WSL2-Linux-Kernel/drivers/net/phy/dp83640.c

1447 строки
35 KiB
C
Исходник Обычный вид История

/*
* Driver for the National Semiconductor DP83640 PHYTER
*
* Copyright (C) 2010 OMICRON electronics GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/ethtool.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mii.h>
#include <linux/module.h>
#include <linux/net_tstamp.h>
#include <linux/netdevice.h>
net: ptp: move PTP classifier in its own file This commit fixes a build error reported by Fengguang, that is triggered when CONFIG_NETWORK_PHY_TIMESTAMPING is not set: ERROR: "ptp_classify_raw" [drivers/net/ethernet/oki-semi/pch_gbe/pch_gbe.ko] undefined! The fix is to introduce its own file for the PTP BPF classifier, so that PTP_1588_CLOCK and/or NETWORK_PHY_TIMESTAMPING can select it independently from each other. IXP4xx driver on ARM needs to select it as well since it does not seem to select PTP_1588_CLOCK or similar that would pull it in automatically. This also allows for hiding all of the internals of the BPF PTP program inside that file, and only exporting relevant API bits to drivers. This patch also adds a kdoc documentation of ptp_classify_raw() API to make it clear that it can return PTP_CLASS_* defines. Also, the BPF program has been translated into bpf_asm code, so that it can be more easily read and altered (extensively documented in [1]). In the kernel tree under tools/net/ we have bpf_asm and bpf_dbg tools, so the commented program can simply be translated via `./bpf_asm -c prog` where prog is a file that contains the commented code. This makes it easily readable/verifiable and when there's a need to change something, jump offsets etc do not need to be replaced manually which can be very error prone. Instead, a newly translated version via bpf_asm can simply replace the old code. I have checked opcode diffs before/after and it's the very same filter. [1] Documentation/networking/filter.txt Fixes: 164d8c666521 ("net: ptp: do not reimplement PTP/BPF classifier") Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Daniel Borkmann <dborkman@redhat.com> Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Jiri Benc <jbenc@redhat.com> Acked-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2014-04-01 18:20:23 +04:00
#include <linux/if_vlan.h>
#include <linux/phy.h>
#include <linux/ptp_classify.h>
#include <linux/ptp_clock_kernel.h>
#include "dp83640_reg.h"
#define DP83640_PHY_ID 0x20005ce1
#define PAGESEL 0x13
#define LAYER4 0x02
#define LAYER2 0x01
#define MAX_RXTS 64
#define N_EXT_TS 6
#define PSF_PTPVER 2
#define PSF_EVNT 0x4000
#define PSF_RX 0x2000
#define PSF_TX 0x1000
#define EXT_EVENT 1
#define CAL_EVENT 7
#define CAL_TRIGGER 7
#define PER_TRIGGER 6
#define DP83640_N_PINS 12
#define MII_DP83640_MICR 0x11
#define MII_DP83640_MISR 0x12
#define MII_DP83640_MICR_OE 0x1
#define MII_DP83640_MICR_IE 0x2
#define MII_DP83640_MISR_RHF_INT_EN 0x01
#define MII_DP83640_MISR_FHF_INT_EN 0x02
#define MII_DP83640_MISR_ANC_INT_EN 0x04
#define MII_DP83640_MISR_DUP_INT_EN 0x08
#define MII_DP83640_MISR_SPD_INT_EN 0x10
#define MII_DP83640_MISR_LINK_INT_EN 0x20
#define MII_DP83640_MISR_ED_INT_EN 0x40
#define MII_DP83640_MISR_LQ_INT_EN 0x80
/* phyter seems to miss the mark by 16 ns */
#define ADJTIME_FIX 16
#if defined(__BIG_ENDIAN)
#define ENDIAN_FLAG 0
#elif defined(__LITTLE_ENDIAN)
#define ENDIAN_FLAG PSF_ENDIAN
#endif
#define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb))
struct phy_rxts {
u16 ns_lo; /* ns[15:0] */
u16 ns_hi; /* overflow[1:0], ns[29:16] */
u16 sec_lo; /* sec[15:0] */
u16 sec_hi; /* sec[31:16] */
u16 seqid; /* sequenceId[15:0] */
u16 msgtype; /* messageType[3:0], hash[11:0] */
};
struct phy_txts {
u16 ns_lo; /* ns[15:0] */
u16 ns_hi; /* overflow[1:0], ns[29:16] */
u16 sec_lo; /* sec[15:0] */
u16 sec_hi; /* sec[31:16] */
};
struct rxts {
struct list_head list;
unsigned long tmo;
u64 ns;
u16 seqid;
u8 msgtype;
u16 hash;
};
struct dp83640_clock;
struct dp83640_private {
struct list_head list;
struct dp83640_clock *clock;
struct phy_device *phydev;
struct work_struct ts_work;
int hwts_tx_en;
int hwts_rx_en;
int layer;
int version;
/* remember state of cfg0 during calibration */
int cfg0;
/* remember the last event time stamp */
struct phy_txts edata;
/* list of rx timestamps */
struct list_head rxts;
struct list_head rxpool;
struct rxts rx_pool_data[MAX_RXTS];
/* protects above three fields from concurrent access */
spinlock_t rx_lock;
/* queues of incoming and outgoing packets */
struct sk_buff_head rx_queue;
struct sk_buff_head tx_queue;
};
struct dp83640_clock {
/* keeps the instance in the 'phyter_clocks' list */
struct list_head list;
/* we create one clock instance per MII bus */
struct mii_bus *bus;
/* protects extended registers from concurrent access */
struct mutex extreg_lock;
/* remembers which page was last selected */
int page;
/* our advertised capabilities */
struct ptp_clock_info caps;
/* protects the three fields below from concurrent access */
struct mutex clock_lock;
/* the one phyter from which we shall read */
struct dp83640_private *chosen;
/* list of the other attached phyters, not chosen */
struct list_head phylist;
/* reference to our PTP hardware clock */
struct ptp_clock *ptp_clock;
};
/* globals */
enum {
CALIBRATE_GPIO,
PEROUT_GPIO,
EXTTS0_GPIO,
EXTTS1_GPIO,
EXTTS2_GPIO,
EXTTS3_GPIO,
EXTTS4_GPIO,
EXTTS5_GPIO,
GPIO_TABLE_SIZE
};
static int chosen_phy = -1;
static ushort gpio_tab[GPIO_TABLE_SIZE] = {
1, 2, 3, 4, 8, 9, 10, 11
};
module_param(chosen_phy, int, 0444);
module_param_array(gpio_tab, ushort, NULL, 0444);
MODULE_PARM_DESC(chosen_phy, \
"The address of the PHY to use for the ancillary clock features");
MODULE_PARM_DESC(gpio_tab, \
"Which GPIO line to use for which purpose: cal,perout,extts1,...,extts6");
static void dp83640_gpio_defaults(struct ptp_pin_desc *pd)
{
int i, index;
for (i = 0; i < DP83640_N_PINS; i++) {
snprintf(pd[i].name, sizeof(pd[i].name), "GPIO%d", 1 + i);
pd[i].index = i;
}
for (i = 0; i < GPIO_TABLE_SIZE; i++) {
if (gpio_tab[i] < 1 || gpio_tab[i] > DP83640_N_PINS) {
pr_err("gpio_tab[%d]=%hu out of range", i, gpio_tab[i]);
return;
}
}
index = gpio_tab[CALIBRATE_GPIO] - 1;
pd[index].func = PTP_PF_PHYSYNC;
pd[index].chan = 0;
index = gpio_tab[PEROUT_GPIO] - 1;
pd[index].func = PTP_PF_PEROUT;
pd[index].chan = 0;
for (i = EXTTS0_GPIO; i < GPIO_TABLE_SIZE; i++) {
index = gpio_tab[i] - 1;
pd[index].func = PTP_PF_EXTTS;
pd[index].chan = i - EXTTS0_GPIO;
}
}
/* a list of clocks and a mutex to protect it */
static LIST_HEAD(phyter_clocks);
static DEFINE_MUTEX(phyter_clocks_lock);
static void rx_timestamp_work(struct work_struct *work);
/* extended register access functions */
#define BROADCAST_ADDR 31
static inline int broadcast_write(struct mii_bus *bus, u32 regnum, u16 val)
{
return mdiobus_write(bus, BROADCAST_ADDR, regnum, val);
}
/* Caller must hold extreg_lock. */
static int ext_read(struct phy_device *phydev, int page, u32 regnum)
{
struct dp83640_private *dp83640 = phydev->priv;
int val;
if (dp83640->clock->page != page) {
broadcast_write(phydev->bus, PAGESEL, page);
dp83640->clock->page = page;
}
val = phy_read(phydev, regnum);
return val;
}
/* Caller must hold extreg_lock. */
static void ext_write(int broadcast, struct phy_device *phydev,
int page, u32 regnum, u16 val)
{
struct dp83640_private *dp83640 = phydev->priv;
if (dp83640->clock->page != page) {
broadcast_write(phydev->bus, PAGESEL, page);
dp83640->clock->page = page;
}
if (broadcast)
broadcast_write(phydev->bus, regnum, val);
else
phy_write(phydev, regnum, val);
}
/* Caller must hold extreg_lock. */
static int tdr_write(int bc, struct phy_device *dev,
const struct timespec *ts, u16 cmd)
{
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec & 0xffff);/* ns[15:0] */
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_nsec >> 16); /* ns[31:16] */
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec & 0xffff); /* sec[15:0] */
ext_write(bc, dev, PAGE4, PTP_TDR, ts->tv_sec >> 16); /* sec[31:16]*/
ext_write(bc, dev, PAGE4, PTP_CTL, cmd);
return 0;
}
/* convert phy timestamps into driver timestamps */
static void phy2rxts(struct phy_rxts *p, struct rxts *rxts)
{
u32 sec;
sec = p->sec_lo;
sec |= p->sec_hi << 16;
rxts->ns = p->ns_lo;
rxts->ns |= (p->ns_hi & 0x3fff) << 16;
rxts->ns += ((u64)sec) * 1000000000ULL;
rxts->seqid = p->seqid;
rxts->msgtype = (p->msgtype >> 12) & 0xf;
rxts->hash = p->msgtype & 0x0fff;
rxts->tmo = jiffies + 2;
}
static u64 phy2txts(struct phy_txts *p)
{
u64 ns;
u32 sec;
sec = p->sec_lo;
sec |= p->sec_hi << 16;
ns = p->ns_lo;
ns |= (p->ns_hi & 0x3fff) << 16;
ns += ((u64)sec) * 1000000000ULL;
return ns;
}
static int periodic_output(struct dp83640_clock *clock,
struct ptp_clock_request *clkreq, bool on)
{
struct dp83640_private *dp83640 = clock->chosen;
struct phy_device *phydev = dp83640->phydev;
u32 sec, nsec, pwidth;
u16 gpio, ptp_trig, trigger, val;
if (on) {
gpio = 1 + ptp_find_pin(clock->ptp_clock, PTP_PF_PEROUT, 0);
if (gpio < 1)
return -EINVAL;
} else {
gpio = 0;
}
trigger = PER_TRIGGER;
ptp_trig = TRIG_WR |
(trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT |
(gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT |
TRIG_PER |
TRIG_PULSE;
val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
if (!on) {
val |= TRIG_DIS;
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
ext_write(0, phydev, PAGE4, PTP_CTL, val);
mutex_unlock(&clock->extreg_lock);
return 0;
}
sec = clkreq->perout.start.sec;
nsec = clkreq->perout.start.nsec;
pwidth = clkreq->perout.period.sec * 1000000000UL;
pwidth += clkreq->perout.period.nsec;
pwidth /= 2;
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE5, PTP_TRIG, ptp_trig);
/*load trigger*/
val |= TRIG_LOAD;
ext_write(0, phydev, PAGE4, PTP_CTL, val);
ext_write(0, phydev, PAGE4, PTP_TDR, nsec & 0xffff); /* ns[15:0] */
ext_write(0, phydev, PAGE4, PTP_TDR, nsec >> 16); /* ns[31:16] */
ext_write(0, phydev, PAGE4, PTP_TDR, sec & 0xffff); /* sec[15:0] */
ext_write(0, phydev, PAGE4, PTP_TDR, sec >> 16); /* sec[31:16] */
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff); /* ns[15:0] */
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16); /* ns[31:16] */
/* Triggers 0 and 1 has programmable pulsewidth2 */
if (trigger < 2) {
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth & 0xffff);
ext_write(0, phydev, PAGE4, PTP_TDR, pwidth >> 16);
}
/*enable trigger*/
val &= ~TRIG_LOAD;
val |= TRIG_EN;
ext_write(0, phydev, PAGE4, PTP_CTL, val);
mutex_unlock(&clock->extreg_lock);
return 0;
}
/* ptp clock methods */
static int ptp_dp83640_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
u64 rate;
int neg_adj = 0;
u16 hi, lo;
if (ppb < 0) {
neg_adj = 1;
ppb = -ppb;
}
rate = ppb;
rate <<= 26;
rate = div_u64(rate, 1953125);
hi = (rate >> 16) & PTP_RATE_HI_MASK;
if (neg_adj)
hi |= PTP_RATE_DIR;
lo = rate & 0xffff;
mutex_lock(&clock->extreg_lock);
ext_write(1, phydev, PAGE4, PTP_RATEH, hi);
ext_write(1, phydev, PAGE4, PTP_RATEL, lo);
mutex_unlock(&clock->extreg_lock);
return 0;
}
static int ptp_dp83640_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
struct timespec ts;
int err;
delta += ADJTIME_FIX;
ts = ns_to_timespec(delta);
mutex_lock(&clock->extreg_lock);
err = tdr_write(1, phydev, &ts, PTP_STEP_CLK);
mutex_unlock(&clock->extreg_lock);
return err;
}
static int ptp_dp83640_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
unsigned int val[4];
mutex_lock(&clock->extreg_lock);
ext_write(0, phydev, PAGE4, PTP_CTL, PTP_RD_CLK);
val[0] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[15:0] */
val[1] = ext_read(phydev, PAGE4, PTP_TDR); /* ns[31:16] */
val[2] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[15:0] */
val[3] = ext_read(phydev, PAGE4, PTP_TDR); /* sec[31:16] */
mutex_unlock(&clock->extreg_lock);
ts->tv_nsec = val[0] | (val[1] << 16);
ts->tv_sec = val[2] | (val[3] << 16);
return 0;
}
static int ptp_dp83640_settime(struct ptp_clock_info *ptp,
const struct timespec *ts)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
int err;
mutex_lock(&clock->extreg_lock);
err = tdr_write(1, phydev, ts, PTP_LOAD_CLK);
mutex_unlock(&clock->extreg_lock);
return err;
}
static int ptp_dp83640_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct dp83640_clock *clock =
container_of(ptp, struct dp83640_clock, caps);
struct phy_device *phydev = clock->chosen->phydev;
unsigned int index;
u16 evnt, event_num, gpio_num;
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
index = rq->extts.index;
if (index >= N_EXT_TS)
return -EINVAL;
event_num = EXT_EVENT + index;
evnt = EVNT_WR | (event_num & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
if (on) {
gpio_num = 1 + ptp_find_pin(clock->ptp_clock,
PTP_PF_EXTTS, index);
if (gpio_num < 1)
return -EINVAL;
evnt |= (gpio_num & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
if (rq->extts.flags & PTP_FALLING_EDGE)
evnt |= EVNT_FALL;
else
evnt |= EVNT_RISE;
}
ext_write(0, phydev, PAGE5, PTP_EVNT, evnt);
return 0;
case PTP_CLK_REQ_PEROUT:
if (rq->perout.index != 0)
return -EINVAL;
return periodic_output(clock, rq, on);
default:
break;
}
return -EOPNOTSUPP;
}
static int ptp_dp83640_verify(struct ptp_clock_info *ptp, unsigned int pin,
enum ptp_pin_function func, unsigned int chan)
{
return 0;
}
static u8 status_frame_dst[6] = { 0x01, 0x1B, 0x19, 0x00, 0x00, 0x00 };
static u8 status_frame_src[6] = { 0x08, 0x00, 0x17, 0x0B, 0x6B, 0x0F };
static void enable_status_frames(struct phy_device *phydev, bool on)
{
u16 cfg0 = 0, ver;
if (on)
cfg0 = PSF_EVNT_EN | PSF_RXTS_EN | PSF_TXTS_EN | ENDIAN_FLAG;
ver = (PSF_PTPVER & VERSIONPTP_MASK) << VERSIONPTP_SHIFT;
ext_write(0, phydev, PAGE5, PSF_CFG0, cfg0);
ext_write(0, phydev, PAGE6, PSF_CFG1, ver);
if (!phydev->attached_dev) {
pr_warn("expected to find an attached netdevice\n");
return;
}
if (on) {
if (dev_mc_add(phydev->attached_dev, status_frame_dst))
pr_warn("failed to add mc address\n");
} else {
if (dev_mc_del(phydev->attached_dev, status_frame_dst))
pr_warn("failed to delete mc address\n");
}
}
static bool is_status_frame(struct sk_buff *skb, int type)
{
struct ethhdr *h = eth_hdr(skb);
if (PTP_CLASS_V2_L2 == type &&
!memcmp(h->h_source, status_frame_src, sizeof(status_frame_src)))
return true;
else
return false;
}
static int expired(struct rxts *rxts)
{
return time_after(jiffies, rxts->tmo);
}
/* Caller must hold rx_lock. */
static void prune_rx_ts(struct dp83640_private *dp83640)
{
struct list_head *this, *next;
struct rxts *rxts;
list_for_each_safe(this, next, &dp83640->rxts) {
rxts = list_entry(this, struct rxts, list);
if (expired(rxts)) {
list_del_init(&rxts->list);
list_add(&rxts->list, &dp83640->rxpool);
}
}
}
/* synchronize the phyters so they act as one clock */
static void enable_broadcast(struct phy_device *phydev, int init_page, int on)
{
int val;
phy_write(phydev, PAGESEL, 0);
val = phy_read(phydev, PHYCR2);
if (on)
val |= BC_WRITE;
else
val &= ~BC_WRITE;
phy_write(phydev, PHYCR2, val);
phy_write(phydev, PAGESEL, init_page);
}
static void recalibrate(struct dp83640_clock *clock)
{
s64 now, diff;
struct phy_txts event_ts;
struct timespec ts;
struct list_head *this;
struct dp83640_private *tmp;
struct phy_device *master = clock->chosen->phydev;
u16 cal_gpio, cfg0, evnt, ptp_trig, trigger, val;
trigger = CAL_TRIGGER;
cal_gpio = gpio_tab[CALIBRATE_GPIO];
mutex_lock(&clock->extreg_lock);
/*
* enable broadcast, disable status frames, enable ptp clock
*/
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
enable_broadcast(tmp->phydev, clock->page, 1);
tmp->cfg0 = ext_read(tmp->phydev, PAGE5, PSF_CFG0);
ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, 0);
ext_write(0, tmp->phydev, PAGE4, PTP_CTL, PTP_ENABLE);
}
enable_broadcast(master, clock->page, 1);
cfg0 = ext_read(master, PAGE5, PSF_CFG0);
ext_write(0, master, PAGE5, PSF_CFG0, 0);
ext_write(0, master, PAGE4, PTP_CTL, PTP_ENABLE);
/*
* enable an event timestamp
*/
evnt = EVNT_WR | EVNT_RISE | EVNT_SINGLE;
evnt |= (CAL_EVENT & EVNT_SEL_MASK) << EVNT_SEL_SHIFT;
evnt |= (cal_gpio & EVNT_GPIO_MASK) << EVNT_GPIO_SHIFT;
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
ext_write(0, tmp->phydev, PAGE5, PTP_EVNT, evnt);
}
ext_write(0, master, PAGE5, PTP_EVNT, evnt);
/*
* configure a trigger
*/
ptp_trig = TRIG_WR | TRIG_IF_LATE | TRIG_PULSE;
ptp_trig |= (trigger & TRIG_CSEL_MASK) << TRIG_CSEL_SHIFT;
ptp_trig |= (cal_gpio & TRIG_GPIO_MASK) << TRIG_GPIO_SHIFT;
ext_write(0, master, PAGE5, PTP_TRIG, ptp_trig);
/* load trigger */
val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
val |= TRIG_LOAD;
ext_write(0, master, PAGE4, PTP_CTL, val);
/* enable trigger */
val &= ~TRIG_LOAD;
val |= TRIG_EN;
ext_write(0, master, PAGE4, PTP_CTL, val);
/* disable trigger */
val = (trigger & TRIG_SEL_MASK) << TRIG_SEL_SHIFT;
val |= TRIG_DIS;
ext_write(0, master, PAGE4, PTP_CTL, val);
/*
* read out and correct offsets
*/
val = ext_read(master, PAGE4, PTP_STS);
pr_info("master PTP_STS 0x%04hx\n", val);
val = ext_read(master, PAGE4, PTP_ESTS);
pr_info("master PTP_ESTS 0x%04hx\n", val);
event_ts.ns_lo = ext_read(master, PAGE4, PTP_EDATA);
event_ts.ns_hi = ext_read(master, PAGE4, PTP_EDATA);
event_ts.sec_lo = ext_read(master, PAGE4, PTP_EDATA);
event_ts.sec_hi = ext_read(master, PAGE4, PTP_EDATA);
now = phy2txts(&event_ts);
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
val = ext_read(tmp->phydev, PAGE4, PTP_STS);
pr_info("slave PTP_STS 0x%04hx\n", val);
val = ext_read(tmp->phydev, PAGE4, PTP_ESTS);
pr_info("slave PTP_ESTS 0x%04hx\n", val);
event_ts.ns_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
event_ts.ns_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
event_ts.sec_lo = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
event_ts.sec_hi = ext_read(tmp->phydev, PAGE4, PTP_EDATA);
diff = now - (s64) phy2txts(&event_ts);
pr_info("slave offset %lld nanoseconds\n", diff);
diff += ADJTIME_FIX;
ts = ns_to_timespec(diff);
tdr_write(0, tmp->phydev, &ts, PTP_STEP_CLK);
}
/*
* restore status frames
*/
list_for_each(this, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
ext_write(0, tmp->phydev, PAGE5, PSF_CFG0, tmp->cfg0);
}
ext_write(0, master, PAGE5, PSF_CFG0, cfg0);
mutex_unlock(&clock->extreg_lock);
}
/* time stamping methods */
static inline u16 exts_chan_to_edata(int ch)
{
return 1 << ((ch + EXT_EVENT) * 2);
}
static int decode_evnt(struct dp83640_private *dp83640,
void *data, u16 ests)
{
struct phy_txts *phy_txts;
struct ptp_clock_event event;
int i, parsed;
int words = (ests >> EVNT_TS_LEN_SHIFT) & EVNT_TS_LEN_MASK;
u16 ext_status = 0;
if (ests & MULT_EVNT) {
ext_status = *(u16 *) data;
data += sizeof(ext_status);
}
phy_txts = data;
switch (words) { /* fall through in every case */
case 3:
dp83640->edata.sec_hi = phy_txts->sec_hi;
case 2:
dp83640->edata.sec_lo = phy_txts->sec_lo;
case 1:
dp83640->edata.ns_hi = phy_txts->ns_hi;
case 0:
dp83640->edata.ns_lo = phy_txts->ns_lo;
}
if (ext_status) {
parsed = words + 2;
} else {
parsed = words + 1;
i = ((ests >> EVNT_NUM_SHIFT) & EVNT_NUM_MASK) - EXT_EVENT;
ext_status = exts_chan_to_edata(i);
}
event.type = PTP_CLOCK_EXTTS;
event.timestamp = phy2txts(&dp83640->edata);
for (i = 0; i < N_EXT_TS; i++) {
if (ext_status & exts_chan_to_edata(i)) {
event.index = i;
ptp_clock_event(dp83640->clock->ptp_clock, &event);
}
}
return parsed * sizeof(u16);
}
static void decode_rxts(struct dp83640_private *dp83640,
struct phy_rxts *phy_rxts)
{
struct rxts *rxts;
unsigned long flags;
spin_lock_irqsave(&dp83640->rx_lock, flags);
prune_rx_ts(dp83640);
if (list_empty(&dp83640->rxpool)) {
pr_debug("rx timestamp pool is empty\n");
goto out;
}
rxts = list_first_entry(&dp83640->rxpool, struct rxts, list);
list_del_init(&rxts->list);
phy2rxts(phy_rxts, rxts);
list_add_tail(&rxts->list, &dp83640->rxts);
out:
spin_unlock_irqrestore(&dp83640->rx_lock, flags);
}
static void decode_txts(struct dp83640_private *dp83640,
struct phy_txts *phy_txts)
{
struct skb_shared_hwtstamps shhwtstamps;
struct sk_buff *skb;
u64 ns;
/* We must already have the skb that triggered this. */
skb = skb_dequeue(&dp83640->tx_queue);
if (!skb) {
pr_debug("have timestamp but tx_queue empty\n");
return;
}
ns = phy2txts(phy_txts);
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(ns);
skb_complete_tx_timestamp(skb, &shhwtstamps);
}
static void decode_status_frame(struct dp83640_private *dp83640,
struct sk_buff *skb)
{
struct phy_rxts *phy_rxts;
struct phy_txts *phy_txts;
u8 *ptr;
int len, size;
u16 ests, type;
ptr = skb->data + 2;
for (len = skb_headlen(skb) - 2; len > sizeof(type); len -= size) {
type = *(u16 *)ptr;
ests = type & 0x0fff;
type = type & 0xf000;
len -= sizeof(type);
ptr += sizeof(type);
if (PSF_RX == type && len >= sizeof(*phy_rxts)) {
phy_rxts = (struct phy_rxts *) ptr;
decode_rxts(dp83640, phy_rxts);
size = sizeof(*phy_rxts);
} else if (PSF_TX == type && len >= sizeof(*phy_txts)) {
phy_txts = (struct phy_txts *) ptr;
decode_txts(dp83640, phy_txts);
size = sizeof(*phy_txts);
} else if (PSF_EVNT == type && len >= sizeof(*phy_txts)) {
size = decode_evnt(dp83640, ptr, ests);
} else {
size = 0;
break;
}
ptr += size;
}
}
static int is_sync(struct sk_buff *skb, int type)
{
u8 *data = skb->data, *msgtype;
unsigned int offset = 0;
switch (type) {
case PTP_CLASS_V1_IPV4:
case PTP_CLASS_V2_IPV4:
offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
break;
case PTP_CLASS_V1_IPV6:
case PTP_CLASS_V2_IPV6:
offset = OFF_PTP6;
break;
case PTP_CLASS_V2_L2:
offset = ETH_HLEN;
break;
case PTP_CLASS_V2_VLAN:
offset = ETH_HLEN + VLAN_HLEN;
break;
default:
return 0;
}
if (type & PTP_CLASS_V1)
offset += OFF_PTP_CONTROL;
if (skb->len < offset + 1)
return 0;
msgtype = data + offset;
return (*msgtype & 0xf) == 0;
}
static int match(struct sk_buff *skb, unsigned int type, struct rxts *rxts)
{
u16 *seqid;
unsigned int offset;
u8 *msgtype, *data = skb_mac_header(skb);
/* check sequenceID, messageType, 12 bit hash of offset 20-29 */
switch (type) {
case PTP_CLASS_V1_IPV4:
case PTP_CLASS_V2_IPV4:
offset = ETH_HLEN + IPV4_HLEN(data) + UDP_HLEN;
break;
case PTP_CLASS_V1_IPV6:
case PTP_CLASS_V2_IPV6:
offset = OFF_PTP6;
break;
case PTP_CLASS_V2_L2:
offset = ETH_HLEN;
break;
case PTP_CLASS_V2_VLAN:
offset = ETH_HLEN + VLAN_HLEN;
break;
default:
return 0;
}
if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
return 0;
if (unlikely(type & PTP_CLASS_V1))
msgtype = data + offset + OFF_PTP_CONTROL;
else
msgtype = data + offset;
seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
return rxts->msgtype == (*msgtype & 0xf) &&
rxts->seqid == ntohs(*seqid);
}
static void dp83640_free_clocks(void)
{
struct dp83640_clock *clock;
struct list_head *this, *next;
mutex_lock(&phyter_clocks_lock);
list_for_each_safe(this, next, &phyter_clocks) {
clock = list_entry(this, struct dp83640_clock, list);
if (!list_empty(&clock->phylist)) {
pr_warn("phy list non-empty while unloading\n");
BUG();
}
list_del(&clock->list);
mutex_destroy(&clock->extreg_lock);
mutex_destroy(&clock->clock_lock);
put_device(&clock->bus->dev);
kfree(clock->caps.pin_config);
kfree(clock);
}
mutex_unlock(&phyter_clocks_lock);
}
static void dp83640_clock_init(struct dp83640_clock *clock, struct mii_bus *bus)
{
INIT_LIST_HEAD(&clock->list);
clock->bus = bus;
mutex_init(&clock->extreg_lock);
mutex_init(&clock->clock_lock);
INIT_LIST_HEAD(&clock->phylist);
clock->caps.owner = THIS_MODULE;
sprintf(clock->caps.name, "dp83640 timer");
clock->caps.max_adj = 1953124;
clock->caps.n_alarm = 0;
clock->caps.n_ext_ts = N_EXT_TS;
clock->caps.n_per_out = 1;
clock->caps.n_pins = DP83640_N_PINS;
clock->caps.pps = 0;
clock->caps.adjfreq = ptp_dp83640_adjfreq;
clock->caps.adjtime = ptp_dp83640_adjtime;
clock->caps.gettime = ptp_dp83640_gettime;
clock->caps.settime = ptp_dp83640_settime;
clock->caps.enable = ptp_dp83640_enable;
clock->caps.verify = ptp_dp83640_verify;
/*
* Convert the module param defaults into a dynamic pin configuration.
*/
dp83640_gpio_defaults(clock->caps.pin_config);
/*
* Get a reference to this bus instance.
*/
get_device(&bus->dev);
}
static int choose_this_phy(struct dp83640_clock *clock,
struct phy_device *phydev)
{
if (chosen_phy == -1 && !clock->chosen)
return 1;
if (chosen_phy == phydev->addr)
return 1;
return 0;
}
static struct dp83640_clock *dp83640_clock_get(struct dp83640_clock *clock)
{
if (clock)
mutex_lock(&clock->clock_lock);
return clock;
}
/*
* Look up and lock a clock by bus instance.
* If there is no clock for this bus, then create it first.
*/
static struct dp83640_clock *dp83640_clock_get_bus(struct mii_bus *bus)
{
struct dp83640_clock *clock = NULL, *tmp;
struct list_head *this;
mutex_lock(&phyter_clocks_lock);
list_for_each(this, &phyter_clocks) {
tmp = list_entry(this, struct dp83640_clock, list);
if (tmp->bus == bus) {
clock = tmp;
break;
}
}
if (clock)
goto out;
clock = kzalloc(sizeof(struct dp83640_clock), GFP_KERNEL);
if (!clock)
goto out;
clock->caps.pin_config = kzalloc(sizeof(struct ptp_pin_desc) *
DP83640_N_PINS, GFP_KERNEL);
if (!clock->caps.pin_config) {
kfree(clock);
clock = NULL;
goto out;
}
dp83640_clock_init(clock, bus);
list_add_tail(&phyter_clocks, &clock->list);
out:
mutex_unlock(&phyter_clocks_lock);
return dp83640_clock_get(clock);
}
static void dp83640_clock_put(struct dp83640_clock *clock)
{
mutex_unlock(&clock->clock_lock);
}
static int dp83640_probe(struct phy_device *phydev)
{
struct dp83640_clock *clock;
struct dp83640_private *dp83640;
int err = -ENOMEM, i;
if (phydev->addr == BROADCAST_ADDR)
return 0;
clock = dp83640_clock_get_bus(phydev->bus);
if (!clock)
goto no_clock;
dp83640 = kzalloc(sizeof(struct dp83640_private), GFP_KERNEL);
if (!dp83640)
goto no_memory;
dp83640->phydev = phydev;
INIT_WORK(&dp83640->ts_work, rx_timestamp_work);
INIT_LIST_HEAD(&dp83640->rxts);
INIT_LIST_HEAD(&dp83640->rxpool);
for (i = 0; i < MAX_RXTS; i++)
list_add(&dp83640->rx_pool_data[i].list, &dp83640->rxpool);
phydev->priv = dp83640;
spin_lock_init(&dp83640->rx_lock);
skb_queue_head_init(&dp83640->rx_queue);
skb_queue_head_init(&dp83640->tx_queue);
dp83640->clock = clock;
if (choose_this_phy(clock, phydev)) {
clock->chosen = dp83640;
clock->ptp_clock = ptp_clock_register(&clock->caps, &phydev->dev);
if (IS_ERR(clock->ptp_clock)) {
err = PTR_ERR(clock->ptp_clock);
goto no_register;
}
} else
list_add_tail(&dp83640->list, &clock->phylist);
dp83640_clock_put(clock);
return 0;
no_register:
clock->chosen = NULL;
kfree(dp83640);
no_memory:
dp83640_clock_put(clock);
no_clock:
return err;
}
static void dp83640_remove(struct phy_device *phydev)
{
struct dp83640_clock *clock;
struct list_head *this, *next;
struct dp83640_private *tmp, *dp83640 = phydev->priv;
struct sk_buff *skb;
if (phydev->addr == BROADCAST_ADDR)
return;
enable_status_frames(phydev, false);
cancel_work_sync(&dp83640->ts_work);
while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL)
kfree_skb(skb);
while ((skb = skb_dequeue(&dp83640->tx_queue)) != NULL)
skb_complete_tx_timestamp(skb, NULL);
clock = dp83640_clock_get(dp83640->clock);
if (dp83640 == clock->chosen) {
ptp_clock_unregister(clock->ptp_clock);
clock->chosen = NULL;
} else {
list_for_each_safe(this, next, &clock->phylist) {
tmp = list_entry(this, struct dp83640_private, list);
if (tmp == dp83640) {
list_del_init(&tmp->list);
break;
}
}
}
dp83640_clock_put(clock);
kfree(dp83640);
}
static int dp83640_config_init(struct phy_device *phydev)
{
struct dp83640_private *dp83640 = phydev->priv;
struct dp83640_clock *clock = dp83640->clock;
if (clock->chosen && !list_empty(&clock->phylist))
recalibrate(clock);
else
enable_broadcast(phydev, clock->page, 1);
enable_status_frames(phydev, true);
ext_write(0, phydev, PAGE4, PTP_CTL, PTP_ENABLE);
return 0;
}
static int dp83640_ack_interrupt(struct phy_device *phydev)
{
int err = phy_read(phydev, MII_DP83640_MISR);
if (err < 0)
return err;
return 0;
}
static int dp83640_config_intr(struct phy_device *phydev)
{
int micr;
int misr;
int err;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
misr = phy_read(phydev, MII_DP83640_MISR);
if (misr < 0)
return misr;
misr |=
(MII_DP83640_MISR_ANC_INT_EN |
MII_DP83640_MISR_DUP_INT_EN |
MII_DP83640_MISR_SPD_INT_EN |
MII_DP83640_MISR_LINK_INT_EN);
err = phy_write(phydev, MII_DP83640_MISR, misr);
if (err < 0)
return err;
micr = phy_read(phydev, MII_DP83640_MICR);
if (micr < 0)
return micr;
micr |=
(MII_DP83640_MICR_OE |
MII_DP83640_MICR_IE);
return phy_write(phydev, MII_DP83640_MICR, micr);
} else {
micr = phy_read(phydev, MII_DP83640_MICR);
if (micr < 0)
return micr;
micr &=
~(MII_DP83640_MICR_OE |
MII_DP83640_MICR_IE);
err = phy_write(phydev, MII_DP83640_MICR, micr);
if (err < 0)
return err;
misr = phy_read(phydev, MII_DP83640_MISR);
if (misr < 0)
return misr;
misr &=
~(MII_DP83640_MISR_ANC_INT_EN |
MII_DP83640_MISR_DUP_INT_EN |
MII_DP83640_MISR_SPD_INT_EN |
MII_DP83640_MISR_LINK_INT_EN);
return phy_write(phydev, MII_DP83640_MISR, misr);
}
}
static int dp83640_hwtstamp(struct phy_device *phydev, struct ifreq *ifr)
{
struct dp83640_private *dp83640 = phydev->priv;
struct hwtstamp_config cfg;
u16 txcfg0, rxcfg0;
if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
return -EFAULT;
if (cfg.flags) /* reserved for future extensions */
return -EINVAL;
if (cfg.tx_type < 0 || cfg.tx_type > HWTSTAMP_TX_ONESTEP_SYNC)
return -ERANGE;
dp83640->hwts_tx_en = cfg.tx_type;
switch (cfg.rx_filter) {
case HWTSTAMP_FILTER_NONE:
dp83640->hwts_rx_en = 0;
dp83640->layer = 0;
dp83640->version = 0;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = LAYER4;
dp83640->version = 1;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = LAYER4;
dp83640->version = 2;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = LAYER2;
dp83640->version = 2;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
dp83640->hwts_rx_en = 1;
dp83640->layer = LAYER4|LAYER2;
dp83640->version = 2;
break;
default:
return -ERANGE;
}
txcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
rxcfg0 = (dp83640->version & TX_PTP_VER_MASK) << TX_PTP_VER_SHIFT;
if (dp83640->layer & LAYER2) {
txcfg0 |= TX_L2_EN;
rxcfg0 |= RX_L2_EN;
}
if (dp83640->layer & LAYER4) {
txcfg0 |= TX_IPV6_EN | TX_IPV4_EN;
rxcfg0 |= RX_IPV6_EN | RX_IPV4_EN;
}
if (dp83640->hwts_tx_en)
txcfg0 |= TX_TS_EN;
if (dp83640->hwts_tx_en == HWTSTAMP_TX_ONESTEP_SYNC)
txcfg0 |= SYNC_1STEP | CHK_1STEP;
if (dp83640->hwts_rx_en)
rxcfg0 |= RX_TS_EN;
mutex_lock(&dp83640->clock->extreg_lock);
ext_write(0, phydev, PAGE5, PTP_TXCFG0, txcfg0);
ext_write(0, phydev, PAGE5, PTP_RXCFG0, rxcfg0);
mutex_unlock(&dp83640->clock->extreg_lock);
return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
static void rx_timestamp_work(struct work_struct *work)
{
struct dp83640_private *dp83640 =
container_of(work, struct dp83640_private, ts_work);
struct list_head *this, *next;
struct rxts *rxts;
struct skb_shared_hwtstamps *shhwtstamps;
struct sk_buff *skb;
unsigned int type;
unsigned long flags;
/* Deliver each deferred packet, with or without a time stamp. */
while ((skb = skb_dequeue(&dp83640->rx_queue)) != NULL) {
type = SKB_PTP_TYPE(skb);
spin_lock_irqsave(&dp83640->rx_lock, flags);
list_for_each_safe(this, next, &dp83640->rxts) {
rxts = list_entry(this, struct rxts, list);
if (match(skb, type, rxts)) {
shhwtstamps = skb_hwtstamps(skb);
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(rxts->ns);
list_del_init(&rxts->list);
list_add(&rxts->list, &dp83640->rxpool);
break;
}
}
spin_unlock_irqrestore(&dp83640->rx_lock, flags);
netif_rx_ni(skb);
}
/* Clear out expired time stamps. */
spin_lock_irqsave(&dp83640->rx_lock, flags);
prune_rx_ts(dp83640);
spin_unlock_irqrestore(&dp83640->rx_lock, flags);
}
static bool dp83640_rxtstamp(struct phy_device *phydev,
struct sk_buff *skb, int type)
{
struct dp83640_private *dp83640 = phydev->priv;
if (!dp83640->hwts_rx_en)
return false;
if (is_status_frame(skb, type)) {
decode_status_frame(dp83640, skb);
kfree_skb(skb);
return true;
}
SKB_PTP_TYPE(skb) = type;
skb_queue_tail(&dp83640->rx_queue, skb);
schedule_work(&dp83640->ts_work);
return true;
}
static void dp83640_txtstamp(struct phy_device *phydev,
struct sk_buff *skb, int type)
{
struct dp83640_private *dp83640 = phydev->priv;
switch (dp83640->hwts_tx_en) {
case HWTSTAMP_TX_ONESTEP_SYNC:
if (is_sync(skb, type)) {
skb_complete_tx_timestamp(skb, NULL);
return;
}
/* fall through */
case HWTSTAMP_TX_ON:
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
skb_queue_tail(&dp83640->tx_queue, skb);
schedule_work(&dp83640->ts_work);
break;
case HWTSTAMP_TX_OFF:
default:
skb_complete_tx_timestamp(skb, NULL);
break;
}
}
static int dp83640_ts_info(struct phy_device *dev, struct ethtool_ts_info *info)
{
struct dp83640_private *dp83640 = dev->priv;
info->so_timestamping =
SOF_TIMESTAMPING_TX_HARDWARE |
SOF_TIMESTAMPING_RX_HARDWARE |
SOF_TIMESTAMPING_RAW_HARDWARE;
info->phc_index = ptp_clock_index(dp83640->clock->ptp_clock);
info->tx_types =
(1 << HWTSTAMP_TX_OFF) |
(1 << HWTSTAMP_TX_ON) |
(1 << HWTSTAMP_TX_ONESTEP_SYNC);
info->rx_filters =
(1 << HWTSTAMP_FILTER_NONE) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
(1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
(1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
(1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ);
return 0;
}
static struct phy_driver dp83640_driver = {
.phy_id = DP83640_PHY_ID,
.phy_id_mask = 0xfffffff0,
.name = "NatSemi DP83640",
.features = PHY_BASIC_FEATURES,
.flags = PHY_HAS_INTERRUPT,
.probe = dp83640_probe,
.remove = dp83640_remove,
.config_init = dp83640_config_init,
.config_aneg = genphy_config_aneg,
.read_status = genphy_read_status,
.ack_interrupt = dp83640_ack_interrupt,
.config_intr = dp83640_config_intr,
.ts_info = dp83640_ts_info,
.hwtstamp = dp83640_hwtstamp,
.rxtstamp = dp83640_rxtstamp,
.txtstamp = dp83640_txtstamp,
.driver = {.owner = THIS_MODULE,}
};
static int __init dp83640_init(void)
{
return phy_driver_register(&dp83640_driver);
}
static void __exit dp83640_exit(void)
{
dp83640_free_clocks();
phy_driver_unregister(&dp83640_driver);
}
MODULE_DESCRIPTION("National Semiconductor DP83640 PHY driver");
MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
MODULE_LICENSE("GPL");
module_init(dp83640_init);
module_exit(dp83640_exit);
static struct mdio_device_id __maybe_unused dp83640_tbl[] = {
{ DP83640_PHY_ID, 0xfffffff0 },
{ }
};
MODULE_DEVICE_TABLE(mdio, dp83640_tbl);