UniVL/main_pretrain.py

410 строки
20 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from __future__ import print_function
import torch
from torch.utils.data import (SequentialSampler)
import numpy as np
import random
import os
from collections import OrderedDict
import pickle
import logging
import time
import argparse
from modules.tokenization import BertTokenizer
from modules.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from modules.modeling import UniVL
from modules.optimization import BertAdam
from dataloader_howto100m import Youtube_DataLoader
from torch.utils.data import DataLoader
from util import get_logger
torch.distributed.init_process_group(backend="nccl")
global logger
def get_args(description='UniVL on Pretrain'):
parser = argparse.ArgumentParser(description=description)
parser.add_argument("--do_pretrain", action='store_true', help="Whether to run training.")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument('--train_csv', type=str, default='data/HowTo100M_v1.csv', help='train csv')
parser.add_argument('--features_path', type=str, default='feature', help='feature path for 2D features')
parser.add_argument('--data_path', type=str, default='data/data.pickle', help='data pickle file path')
parser.add_argument('--num_thread_reader', type=int, default=1, help='')
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
parser.add_argument('--epochs', type=int, default=20, help='upper epoch limit')
parser.add_argument('--batch_size', type=int, default=256, help='batch size')
parser.add_argument('--batch_size_val', type=int, default=3500, help='batch size eval')
parser.add_argument('--lr_decay', type=float, default=0.9, help='Learning rate exp epoch decay')
parser.add_argument('--n_display', type=int, default=100, help='Information display frequence')
parser.add_argument('--video_dim', type=int, default=1024, help='video feature dimension')
parser.add_argument('--seed', type=int, default=42, help='random seed')
parser.add_argument('--max_words', type=int, default=20, help='')
parser.add_argument('--max_frames', type=int, default=100, help='')
parser.add_argument('--min_words', type=int, default=0, help='')
parser.add_argument('--feature_framerate', type=int, default=1, help='')
parser.add_argument('--min_time', type=float, default=5.0, help='Gather small clips')
parser.add_argument('--margin', type=float, default=0.1, help='margin for loss')
parser.add_argument('--hard_negative_rate', type=float, default=0.5, help='rate of intra negative sample')
parser.add_argument('--negative_weighting', type=int, default=1, help='Weight the loss for intra negative')
parser.add_argument('--n_pair', type=int, default=1, help='Num of pair to output from data loader')
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--bert_model", default="bert-base-uncased", type=str, required=True,
help="Bert pre-trained model")
parser.add_argument("--visual_model", default="visual-base", type=str, required=False, help="Visual module")
parser.add_argument("--cross_model", default="cross-base", type=str, required=False, help="Cross module")
parser.add_argument("--decoder_model", default="decoder-base", type=str, required=False, help="Decoder module")
parser.add_argument("--init_model", default=None, type=str, required=False, help="Initial model.")
parser.add_argument("--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10%% of training.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--n_gpu', type=int, default=1, help="Changed in the execute process.")
parser.add_argument("--cache_dir", default="", type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument("--world_size", default=0, type=int, help="distribted training")
parser.add_argument("--local_rank", default=0, type=int, help="distribted training")
parser.add_argument('--coef_lr', type=float, default=0.1, help='coefficient for bert branch.')
parser.add_argument('--use_mil', action='store_true', help="Whether use MIL as Miech et. al. (2020).")
parser.add_argument('--sampled_use_mil', action='store_true', help="Whether use MIL, has a high priority than use_mil.")
parser.add_argument('--text_num_hidden_layers', type=int, default=12, help="Layer NO. of text.")
parser.add_argument('--visual_num_hidden_layers', type=int, default=6, help="Layer NO. of visual.")
parser.add_argument('--cross_num_hidden_layers', type=int, default=2, help="Layer NO. of cross.")
parser.add_argument('--decoder_num_hidden_layers', type=int, default=3, help="Layer NO. of decoder.")
parser.add_argument('--stage_two', action='store_true', help="Whether training with decoder.")
parser.add_argument('--pretrain_enhance_vmodal', action='store_true', help="Enhance visual and other modalities when pretraining.")
parser.add_argument("--load_checkpoint", action="store_true")
parser.add_argument("--checkpoint_model", default="pytorch_model.bin.checkpoint", type=str, required=False,
help="Save the last model as a checkpoint.")
args = parser.parse_args()
if args.sampled_use_mil: # sample from each video, has a higher priority than use_mil.
args.use_mil = True
# Check paramenters
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.do_pretrain:
raise ValueError("`do_pretrain` must be True.")
args.batch_size = int(args.batch_size / args.gradient_accumulation_steps)
args.checkpoint_model = '{}_{}_{}_{}.checkpoint'.format(args.checkpoint_model, args.bert_model, args.max_words, args.max_frames)
return args
def set_seed_logger(args):
global logger
random.seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
world_size = torch.distributed.get_world_size()
torch.cuda.set_device(args.local_rank)
args.world_size = world_size
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
logger = get_logger(os.path.join(args.output_dir, "log.txt"))
if args.local_rank == 0:
logger.info("Effective parameters:")
for key in sorted(args.__dict__):
logger.info(" <<< {}: {}".format(key, args.__dict__[key]))
return args
def init_device(args, local_rank):
global logger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", local_rank)
n_gpu = torch.cuda.device_count()
logger.info("device: {} n_gpu: {}".format(device, n_gpu))
args.n_gpu = n_gpu
if args.batch_size % args.n_gpu != 0 or args.batch_size_val % args.n_gpu != 0:
raise ValueError("Invalid batch_size/batch_size_val and n_gpu parameter: {}%{} and {}%{}, should be == 0".format(
args.batch_size, args.n_gpu, args.batch_size_val, args.n_gpu))
return device, n_gpu
def init_model(args, device, n_gpu, local_rank):
if args.init_model:
model_state_dict = torch.load(args.init_model, map_location='cpu')
else:
model_state_dict = None
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = UniVL.from_pretrained(args.bert_model, args.visual_model, args.cross_model, args.decoder_model,
cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
return model
def prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, local_rank, coef_lr=1.):
if hasattr(model, 'module'):
model = model.module
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
no_decay_param_tp = [(n, p) for n, p in param_optimizer if not any(nd in n for nd in no_decay)]
decay_param_tp = [(n, p) for n, p in param_optimizer if any(nd in n for nd in no_decay)]
no_decay_bert_param_tp = [(n, p) for n, p in no_decay_param_tp if "bert." in n]
no_decay_nobert_param_tp = [(n, p) for n, p in no_decay_param_tp if "bert." not in n]
decay_bert_param_tp = [(n, p) for n, p in decay_param_tp if "bert." in n]
decay_nobert_param_tp = [(n, p) for n, p in decay_param_tp if "bert." not in n]
optimizer_grouped_parameters = [
{'params': [p for n, p in no_decay_bert_param_tp], 'weight_decay': 0.01, 'lr': args.lr * coef_lr},
{'params': [p for n, p in no_decay_nobert_param_tp], 'weight_decay': 0.01},
{'params': [p for n, p in decay_bert_param_tp], 'weight_decay': 0.0, 'lr': args.lr * coef_lr},
{'params': [p for n, p in decay_nobert_param_tp], 'weight_decay': 0.0}
]
scheduler = None
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.lr, warmup=args.warmup_proportion,
schedule='warmup_linear', t_total=num_train_optimization_steps, weight_decay=0.01,
max_grad_norm=1.0)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank],
output_device=local_rank, find_unused_parameters=True)
return optimizer, scheduler, model
def dataloader_pretrain(args, tokenizer, only_sim=False):
if args.local_rank == 0:
logger.info('Loading captions: {}'.format(args.data_path))
data_dict = pickle.load(open(args.data_path, 'rb'))
if args.local_rank == 0:
logger.info('Done, data_dict length: {}'.format(len(data_dict)))
dataset = Youtube_DataLoader(
csv=args.train_csv,
features_path=args.features_path,
data_dict=data_dict,
min_time=args.min_time,
max_words=args.max_words,
min_words=args.min_words,
feature_framerate=args.feature_framerate,
tokenizer=tokenizer,
n_pair=args.n_pair,
max_frames=args.max_frames,
use_mil=args.use_mil,
only_sim=only_sim,
sampled_use_mil=args.sampled_use_mil,
pretrain_enhance_vmodal=args.pretrain_enhance_vmodal,
video_dim=args.video_dim,
)
sampler = torch.utils.data.distributed.DistributedSampler(dataset)
dataloader = DataLoader(
dataset,
batch_size=args.batch_size // args.n_gpu,
num_workers=args.num_thread_reader,
pin_memory=False,
shuffle=(sampler is None),
sampler=sampler,
drop_last=True,
)
return dataloader, len(dataset), sampler
def convert_state_dict_type(state_dict, ttype=torch.FloatTensor):
if isinstance(state_dict, dict):
cpu_dict = OrderedDict()
for k, v in state_dict.items():
cpu_dict[k] = convert_state_dict_type(v)
return cpu_dict
elif isinstance(state_dict, list):
return [convert_state_dict_type(v) for v in state_dict]
elif torch.is_tensor(state_dict):
return state_dict.type(ttype)
else:
return state_dict
def save_model(epoch, args, model, local_rank, type_name="", global_step=-1, optimizer=None):
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(
args.output_dir, "pytorch_model.bin.{}{}".format("" if type_name=="" else type_name+".", epoch))
torch.save(model_to_save.state_dict(), output_model_file)
logger.info("Model saved to %s", output_model_file)
if global_step != -1 and optimizer is not None:
state_dict = {
'epoch': epoch,
'global_step': global_step,
'model_state_dict': model_to_save.state_dict(),
'last_optimizer_state': convert_state_dict_type(optimizer.state_dict()),
}
checkpoint_model_file = os.path.join(args.output_dir, args.checkpoint_model)
torch.save(state_dict, checkpoint_model_file)
logger.info("Checkpoint is saved. use `load_checkpoint` to recovery it.")
return output_model_file
def load_model(epoch, args, n_gpu, device, model, global_step=0, model_file=None):
if model_file is None or len(model_file) == 0:
model_file = os.path.join(args.output_dir, "pytorch_model.bin.{}".format(epoch))
last_optim_state = None
checkpoint_model_file = os.path.join(args.output_dir, args.checkpoint_model)
if epoch == -1 and args.load_checkpoint and os.path.exists(checkpoint_model_file):
checkpoint_state = torch.load(checkpoint_model_file, map_location='cpu')
epoch = checkpoint_state['epoch']
global_step = checkpoint_state['global_step']
model_state_dict = checkpoint_state['model_state_dict']
last_optim_state = checkpoint_state['last_optimizer_state']
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = UniVL.from_pretrained(args.bert_model, args.visual_model, args.cross_model, args.decoder_model,
cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
if args.local_rank == 0:
logger.info("Checkpoint loaded from %s", checkpoint_model_file)
elif os.path.exists(model_file):
model_state_dict = torch.load(model_file, map_location='cpu')
if args.local_rank == 0:
logger.info("Model loaded from %s", model_file)
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE), 'distributed')
model = UniVL.from_pretrained(args.bert_model, args.visual_model, args.cross_model, args.decoder_model,
cache_dir=cache_dir, state_dict=model_state_dict, task_config=args)
model.to(device)
return epoch, global_step, last_optim_state, model
def train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer, scheduler, global_step, local_rank=0):
global logger
torch.cuda.empty_cache()
model.train()
log_step = args.n_display
start_time = time.time()
total_loss = 0
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device=device, non_blocking=True) for t in batch)
input_ids, input_mask, segment_ids, video, video_mask, \
pairs_masked_text, pairs_token_labels, masked_video, video_labels_index,\
pairs_input_caption_ids, pairs_decoder_mask, pairs_output_caption_ids = batch
loss = model(input_ids, segment_ids, input_mask, video, video_mask,
pairs_masked_text=pairs_masked_text, pairs_token_labels=pairs_token_labels,
masked_video=masked_video, video_labels_index=video_labels_index,
input_caption_ids=pairs_input_caption_ids, decoder_mask=pairs_decoder_mask,
output_caption_ids=pairs_output_caption_ids)
if n_gpu > 1:
loss = loss.mean()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
total_loss += float(loss)
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if scheduler is not None:
scheduler.step()
optimizer.step()
optimizer.zero_grad()
global_step += 1
if global_step % log_step == 0 and local_rank == 0:
logger.info("Epoch: %d/%s, Step: %d/%d, Lr: %s, Loss: %f, Time/step: %f", epoch + 1,
args.epochs, step + 1,
len(train_dataloader), "-".join([str('%.6f'%itm) for itm in sorted(list(set(optimizer.get_lr())))]),
float(loss) * args.gradient_accumulation_steps,
(time.time() - start_time) / (log_step * args.gradient_accumulation_steps))
start_time = time.time()
total_loss = total_loss / len(train_dataloader)
return total_loss, global_step
def main():
global logger
args = get_args()
args = set_seed_logger(args)
device, n_gpu = init_device(args, args.local_rank)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
model = init_model(args, device, n_gpu, args.local_rank)
only_sim = model.module._stage_one if hasattr(model, 'module') else model._stage_one
train_dataloader, train_length, sampler = dataloader_pretrain(args, tokenizer, only_sim=only_sim)
num_train_optimization_steps = (int(len(train_dataloader) + args.gradient_accumulation_steps - 1)
/ args.gradient_accumulation_steps) * args.epochs
global_step = 0
epoch = -1
last_optim_state = None
if args.load_checkpoint:
epoch, global_step, last_optim_state, model = load_model(epoch, args, n_gpu, device, model, global_step=global_step)
epoch += 1
if args.local_rank == 0:
logger.warning("Will continue to epoch: {}".format(epoch))
epoch = 0 if epoch < 0 else epoch
coef_lr = args.coef_lr
if args.init_model:
coef_lr = 1.0
optimizer, scheduler, model = prep_optimizer(args, model, num_train_optimization_steps, device, n_gpu, args.local_rank, coef_lr=coef_lr)
if last_optim_state is not None:
optimizer.load_state_dict(last_optim_state)
if args.local_rank == 0:
logger.info("***** Running pretraining *****")
logger.info(" Num examples = %d", train_length)
logger.info(" Batch size = %d", args.batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps * args.gradient_accumulation_steps)
iter_ls_ = [itm for itm in range(args.epochs) if itm >= epoch]
for epoch in iter_ls_:
sampler.set_epoch(epoch)
tr_loss, global_step = train_epoch(epoch, args, model, train_dataloader, device, n_gpu, optimizer,
scheduler, global_step, local_rank=args.local_rank)
if args.local_rank == 0:
logger.info("Epoch %d/%s Finished, Train Loss: %f", epoch + 1, args.epochs, tr_loss)
save_model(epoch, args, model, args.local_rank, type_name="pretrain", global_step=global_step, optimizer=optimizer)
if __name__ == "__main__":
main()