WSL2-Linux-Kernel/include/linux/kvm_host.h

467 строки
14 KiB
C
Исходник Обычный вид История

#ifndef __KVM_HOST_H
#define __KVM_HOST_H
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
/*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*/
#include <linux/types.h>
#include <linux/hardirq.h>
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/spinlock.h>
#include <linux/signal.h>
#include <linux/sched.h>
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#include <linux/mm.h>
#include <linux/preempt.h>
#include <linux/marker.h>
#include <linux/msi.h>
#include <asm/signal.h>
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#include <linux/kvm.h>
#include <linux/kvm_para.h>
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#include <linux/kvm_types.h>
#include <asm/kvm_host.h>
/*
* vcpu->requests bit members
*/
#define KVM_REQ_TLB_FLUSH 0
#define KVM_REQ_MIGRATE_TIMER 1
#define KVM_REQ_REPORT_TPR_ACCESS 2
#define KVM_REQ_MMU_RELOAD 3
#define KVM_REQ_TRIPLE_FAULT 4
#define KVM_REQ_PENDING_TIMER 5
#define KVM_REQ_UNHALT 6
#define KVM_REQ_MMU_SYNC 7
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#define KVM_USERSPACE_IRQ_SOURCE_ID 0
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
struct kvm_vcpu;
extern struct kmem_cache *kvm_vcpu_cache;
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
/*
* It would be nice to use something smarter than a linear search, TBD...
* Thankfully we dont expect many devices to register (famous last words :),
* so until then it will suffice. At least its abstracted so we can change
* in one place.
*/
struct kvm_io_bus {
int dev_count;
#define NR_IOBUS_DEVS 6
struct kvm_io_device *devs[NR_IOBUS_DEVS];
};
void kvm_io_bus_init(struct kvm_io_bus *bus);
void kvm_io_bus_destroy(struct kvm_io_bus *bus);
struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
gpa_t addr, int len, int is_write);
void kvm_io_bus_register_dev(struct kvm_io_bus *bus,
struct kvm_io_device *dev);
struct kvm_vcpu {
struct kvm *kvm;
#ifdef CONFIG_PREEMPT_NOTIFIERS
struct preempt_notifier preempt_notifier;
#endif
int vcpu_id;
struct mutex mutex;
int cpu;
struct kvm_run *run;
int guest_mode;
unsigned long requests;
struct kvm_guest_debug guest_debug;
int fpu_active;
int guest_fpu_loaded;
wait_queue_head_t wq;
int sigset_active;
sigset_t sigset;
struct kvm_vcpu_stat stat;
#ifdef CONFIG_HAS_IOMEM
int mmio_needed;
int mmio_read_completed;
int mmio_is_write;
int mmio_size;
unsigned char mmio_data[8];
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
gpa_t mmio_phys_addr;
#endif
struct kvm_vcpu_arch arch;
};
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
struct kvm_memory_slot {
gfn_t base_gfn;
unsigned long npages;
unsigned long flags;
unsigned long *rmap;
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
unsigned long *dirty_bitmap;
struct {
unsigned long rmap_pde;
int write_count;
} *lpage_info;
unsigned long userspace_addr;
int user_alloc;
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
};
struct kvm {
struct mutex lock; /* protects the vcpus array and APIC accesses */
spinlock_t mmu_lock;
struct rw_semaphore slots_lock;
struct mm_struct *mm; /* userspace tied to this vm */
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
int nmemslots;
struct kvm_memory_slot memslots[KVM_MEMORY_SLOTS +
KVM_PRIVATE_MEM_SLOTS];
struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
struct list_head vm_list;
struct kvm_io_bus mmio_bus;
struct kvm_io_bus pio_bus;
struct kvm_vm_stat stat;
struct kvm_arch arch;
atomic_t users_count;
KVM: Add coalesced MMIO support (common part) This patch adds all needed structures to coalesce MMIOs. Until an architecture uses it, it is not compiled. Coalesced MMIO introduces two ioctl() to define where are the MMIO zones that can be coalesced: - KVM_REGISTER_COALESCED_MMIO registers a coalesced MMIO zone. It requests one parameter (struct kvm_coalesced_mmio_zone) which defines a memory area where MMIOs can be coalesced until the next switch to user space. The maximum number of MMIO zones is KVM_COALESCED_MMIO_ZONE_MAX. - KVM_UNREGISTER_COALESCED_MMIO cancels all registered zones inside the given bounds (bounds are also given by struct kvm_coalesced_mmio_zone). The userspace client can check kernel coalesced MMIO availability by asking ioctl(KVM_CHECK_EXTENSION) for the KVM_CAP_COALESCED_MMIO capability. The ioctl() call to KVM_CAP_COALESCED_MMIO will return 0 if not supported, or the page offset where will be stored the ring buffer. The page offset depends on the architecture. After an ioctl(KVM_RUN), the first page of the KVM memory mapped points to a kvm_run structure. The offset given by KVM_CAP_COALESCED_MMIO is an offset to the coalesced MMIO ring expressed in PAGE_SIZE relatively to the address of the start of th kvm_run structure. The MMIO ring buffer is defined by the structure kvm_coalesced_mmio_ring. [akio: fix oops during guest shutdown] Signed-off-by: Laurent Vivier <Laurent.Vivier@bull.net> Signed-off-by: Akio Takebe <takebe_akio@jp.fujitsu.com> Signed-off-by: Avi Kivity <avi@qumranet.com>
2008-05-30 18:05:54 +04:00
#ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
struct kvm_coalesced_mmio_dev *coalesced_mmio_dev;
struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
#endif
#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
struct mmu_notifier mmu_notifier;
unsigned long mmu_notifier_seq;
long mmu_notifier_count;
#endif
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
};
/* The guest did something we don't support. */
#define pr_unimpl(vcpu, fmt, ...) \
do { \
if (printk_ratelimit()) \
printk(KERN_ERR "kvm: %i: cpu%i " fmt, \
current->tgid, (vcpu)->vcpu_id , ## __VA_ARGS__); \
} while (0)
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#define kvm_printf(kvm, fmt ...) printk(KERN_DEBUG fmt)
#define vcpu_printf(vcpu, fmt...) kvm_printf(vcpu->kvm, fmt)
int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
void vcpu_load(struct kvm_vcpu *vcpu);
void vcpu_put(struct kvm_vcpu *vcpu);
int kvm_init(void *opaque, unsigned int vcpu_size,
struct module *module);
void kvm_exit(void);
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
void kvm_get_kvm(struct kvm *kvm);
void kvm_put_kvm(struct kvm *kvm);
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#define HPA_MSB ((sizeof(hpa_t) * 8) - 1)
#define HPA_ERR_MASK ((hpa_t)1 << HPA_MSB)
static inline int is_error_hpa(hpa_t hpa) { return hpa >> HPA_MSB; }
struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva);
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
extern struct page *bad_page;
extern pfn_t bad_pfn;
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
int is_error_page(struct page *page);
int is_error_pfn(pfn_t pfn);
int kvm_is_error_hva(unsigned long addr);
int kvm_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
int user_alloc);
int __kvm_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
int user_alloc);
int kvm_arch_set_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
struct kvm_memory_slot old,
int user_alloc);
void kvm_arch_flush_shadow(struct kvm *kvm);
gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn);
struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
void kvm_release_page_clean(struct page *page);
void kvm_release_page_dirty(struct page *page);
void kvm_set_page_dirty(struct page *page);
void kvm_set_page_accessed(struct page *page);
pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
void kvm_release_pfn_dirty(pfn_t);
void kvm_release_pfn_clean(pfn_t pfn);
void kvm_set_pfn_dirty(pfn_t pfn);
void kvm_set_pfn_accessed(pfn_t pfn);
void kvm_get_pfn(pfn_t pfn);
int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
int len);
int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
unsigned long len);
int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
int offset, int len);
int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
unsigned long len);
int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
void kvm_vcpu_block(struct kvm_vcpu *vcpu);
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
void kvm_resched(struct kvm_vcpu *vcpu);
void kvm_load_guest_fpu(struct kvm_vcpu *vcpu);
void kvm_put_guest_fpu(struct kvm_vcpu *vcpu);
void kvm_flush_remote_tlbs(struct kvm *kvm);
void kvm_reload_remote_mmus(struct kvm *kvm);
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
long kvm_arch_dev_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
long kvm_arch_vcpu_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
int kvm_dev_ioctl_check_extension(long ext);
int kvm_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log, int *is_dirty);
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log);
int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
struct
kvm_userspace_memory_region *mem,
int user_alloc);
long kvm_arch_vm_ioctl(struct file *filp,
unsigned int ioctl, unsigned long arg);
void kvm_arch_destroy_vm(struct kvm *kvm);
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr);
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs);
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state);
int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
struct kvm_debug_guest *dbg);
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
int kvm_arch_init(void *opaque);
void kvm_arch_exit(void);
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu);
void kvm_arch_hardware_enable(void *garbage);
void kvm_arch_hardware_disable(void *garbage);
int kvm_arch_hardware_setup(void);
void kvm_arch_hardware_unsetup(void);
void kvm_arch_check_processor_compat(void *rtn);
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
void kvm_free_physmem(struct kvm *kvm);
struct kvm *kvm_arch_create_vm(void);
void kvm_arch_destroy_vm(struct kvm *kvm);
void kvm_free_all_assigned_devices(struct kvm *kvm);
int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
int kvm_cpu_has_interrupt(struct kvm_vcpu *v);
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
int kvm_is_mmio_pfn(pfn_t pfn);
struct kvm_irq_ack_notifier {
struct hlist_node link;
unsigned gsi;
void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
};
struct kvm_assigned_dev_kernel {
struct kvm_irq_ack_notifier ack_notifier;
struct work_struct interrupt_work;
struct list_head list;
int assigned_dev_id;
int host_busnr;
int host_devfn;
int host_irq;
bool host_irq_disabled;
int guest_irq;
struct msi_msg guest_msi;
#define KVM_ASSIGNED_DEV_GUEST_INTX (1 << 0)
#define KVM_ASSIGNED_DEV_GUEST_MSI (1 << 1)
#define KVM_ASSIGNED_DEV_HOST_INTX (1 << 8)
#define KVM_ASSIGNED_DEV_HOST_MSI (1 << 9)
unsigned long irq_requested_type;
int irq_source_id;
int flags;
struct pci_dev *dev;
struct kvm *kvm;
};
void kvm_set_irq(struct kvm *kvm, int irq_source_id, int irq, int level);
void kvm_notify_acked_irq(struct kvm *kvm, unsigned gsi);
void kvm_register_irq_ack_notifier(struct kvm *kvm,
struct kvm_irq_ack_notifier *kian);
void kvm_unregister_irq_ack_notifier(struct kvm_irq_ack_notifier *kian);
int kvm_request_irq_source_id(struct kvm *kvm);
void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
#ifdef CONFIG_DMAR
int kvm_iommu_map_pages(struct kvm *kvm, gfn_t base_gfn,
unsigned long npages);
int kvm_iommu_map_guest(struct kvm *kvm);
int kvm_iommu_unmap_guest(struct kvm *kvm);
int kvm_assign_device(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev);
int kvm_deassign_device(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev);
#else /* CONFIG_DMAR */
static inline int kvm_iommu_map_pages(struct kvm *kvm,
gfn_t base_gfn,
unsigned long npages)
{
return 0;
}
static inline int kvm_iommu_map_guest(struct kvm *kvm)
{
return -ENODEV;
}
static inline int kvm_iommu_unmap_guest(struct kvm *kvm)
{
return 0;
}
static inline int kvm_assign_device(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev)
{
return 0;
}
static inline int kvm_deassign_device(struct kvm *kvm,
struct kvm_assigned_dev_kernel *assigned_dev)
{
return 0;
}
#endif /* CONFIG_DMAR */
static inline void kvm_guest_enter(void)
{
account_system_vtime(current);
current->flags |= PF_VCPU;
}
static inline void kvm_guest_exit(void)
{
account_system_vtime(current);
current->flags &= ~PF_VCPU;
}
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
static inline int memslot_id(struct kvm *kvm, struct kvm_memory_slot *slot)
{
return slot - kvm->memslots;
}
static inline gpa_t gfn_to_gpa(gfn_t gfn)
{
return (gpa_t)gfn << PAGE_SHIFT;
}
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
static inline hpa_t pfn_to_hpa(pfn_t pfn)
{
return (hpa_t)pfn << PAGE_SHIFT;
}
static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
{
set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
}
enum kvm_stat_kind {
KVM_STAT_VM,
KVM_STAT_VCPU,
};
struct kvm_stats_debugfs_item {
const char *name;
int offset;
enum kvm_stat_kind kind;
struct dentry *dentry;
};
extern struct kvm_stats_debugfs_item debugfs_entries[];
extern struct dentry *kvm_debugfs_dir;
#define KVMTRACE_5D(evt, vcpu, d1, d2, d3, d4, d5, name) \
trace_mark(kvm_trace_##name, "%u %p %u %u %u %u %u %u", KVM_TRC_##evt, \
vcpu, 5, d1, d2, d3, d4, d5)
#define KVMTRACE_4D(evt, vcpu, d1, d2, d3, d4, name) \
trace_mark(kvm_trace_##name, "%u %p %u %u %u %u %u %u", KVM_TRC_##evt, \
vcpu, 4, d1, d2, d3, d4, 0)
#define KVMTRACE_3D(evt, vcpu, d1, d2, d3, name) \
trace_mark(kvm_trace_##name, "%u %p %u %u %u %u %u %u", KVM_TRC_##evt, \
vcpu, 3, d1, d2, d3, 0, 0)
#define KVMTRACE_2D(evt, vcpu, d1, d2, name) \
trace_mark(kvm_trace_##name, "%u %p %u %u %u %u %u %u", KVM_TRC_##evt, \
vcpu, 2, d1, d2, 0, 0, 0)
#define KVMTRACE_1D(evt, vcpu, d1, name) \
trace_mark(kvm_trace_##name, "%u %p %u %u %u %u %u %u", KVM_TRC_##evt, \
vcpu, 1, d1, 0, 0, 0, 0)
#define KVMTRACE_0D(evt, vcpu, name) \
trace_mark(kvm_trace_##name, "%u %p %u %u %u %u %u %u", KVM_TRC_##evt, \
vcpu, 0, 0, 0, 0, 0, 0)
#ifdef CONFIG_KVM_TRACE
int kvm_trace_ioctl(unsigned int ioctl, unsigned long arg);
void kvm_trace_cleanup(void);
#else
static inline
int kvm_trace_ioctl(unsigned int ioctl, unsigned long arg)
{
return -EINVAL;
}
#define kvm_trace_cleanup() ((void)0)
#endif
#ifdef KVM_ARCH_WANT_MMU_NOTIFIER
static inline int mmu_notifier_retry(struct kvm_vcpu *vcpu, unsigned long mmu_seq)
{
if (unlikely(vcpu->kvm->mmu_notifier_count))
return 1;
/*
* Both reads happen under the mmu_lock and both values are
* modified under mmu_lock, so there's no need of smb_rmb()
* here in between, otherwise mmu_notifier_count should be
* read before mmu_notifier_seq, see
* mmu_notifier_invalidate_range_end write side.
*/
if (vcpu->kvm->mmu_notifier_seq != mmu_seq)
return 1;
return 0;
}
#endif
[PATCH] kvm: userspace interface web site: http://kvm.sourceforge.net mailing list: kvm-devel@lists.sourceforge.net (http://lists.sourceforge.net/lists/listinfo/kvm-devel) The following patchset adds a driver for Intel's hardware virtualization extensions to the x86 architecture. The driver adds a character device (/dev/kvm) that exposes the virtualization capabilities to userspace. Using this driver, a process can run a virtual machine (a "guest") in a fully virtualized PC containing its own virtual hard disks, network adapters, and display. Using this driver, one can start multiple virtual machines on a host. Each virtual machine is a process on the host; a virtual cpu is a thread in that process. kill(1), nice(1), top(1) work as expected. In effect, the driver adds a third execution mode to the existing two: we now have kernel mode, user mode, and guest mode. Guest mode has its own address space mapping guest physical memory (which is accessible to user mode by mmap()ing /dev/kvm). Guest mode has no access to any I/O devices; any such access is intercepted and directed to user mode for emulation. The driver supports i386 and x86_64 hosts and guests. All combinations are allowed except x86_64 guest on i386 host. For i386 guests and hosts, both pae and non-pae paging modes are supported. SMP hosts and UP guests are supported. At the moment only Intel hardware is supported, but AMD virtualization support is being worked on. Performance currently is non-stellar due to the naive implementation of the mmu virtualization, which throws away most of the shadow page table entries every context switch. We plan to address this in two ways: - cache shadow page tables across tlb flushes - wait until AMD and Intel release processors with nested page tables Currently a virtual desktop is responsive but consumes a lot of CPU. Under Windows I tried playing pinball and watching a few flash movies; with a recent CPU one can hardly feel the virtualization. Linux/X is slower, probably due to X being in a separate process. In addition to the driver, you need a slightly modified qemu to provide I/O device emulation and the BIOS. Caveats (akpm: might no longer be true): - The Windows install currently bluescreens due to a problem with the virtual APIC. We are working on a fix. A temporary workaround is to use an existing image or install through qemu - Windows 64-bit does not work. That's also true for qemu, so it's probably a problem with the device model. [bero@arklinux.org: build fix] [simon.kagstrom@bth.se: build fix, other fixes] [uril@qumranet.com: KVM: Expose interrupt bitmap] [akpm@osdl.org: i386 build fix] [mingo@elte.hu: i386 fixes] [rdreier@cisco.com: add log levels to all printks] [randy.dunlap@oracle.com: Fix sparse NULL and C99 struct init warnings] [anthony@codemonkey.ws: KVM: AMD SVM: 32-bit host support] Signed-off-by: Yaniv Kamay <yaniv@qumranet.com> Signed-off-by: Avi Kivity <avi@qumranet.com> Cc: Simon Kagstrom <simon.kagstrom@bth.se> Cc: Bernhard Rosenkraenzer <bero@arklinux.org> Signed-off-by: Uri Lublin <uril@qumranet.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Roland Dreier <rolandd@cisco.com> Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Anthony Liguori <anthony@codemonkey.ws> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-10 13:21:36 +03:00
#endif