```
|
||
|
||
To build `libspartan`:
|
||
|
||
```text
|
||
RUSTFLAGS="-C target_cpu=native" cargo build --release
|
||
```
|
||
|
||
> NOTE: We enable SIMD instructions in `curve25519-dalek` by default, so if it fails to build remove the "simd_backend" feature argument in `Cargo.toml`.
|
||
|
||
### Supported features
|
||
|
||
- `std`: enables std features (enabled by default)
|
||
- `simd_backend`: enables `curve25519-dalek`'s simd feature (enabled by default)
|
||
- `profile`: enables fine-grained profiling information (see below for its use)
|
||
|
||
### WASM Support
|
||
|
||
`libspartan` depends upon `rand::OsRng` (internally uses `getrandom` crate), it has out of box support for `wasm32-wasi`.
|
||
|
||
For the target `wasm32-unknown-unknown` disable default features for spartan
|
||
and add direct dependency on `getrandom` with `wasm-bindgen` feature enabled.
|
||
|
||
```toml
|
||
[dependencies]
|
||
spartan = { version = "0.7", default-features = false }
|
||
# since spartan uses getrandom(rand's OsRng), we need to enable 'wasm-bindgen'
|
||
# feature to make it feed rand seed from js/nodejs env
|
||
# https://docs.rs/getrandom/0.1.16/getrandom/index.html#support-for-webassembly-and-asmjs
|
||
getrandom = { version = "0.1", features = ["wasm-bindgen"] }
|
||
```
|
||
|
||
## Performance
|
||
|
||
### End-to-end benchmarks
|
||
|
||
`libspartan` includes two benches: `benches/nizk.rs` and `benches/snark.rs`. If you report the performance of Spartan in a research paper, we recommend using these benches for higher accuracy instead of fine-grained profiling (listed below).
|
||
|
||
To run end-to-end benchmarks:
|
||
|
||
```text
|
||
RUSTFLAGS="-C target_cpu=native" cargo bench
|
||
```
|
||
|
||
### Fine-grained profiling
|
||
|
||
Build `libspartan` with `profile` feature enabled. It creates two profilers: `./target/release/snark` and `./target/release/nizk`.
|
||
|
||
These profilers report performance as depicted below (for varying R1CS instance sizes). The reported
|
||
performance is from running the profilers on a Microsoft Surface Laptop 3 on a single CPU core of Intel Core i7-1065G7 running Ubuntu 20.04 (atop WSL2 on Windows 10).
|
||
See Section 9 in our [paper](https://eprint.iacr.org/2019/550) to see how this compares with other zkSNARKs in the literature.
|
||
|
||
```text
|
||
$ ./target/release/snark
|
||
Profiler:: SNARK
|
||
* number_of_constraints 1048576
|
||
* number_of_variables 1048576
|
||
* number_of_inputs 10
|
||
* number_non-zero_entries_A 1048576
|
||
* number_non-zero_entries_B 1048576
|
||
* number_non-zero_entries_C 1048576
|
||
* SNARK::encode
|
||
* SNARK::encode 14.2644201s
|
||
* SNARK::prove
|
||
* R1CSProof::prove
|
||
* polycommit
|
||
* polycommit 2.7175848s
|
||
* prove_sc_phase_one
|
||
* prove_sc_phase_one 683.7481ms
|
||
* prove_sc_phase_two
|
||
* prove_sc_phase_two 846.1056ms
|
||
* polyeval
|
||
* polyeval 193.4216ms
|
||
* R1CSProof::prove 4.4416193s
|
||
* len_r1cs_sat_proof 47024
|
||
* eval_sparse_polys
|
||
* eval_sparse_polys 377.357ms
|
||
* R1CSEvalProof::prove
|
||
* commit_nondet_witness
|
||
* commit_nondet_witness 14.4507331s
|
||
* build_layered_network
|
||
* build_layered_network 3.4360521s
|
||
* evalproof_layered_network
|
||
* len_product_layer_proof 64712
|
||
* evalproof_layered_network 15.5708066s
|
||
* R1CSEvalProof::prove 34.2930559s
|
||
* len_r1cs_eval_proof 133720
|
||
* SNARK::prove 39.1297568s
|
||
* SNARK::proof_compressed_len 141768
|
||
* SNARK::verify
|
||
* verify_sat_proof
|
||
* verify_sat_proof 20.0828ms
|
||
* verify_eval_proof
|
||
* verify_polyeval_proof
|
||
* verify_prod_proof
|
||
* verify_prod_proof 1.1847ms
|
||
* verify_hash_proof
|
||
* verify_hash_proof 81.06ms
|
||
* verify_polyeval_proof 82.3583ms
|
||
* verify_eval_proof 82.8937ms
|
||
* SNARK::verify 103.0536ms
|
||
```
|
||
|
||
```text
|
||
$ ./target/release/nizk
|
||
Profiler:: NIZK
|
||
* number_of_constraints 1048576
|
||
* number_of_variables 1048576
|
||
* number_of_inputs 10
|
||
* number_non-zero_entries_A 1048576
|
||
* number_non-zero_entries_B 1048576
|
||
* number_non-zero_entries_C 1048576
|
||
* NIZK::prove
|
||
* R1CSProof::prove
|
||
* polycommit
|
||
* polycommit 2.7220635s
|
||
* prove_sc_phase_one
|
||
* prove_sc_phase_one 722.5487ms
|
||
* prove_sc_phase_two
|
||
* prove_sc_phase_two 862.6796ms
|
||
* polyeval
|
||
* polyeval 190.2233ms
|
||
* R1CSProof::prove 4.4982305s
|
||
* len_r1cs_sat_proof 47024
|
||
* NIZK::prove 4.5139888s
|
||
* NIZK::proof_compressed_len 48134
|
||
* NIZK::verify
|
||
* eval_sparse_polys
|
||
* eval_sparse_polys 395.0847ms
|
||
* verify_sat_proof
|
||
* verify_sat_proof 19.286ms
|
||
* NIZK::verify 414.5102ms
|
||
```
|
||
|
||
## LICENSE
|
||
|
||
See [LICENSE](./LICENSE)
|
||
|
||
## Contributing
|
||
|
||
See [CONTRIBUTING](./CONTRIBUTING.md)
|