470 строки
11 KiB
C
470 строки
11 KiB
C
|
/*
|
||
|
* General Purpose functions for the global management of the
|
||
|
* 8260 Communication Processor Module.
|
||
|
* Copyright (c) 1999-2001 Dan Malek <dan@embeddedalley.com>
|
||
|
* Copyright (c) 2000 MontaVista Software, Inc (source@mvista.com)
|
||
|
* 2.3.99 Updates
|
||
|
*
|
||
|
* 2006 (c) MontaVista Software, Inc.
|
||
|
* Vitaly Bordug <vbordug@ru.mvista.com>
|
||
|
* Merged to arch/powerpc from arch/ppc/syslib/cpm2_common.c
|
||
|
*
|
||
|
* This file is licensed under the terms of the GNU General Public License
|
||
|
* version 2. This program is licensed "as is" without any warranty of any
|
||
|
* kind, whether express or implied.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
*
|
||
|
* In addition to the individual control of the communication
|
||
|
* channels, there are a few functions that globally affect the
|
||
|
* communication processor.
|
||
|
*
|
||
|
* Buffer descriptors must be allocated from the dual ported memory
|
||
|
* space. The allocator for that is here. When the communication
|
||
|
* process is reset, we reclaim the memory available. There is
|
||
|
* currently no deallocator for this memory.
|
||
|
*/
|
||
|
#include <linux/errno.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/param.h>
|
||
|
#include <linux/string.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/of.h>
|
||
|
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/irq.h>
|
||
|
#include <asm/mpc8260.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/cpm2.h>
|
||
|
#include <asm/rheap.h>
|
||
|
#include <asm/fs_pd.h>
|
||
|
|
||
|
#include <sysdev/fsl_soc.h>
|
||
|
|
||
|
#ifndef CONFIG_PPC_CPM_NEW_BINDING
|
||
|
static void cpm2_dpinit(void);
|
||
|
#endif
|
||
|
|
||
|
cpm_cpm2_t __iomem *cpmp; /* Pointer to comm processor space */
|
||
|
|
||
|
/* We allocate this here because it is used almost exclusively for
|
||
|
* the communication processor devices.
|
||
|
*/
|
||
|
cpm2_map_t __iomem *cpm2_immr;
|
||
|
|
||
|
#define CPM_MAP_SIZE (0x40000) /* 256k - the PQ3 reserve this amount
|
||
|
of space for CPM as it is larger
|
||
|
than on PQ2 */
|
||
|
|
||
|
void __init cpm2_reset(void)
|
||
|
{
|
||
|
#ifdef CONFIG_PPC_85xx
|
||
|
cpm2_immr = ioremap(CPM_MAP_ADDR, CPM_MAP_SIZE);
|
||
|
#else
|
||
|
cpm2_immr = ioremap(get_immrbase(), CPM_MAP_SIZE);
|
||
|
#endif
|
||
|
|
||
|
/* Reclaim the DP memory for our use.
|
||
|
*/
|
||
|
#ifdef CONFIG_PPC_CPM_NEW_BINDING
|
||
|
cpm_muram_init();
|
||
|
#else
|
||
|
cpm2_dpinit();
|
||
|
#endif
|
||
|
|
||
|
/* Tell everyone where the comm processor resides.
|
||
|
*/
|
||
|
cpmp = &cpm2_immr->im_cpm;
|
||
|
}
|
||
|
|
||
|
static DEFINE_SPINLOCK(cmd_lock);
|
||
|
|
||
|
#define MAX_CR_CMD_LOOPS 10000
|
||
|
|
||
|
int cpm_command(u32 command, u8 opcode)
|
||
|
{
|
||
|
int i, ret;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&cmd_lock, flags);
|
||
|
|
||
|
ret = 0;
|
||
|
out_be32(&cpmp->cp_cpcr, command | opcode | CPM_CR_FLG);
|
||
|
for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
|
||
|
if ((in_be32(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
|
||
|
goto out;
|
||
|
|
||
|
printk(KERN_ERR "%s(): Not able to issue CPM command\n", __FUNCTION__);
|
||
|
ret = -EIO;
|
||
|
out:
|
||
|
spin_unlock_irqrestore(&cmd_lock, flags);
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(cpm_command);
|
||
|
|
||
|
/* Set a baud rate generator. This needs lots of work. There are
|
||
|
* eight BRGs, which can be connected to the CPM channels or output
|
||
|
* as clocks. The BRGs are in two different block of internal
|
||
|
* memory mapped space.
|
||
|
* The baud rate clock is the system clock divided by something.
|
||
|
* It was set up long ago during the initial boot phase and is
|
||
|
* is given to us.
|
||
|
* Baud rate clocks are zero-based in the driver code (as that maps
|
||
|
* to port numbers). Documentation uses 1-based numbering.
|
||
|
*/
|
||
|
#define BRG_INT_CLK (get_brgfreq())
|
||
|
#define BRG_UART_CLK (BRG_INT_CLK/16)
|
||
|
|
||
|
/* This function is used by UARTS, or anything else that uses a 16x
|
||
|
* oversampled clock.
|
||
|
*/
|
||
|
void
|
||
|
cpm_setbrg(uint brg, uint rate)
|
||
|
{
|
||
|
u32 __iomem *bp;
|
||
|
|
||
|
/* This is good enough to get SMCs running.....
|
||
|
*/
|
||
|
if (brg < 4) {
|
||
|
bp = cpm2_map_size(im_brgc1, 16);
|
||
|
} else {
|
||
|
bp = cpm2_map_size(im_brgc5, 16);
|
||
|
brg -= 4;
|
||
|
}
|
||
|
bp += brg;
|
||
|
out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
|
||
|
|
||
|
cpm2_unmap(bp);
|
||
|
}
|
||
|
|
||
|
/* This function is used to set high speed synchronous baud rate
|
||
|
* clocks.
|
||
|
*/
|
||
|
void
|
||
|
cpm2_fastbrg(uint brg, uint rate, int div16)
|
||
|
{
|
||
|
u32 __iomem *bp;
|
||
|
u32 val;
|
||
|
|
||
|
if (brg < 4) {
|
||
|
bp = cpm2_map_size(im_brgc1, 16);
|
||
|
} else {
|
||
|
bp = cpm2_map_size(im_brgc5, 16);
|
||
|
brg -= 4;
|
||
|
}
|
||
|
bp += brg;
|
||
|
val = ((BRG_INT_CLK / rate) << 1) | CPM_BRG_EN;
|
||
|
if (div16)
|
||
|
val |= CPM_BRG_DIV16;
|
||
|
|
||
|
out_be32(bp, val);
|
||
|
cpm2_unmap(bp);
|
||
|
}
|
||
|
|
||
|
int cpm2_clk_setup(enum cpm_clk_target target, int clock, int mode)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
int shift;
|
||
|
int i, bits = 0;
|
||
|
cpmux_t __iomem *im_cpmux;
|
||
|
u32 __iomem *reg;
|
||
|
u32 mask = 7;
|
||
|
|
||
|
u8 clk_map[][3] = {
|
||
|
{CPM_CLK_FCC1, CPM_BRG5, 0},
|
||
|
{CPM_CLK_FCC1, CPM_BRG6, 1},
|
||
|
{CPM_CLK_FCC1, CPM_BRG7, 2},
|
||
|
{CPM_CLK_FCC1, CPM_BRG8, 3},
|
||
|
{CPM_CLK_FCC1, CPM_CLK9, 4},
|
||
|
{CPM_CLK_FCC1, CPM_CLK10, 5},
|
||
|
{CPM_CLK_FCC1, CPM_CLK11, 6},
|
||
|
{CPM_CLK_FCC1, CPM_CLK12, 7},
|
||
|
{CPM_CLK_FCC2, CPM_BRG5, 0},
|
||
|
{CPM_CLK_FCC2, CPM_BRG6, 1},
|
||
|
{CPM_CLK_FCC2, CPM_BRG7, 2},
|
||
|
{CPM_CLK_FCC2, CPM_BRG8, 3},
|
||
|
{CPM_CLK_FCC2, CPM_CLK13, 4},
|
||
|
{CPM_CLK_FCC2, CPM_CLK14, 5},
|
||
|
{CPM_CLK_FCC2, CPM_CLK15, 6},
|
||
|
{CPM_CLK_FCC2, CPM_CLK16, 7},
|
||
|
{CPM_CLK_FCC3, CPM_BRG5, 0},
|
||
|
{CPM_CLK_FCC3, CPM_BRG6, 1},
|
||
|
{CPM_CLK_FCC3, CPM_BRG7, 2},
|
||
|
{CPM_CLK_FCC3, CPM_BRG8, 3},
|
||
|
{CPM_CLK_FCC3, CPM_CLK13, 4},
|
||
|
{CPM_CLK_FCC3, CPM_CLK14, 5},
|
||
|
{CPM_CLK_FCC3, CPM_CLK15, 6},
|
||
|
{CPM_CLK_FCC3, CPM_CLK16, 7},
|
||
|
{CPM_CLK_SCC1, CPM_BRG1, 0},
|
||
|
{CPM_CLK_SCC1, CPM_BRG2, 1},
|
||
|
{CPM_CLK_SCC1, CPM_BRG3, 2},
|
||
|
{CPM_CLK_SCC1, CPM_BRG4, 3},
|
||
|
{CPM_CLK_SCC1, CPM_CLK11, 4},
|
||
|
{CPM_CLK_SCC1, CPM_CLK12, 5},
|
||
|
{CPM_CLK_SCC1, CPM_CLK3, 6},
|
||
|
{CPM_CLK_SCC1, CPM_CLK4, 7},
|
||
|
{CPM_CLK_SCC2, CPM_BRG1, 0},
|
||
|
{CPM_CLK_SCC2, CPM_BRG2, 1},
|
||
|
{CPM_CLK_SCC2, CPM_BRG3, 2},
|
||
|
{CPM_CLK_SCC2, CPM_BRG4, 3},
|
||
|
{CPM_CLK_SCC2, CPM_CLK11, 4},
|
||
|
{CPM_CLK_SCC2, CPM_CLK12, 5},
|
||
|
{CPM_CLK_SCC2, CPM_CLK3, 6},
|
||
|
{CPM_CLK_SCC2, CPM_CLK4, 7},
|
||
|
{CPM_CLK_SCC3, CPM_BRG1, 0},
|
||
|
{CPM_CLK_SCC3, CPM_BRG2, 1},
|
||
|
{CPM_CLK_SCC3, CPM_BRG3, 2},
|
||
|
{CPM_CLK_SCC3, CPM_BRG4, 3},
|
||
|
{CPM_CLK_SCC3, CPM_CLK5, 4},
|
||
|
{CPM_CLK_SCC3, CPM_CLK6, 5},
|
||
|
{CPM_CLK_SCC3, CPM_CLK7, 6},
|
||
|
{CPM_CLK_SCC3, CPM_CLK8, 7},
|
||
|
{CPM_CLK_SCC4, CPM_BRG1, 0},
|
||
|
{CPM_CLK_SCC4, CPM_BRG2, 1},
|
||
|
{CPM_CLK_SCC4, CPM_BRG3, 2},
|
||
|
{CPM_CLK_SCC4, CPM_BRG4, 3},
|
||
|
{CPM_CLK_SCC4, CPM_CLK5, 4},
|
||
|
{CPM_CLK_SCC4, CPM_CLK6, 5},
|
||
|
{CPM_CLK_SCC4, CPM_CLK7, 6},
|
||
|
{CPM_CLK_SCC4, CPM_CLK8, 7},
|
||
|
};
|
||
|
|
||
|
im_cpmux = cpm2_map(im_cpmux);
|
||
|
|
||
|
switch (target) {
|
||
|
case CPM_CLK_SCC1:
|
||
|
reg = &im_cpmux->cmx_scr;
|
||
|
shift = 24;
|
||
|
case CPM_CLK_SCC2:
|
||
|
reg = &im_cpmux->cmx_scr;
|
||
|
shift = 16;
|
||
|
break;
|
||
|
case CPM_CLK_SCC3:
|
||
|
reg = &im_cpmux->cmx_scr;
|
||
|
shift = 8;
|
||
|
break;
|
||
|
case CPM_CLK_SCC4:
|
||
|
reg = &im_cpmux->cmx_scr;
|
||
|
shift = 0;
|
||
|
break;
|
||
|
case CPM_CLK_FCC1:
|
||
|
reg = &im_cpmux->cmx_fcr;
|
||
|
shift = 24;
|
||
|
break;
|
||
|
case CPM_CLK_FCC2:
|
||
|
reg = &im_cpmux->cmx_fcr;
|
||
|
shift = 16;
|
||
|
break;
|
||
|
case CPM_CLK_FCC3:
|
||
|
reg = &im_cpmux->cmx_fcr;
|
||
|
shift = 8;
|
||
|
break;
|
||
|
default:
|
||
|
printk(KERN_ERR "cpm2_clock_setup: invalid clock target\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
if (mode == CPM_CLK_RX)
|
||
|
shift += 3;
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
|
||
|
if (clk_map[i][0] == target && clk_map[i][1] == clock) {
|
||
|
bits = clk_map[i][2];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (i == ARRAY_SIZE(clk_map))
|
||
|
ret = -EINVAL;
|
||
|
|
||
|
bits <<= shift;
|
||
|
mask <<= shift;
|
||
|
|
||
|
out_be32(reg, (in_be32(reg) & ~mask) | bits);
|
||
|
|
||
|
cpm2_unmap(im_cpmux);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int cpm2_smc_clk_setup(enum cpm_clk_target target, int clock)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
int shift;
|
||
|
int i, bits = 0;
|
||
|
cpmux_t __iomem *im_cpmux;
|
||
|
u8 __iomem *reg;
|
||
|
u8 mask = 3;
|
||
|
|
||
|
u8 clk_map[][3] = {
|
||
|
{CPM_CLK_SMC1, CPM_BRG1, 0},
|
||
|
{CPM_CLK_SMC1, CPM_BRG7, 1},
|
||
|
{CPM_CLK_SMC1, CPM_CLK7, 2},
|
||
|
{CPM_CLK_SMC1, CPM_CLK9, 3},
|
||
|
{CPM_CLK_SMC2, CPM_BRG2, 0},
|
||
|
{CPM_CLK_SMC2, CPM_BRG8, 1},
|
||
|
{CPM_CLK_SMC2, CPM_CLK4, 2},
|
||
|
{CPM_CLK_SMC2, CPM_CLK15, 3},
|
||
|
};
|
||
|
|
||
|
im_cpmux = cpm2_map(im_cpmux);
|
||
|
|
||
|
switch (target) {
|
||
|
case CPM_CLK_SMC1:
|
||
|
reg = &im_cpmux->cmx_smr;
|
||
|
mask = 3;
|
||
|
shift = 4;
|
||
|
break;
|
||
|
case CPM_CLK_SMC2:
|
||
|
reg = &im_cpmux->cmx_smr;
|
||
|
mask = 3;
|
||
|
shift = 0;
|
||
|
break;
|
||
|
default:
|
||
|
printk(KERN_ERR "cpm2_smc_clock_setup: invalid clock target\n");
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
|
||
|
if (clk_map[i][0] == target && clk_map[i][1] == clock) {
|
||
|
bits = clk_map[i][2];
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (i == ARRAY_SIZE(clk_map))
|
||
|
ret = -EINVAL;
|
||
|
|
||
|
bits <<= shift;
|
||
|
mask <<= shift;
|
||
|
|
||
|
out_8(reg, (in_8(reg) & ~mask) | bits);
|
||
|
|
||
|
cpm2_unmap(im_cpmux);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#ifndef CONFIG_PPC_CPM_NEW_BINDING
|
||
|
/*
|
||
|
* dpalloc / dpfree bits.
|
||
|
*/
|
||
|
static spinlock_t cpm_dpmem_lock;
|
||
|
/* 16 blocks should be enough to satisfy all requests
|
||
|
* until the memory subsystem goes up... */
|
||
|
static rh_block_t cpm_boot_dpmem_rh_block[16];
|
||
|
static rh_info_t cpm_dpmem_info;
|
||
|
static u8 __iomem *im_dprambase;
|
||
|
|
||
|
static void cpm2_dpinit(void)
|
||
|
{
|
||
|
spin_lock_init(&cpm_dpmem_lock);
|
||
|
|
||
|
/* initialize the info header */
|
||
|
rh_init(&cpm_dpmem_info, 1,
|
||
|
sizeof(cpm_boot_dpmem_rh_block) /
|
||
|
sizeof(cpm_boot_dpmem_rh_block[0]),
|
||
|
cpm_boot_dpmem_rh_block);
|
||
|
|
||
|
im_dprambase = cpm2_immr;
|
||
|
|
||
|
/* Attach the usable dpmem area */
|
||
|
/* XXX: This is actually crap. CPM_DATAONLY_BASE and
|
||
|
* CPM_DATAONLY_SIZE is only a subset of the available dpram. It
|
||
|
* varies with the processor and the microcode patches activated.
|
||
|
* But the following should be at least safe.
|
||
|
*/
|
||
|
rh_attach_region(&cpm_dpmem_info, CPM_DATAONLY_BASE, CPM_DATAONLY_SIZE);
|
||
|
}
|
||
|
|
||
|
/* This function returns an index into the DPRAM area.
|
||
|
*/
|
||
|
unsigned long cpm_dpalloc(uint size, uint align)
|
||
|
{
|
||
|
unsigned long start;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
||
|
cpm_dpmem_info.alignment = align;
|
||
|
start = rh_alloc(&cpm_dpmem_info, size, "commproc");
|
||
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
||
|
|
||
|
return (uint)start;
|
||
|
}
|
||
|
EXPORT_SYMBOL(cpm_dpalloc);
|
||
|
|
||
|
int cpm_dpfree(unsigned long offset)
|
||
|
{
|
||
|
int ret;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
||
|
ret = rh_free(&cpm_dpmem_info, offset);
|
||
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
EXPORT_SYMBOL(cpm_dpfree);
|
||
|
|
||
|
/* not sure if this is ever needed */
|
||
|
unsigned long cpm_dpalloc_fixed(unsigned long offset, uint size, uint align)
|
||
|
{
|
||
|
unsigned long start;
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(&cpm_dpmem_lock, flags);
|
||
|
cpm_dpmem_info.alignment = align;
|
||
|
start = rh_alloc_fixed(&cpm_dpmem_info, offset, size, "commproc");
|
||
|
spin_unlock_irqrestore(&cpm_dpmem_lock, flags);
|
||
|
|
||
|
return start;
|
||
|
}
|
||
|
EXPORT_SYMBOL(cpm_dpalloc_fixed);
|
||
|
|
||
|
void cpm_dpdump(void)
|
||
|
{
|
||
|
rh_dump(&cpm_dpmem_info);
|
||
|
}
|
||
|
EXPORT_SYMBOL(cpm_dpdump);
|
||
|
|
||
|
void *cpm_dpram_addr(unsigned long offset)
|
||
|
{
|
||
|
return (void *)(im_dprambase + offset);
|
||
|
}
|
||
|
EXPORT_SYMBOL(cpm_dpram_addr);
|
||
|
#endif /* !CONFIG_PPC_CPM_NEW_BINDING */
|
||
|
|
||
|
struct cpm2_ioports {
|
||
|
u32 dir, par, sor, odr, dat;
|
||
|
u32 res[3];
|
||
|
};
|
||
|
|
||
|
void cpm2_set_pin(int port, int pin, int flags)
|
||
|
{
|
||
|
struct cpm2_ioports __iomem *iop =
|
||
|
(struct cpm2_ioports __iomem *)&cpm2_immr->im_ioport;
|
||
|
|
||
|
pin = 1 << (31 - pin);
|
||
|
|
||
|
if (flags & CPM_PIN_OUTPUT)
|
||
|
setbits32(&iop[port].dir, pin);
|
||
|
else
|
||
|
clrbits32(&iop[port].dir, pin);
|
||
|
|
||
|
if (!(flags & CPM_PIN_GPIO))
|
||
|
setbits32(&iop[port].par, pin);
|
||
|
else
|
||
|
clrbits32(&iop[port].par, pin);
|
||
|
|
||
|
if (flags & CPM_PIN_SECONDARY)
|
||
|
setbits32(&iop[port].sor, pin);
|
||
|
else
|
||
|
clrbits32(&iop[port].sor, pin);
|
||
|
|
||
|
if (flags & CPM_PIN_OPENDRAIN)
|
||
|
setbits32(&iop[port].odr, pin);
|
||
|
else
|
||
|
clrbits32(&iop[port].odr, pin);
|
||
|
}
|