WSL2-Linux-Kernel/drivers/scsi/gdth.c

5676 строки
201 KiB
C
Исходник Обычный вид История

/************************************************************************
* Linux driver for *
* ICP vortex GmbH: GDT ISA/EISA/PCI Disk Array Controllers *
* Intel Corporation: Storage RAID Controllers *
* *
* gdth.c *
* Copyright (C) 1995-06 ICP vortex GmbH, Achim Leubner *
* Copyright (C) 2002-04 Intel Corporation *
* Copyright (C) 2003-06 Adaptec Inc. *
* <achim_leubner@adaptec.com> *
* *
* Additions/Fixes: *
* Boji Tony Kannanthanam <boji.t.kannanthanam@intel.com> *
* Johannes Dinner <johannes_dinner@adaptec.com> *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published *
* by the Free Software Foundation; either version 2 of the License, *
* or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this kernel; if not, write to the Free Software *
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *
* *
* Linux kernel 2.4.x, 2.6.x supported *
* *
* $Log: gdth.c,v $
* Revision 1.74 2006/04/10 13:44:47 achim
* Community changes for 2.6.x
* Kernel 2.2.x no longer supported
* scsi_request interface removed, thanks to Christoph Hellwig
*
* Revision 1.73 2004/03/31 13:33:03 achim
* Special command 0xfd implemented to detect 64-bit DMA support
*
* Revision 1.72 2004/03/17 08:56:04 achim
* 64-bit DMA only enabled if FW >= x.43
*
* Revision 1.71 2004/03/05 15:51:29 achim
* Screen service: separate message buffer, bugfixes
*
* Revision 1.70 2004/02/27 12:19:07 achim
* Bugfix: Reset bit in config (0xfe) call removed
*
* Revision 1.69 2004/02/20 09:50:24 achim
* Compatibility changes for kernels < 2.4.20
* Bugfix screen service command size
* pci_set_dma_mask() error handling added
*
* Revision 1.68 2004/02/19 15:46:54 achim
* 64-bit DMA bugfixes
* Drive size bugfix for drives > 1TB
*
* Revision 1.67 2004/01/14 13:11:57 achim
* Tool access over /proc no longer supported
* Bugfixes IOCTLs
*
* Revision 1.66 2003/12/19 15:04:06 achim
* Bugfixes support for drives > 2TB
*
* Revision 1.65 2003/12/15 11:21:56 achim
* 64-bit DMA support added
* Support for drives > 2 TB implemented
* Kernels 2.2.x, 2.4.x, 2.6.x supported
*
* Revision 1.64 2003/09/17 08:30:26 achim
* EISA/ISA controller scan disabled
* Command line switch probe_eisa_isa added
*
* Revision 1.63 2003/07/12 14:01:00 Daniele Bellucci <bellucda@tiscali.it>
* Minor cleanups in gdth_ioctl.
*
* Revision 1.62 2003/02/27 15:01:59 achim
* Dynamic DMA mapping implemented
* New (character device) IOCTL interface added
* Other controller related changes made
*
* Revision 1.61 2002/11/08 13:09:52 boji
* Added support for XSCALE based RAID Controllers
* Fixed SCREENSERVICE initialization in SMP cases
* Added checks for gdth_polling before GDTH_HA_LOCK
*
* Revision 1.60 2002/02/05 09:35:22 achim
* MODULE_LICENSE only if kernel >= 2.4.11
*
* Revision 1.59 2002/01/30 09:46:33 achim
* Small changes
*
* Revision 1.58 2002/01/29 15:30:02 achim
* Set default value of shared_access to Y
* New status S_CACHE_RESERV for clustering added
*
* Revision 1.57 2001/08/21 11:16:35 achim
* Bugfix free_irq()
*
* Revision 1.56 2001/08/09 11:19:39 achim
* Scsi_Host_Template changes
*
* Revision 1.55 2001/08/09 10:11:28 achim
* Command HOST_UNFREEZE_IO before cache service init.
*
* Revision 1.54 2001/07/20 13:48:12 achim
* Expand: gdth_analyse_hdrive() removed
*
* Revision 1.53 2001/07/17 09:52:49 achim
* Small OEM related change
*
* Revision 1.52 2001/06/19 15:06:20 achim
* New host command GDT_UNFREEZE_IO added
*
* Revision 1.51 2001/05/22 06:42:37 achim
* PCI: Subdevice ID added
*
* Revision 1.50 2001/05/17 13:42:16 achim
* Support for Intel Storage RAID Controllers added
*
* Revision 1.50 2001/05/17 12:12:34 achim
* Support for Intel Storage RAID Controllers added
*
* Revision 1.49 2001/03/15 15:07:17 achim
* New __setup interface for boot command line options added
*
* Revision 1.48 2001/02/06 12:36:28 achim
* Bugfix Cluster protocol
*
* Revision 1.47 2001/01/10 14:42:06 achim
* New switch shared_access added
*
* Revision 1.46 2001/01/09 08:11:35 achim
* gdth_command() removed
* meaning of Scsi_Pointer members changed
*
* Revision 1.45 2000/11/16 12:02:24 achim
* Changes for kernel 2.4
*
* Revision 1.44 2000/10/11 08:44:10 achim
* Clustering changes: New flag media_changed added
*
* Revision 1.43 2000/09/20 12:59:01 achim
* DPMEM remap functions for all PCI controller types implemented
* Small changes for ia64 platform
*
* Revision 1.42 2000/07/20 09:04:50 achim
* Small changes for kernel 2.4
*
* Revision 1.41 2000/07/04 14:11:11 achim
* gdth_analyse_hdrive() added to rescan drives after online expansion
*
* Revision 1.40 2000/06/27 11:24:16 achim
* Changes Clustering, Screenservice
*
* Revision 1.39 2000/06/15 13:09:04 achim
* Changes for gdth_do_cmd()
*
* Revision 1.38 2000/06/15 12:08:43 achim
* Bugfix gdth_sync_event(), service SCREENSERVICE
* Data direction for command 0xc2 changed to DOU
*
* Revision 1.37 2000/05/25 13:50:10 achim
* New driver parameter virt_ctr added
*
* Revision 1.36 2000/05/04 08:50:46 achim
* Event buffer now in gdth_ha_str
*
* Revision 1.35 2000/03/03 10:44:08 achim
* New event_string only valid for the RP controller family
*
* Revision 1.34 2000/03/02 14:55:29 achim
* New mechanism for async. event handling implemented
*
* Revision 1.33 2000/02/21 15:37:37 achim
* Bugfix Alpha platform + DPMEM above 4GB
*
* Revision 1.32 2000/02/14 16:17:37 achim
* Bugfix sense_buffer[] + raw devices
*
* Revision 1.31 2000/02/10 10:29:00 achim
* Delete sense_buffer[0], if command OK
*
* Revision 1.30 1999/11/02 13:42:39 achim
* ARRAY_DRV_LIST2 implemented
* Now 255 log. and 100 host drives supported
*
* Revision 1.29 1999/10/05 13:28:47 achim
* GDT_CLUST_RESET added
*
* Revision 1.28 1999/08/12 13:44:54 achim
* MOUNTALL removed
* Cluster drives -> removeable drives
*
* Revision 1.27 1999/06/22 07:22:38 achim
* Small changes
*
* Revision 1.26 1999/06/10 16:09:12 achim
* Cluster Host Drive support: Bugfixes
*
* Revision 1.25 1999/06/01 16:03:56 achim
* gdth_init_pci(): Manipulate config. space to start RP controller
*
* Revision 1.24 1999/05/26 11:53:06 achim
* Cluster Host Drive support added
*
* Revision 1.23 1999/03/26 09:12:31 achim
* Default value for hdr_channel set to 0
*
* Revision 1.22 1999/03/22 16:27:16 achim
* Bugfix: gdth_store_event() must not be locked with GDTH_LOCK_HA()
*
* Revision 1.21 1999/03/16 13:40:34 achim
* Problems with reserved drives solved
* gdth_eh_bus_reset() implemented
*
* Revision 1.20 1999/03/10 09:08:13 achim
* Bugfix: Corrections in gdth_direction_tab[] made
* Bugfix: Increase command timeout (gdth_update_timeout()) NOT in gdth_putq()
*
* Revision 1.19 1999/03/05 14:38:16 achim
* Bugfix: Heads/Sectors mapping for reserved devices possibly wrong
* -> gdth_eval_mapping() implemented, changes in gdth_bios_param()
* INIT_RETRIES set to 100s to avoid DEINIT-Timeout for controllers
* with BIOS disabled and memory test set to Intensive
* Enhanced /proc support
*
* Revision 1.18 1999/02/24 09:54:33 achim
* Command line parameter hdr_channel implemented
* Bugfix for EISA controllers + Linux 2.2.x
*
* Revision 1.17 1998/12/17 15:58:11 achim
* Command line parameters implemented
* Changes for Alpha platforms
* PCI controller scan changed
* SMP support improved (spin_lock_irqsave(),...)
* New async. events, new scan/reserve commands included
*
* Revision 1.16 1998/09/28 16:08:46 achim
* GDT_PCIMPR: DPMEM remapping, if required
* mdelay() added
*
* Revision 1.15 1998/06/03 14:54:06 achim
* gdth_delay(), gdth_flush() implemented
* Bugfix: gdth_release() changed
*
* Revision 1.14 1998/05/22 10:01:17 achim
* mj: pcibios_strerror() removed
* Improved SMP support (if version >= 2.1.95)
* gdth_halt(): halt_called flag added (if version < 2.1)
*
* Revision 1.13 1998/04/16 09:14:57 achim
* Reserve drives (for raw service) implemented
* New error handling code enabled
* Get controller name from board_info() IOCTL
* Final round of PCI device driver patches by Martin Mares
*
* Revision 1.12 1998/03/03 09:32:37 achim
* Fibre channel controller support added
*
* Revision 1.11 1998/01/27 16:19:14 achim
* SA_SHIRQ added
* add_timer()/del_timer() instead of GDTH_TIMER
* scsi_add_timer()/scsi_del_timer() instead of SCSI_TIMER
* New error handling included
*
* Revision 1.10 1997/10/31 12:29:57 achim
* Read heads/sectors from host drive
*
* Revision 1.9 1997/09/04 10:07:25 achim
* IO-mapping with virt_to_bus(), gdth_readb(), gdth_writeb(), ...
* register_reboot_notifier() to get a notify on shutown used
*
* Revision 1.8 1997/04/02 12:14:30 achim
* Version 1.00 (see gdth.h), tested with kernel 2.0.29
*
* Revision 1.7 1997/03/12 13:33:37 achim
* gdth_reset() changed, new async. events
*
* Revision 1.6 1997/03/04 14:01:11 achim
* Shutdown routine gdth_halt() implemented
*
* Revision 1.5 1997/02/21 09:08:36 achim
* New controller included (RP, RP1, RP2 series)
* IOCTL interface implemented
*
* Revision 1.4 1996/07/05 12:48:55 achim
* Function gdth_bios_param() implemented
* New constant GDTH_MAXC_P_L inserted
* GDT_WRITE_THR, GDT_EXT_INFO implemented
* Function gdth_reset() changed
*
* Revision 1.3 1996/05/10 09:04:41 achim
* Small changes for Linux 1.2.13
*
* Revision 1.2 1996/05/09 12:45:27 achim
* Loadable module support implemented
* /proc support corrections made
*
* Revision 1.1 1996/04/11 07:35:57 achim
* Initial revision
*
************************************************************************/
/* All GDT Disk Array Controllers are fully supported by this driver.
* This includes the PCI/EISA/ISA SCSI Disk Array Controllers and the
* PCI Fibre Channel Disk Array Controllers. See gdth.h for a complete
* list of all controller types.
*
* If you have one or more GDT3000/3020 EISA controllers with
* controller BIOS disabled, you have to set the IRQ values with the
* command line option "gdth=irq1,irq2,...", where the irq1,irq2,... are
* the IRQ values for the EISA controllers.
*
* After the optional list of IRQ values, other possible
* command line options are:
* disable:Y disable driver
* disable:N enable driver
* reserve_mode:0 reserve no drives for the raw service
* reserve_mode:1 reserve all not init., removable drives
* reserve_mode:2 reserve all not init. drives
* reserve_list:h,b,t,l,h,b,t,l,... reserve particular drive(s) with
* h- controller no., b- channel no.,
* t- target ID, l- LUN
* reverse_scan:Y reverse scan order for PCI controllers
* reverse_scan:N scan PCI controllers like BIOS
* max_ids:x x - target ID count per channel (1..MAXID)
* rescan:Y rescan all channels/IDs
* rescan:N use all devices found until now
* virt_ctr:Y map every channel to a virtual controller
* virt_ctr:N use multi channel support
* hdr_channel:x x - number of virtual bus for host drives
* shared_access:Y disable driver reserve/release protocol to
* access a shared resource from several nodes,
* appropriate controller firmware required
* shared_access:N enable driver reserve/release protocol
* probe_eisa_isa:Y scan for EISA/ISA controllers
* probe_eisa_isa:N do not scan for EISA/ISA controllers
* force_dma32:Y use only 32 bit DMA mode
* force_dma32:N use 64 bit DMA mode, if supported
*
* The default values are: "gdth=disable:N,reserve_mode:1,reverse_scan:N,
* max_ids:127,rescan:N,virt_ctr:N,hdr_channel:0,
* shared_access:Y,probe_eisa_isa:N,force_dma32:N".
* Here is another example: "gdth=reserve_list:0,1,2,0,0,1,3,0,rescan:Y".
*
* When loading the gdth driver as a module, the same options are available.
* You can set the IRQs with "IRQ=...". However, the syntax to specify the
* options changes slightly. You must replace all ',' between options
* with ' ' and all ':' with '=' and you must use
* '1' in place of 'Y' and '0' in place of 'N'.
*
* Default: "modprobe gdth disable=0 reserve_mode=1 reverse_scan=0
* max_ids=127 rescan=0 virt_ctr=0 hdr_channel=0 shared_access=0
* probe_eisa_isa=0 force_dma32=0"
* The other example: "modprobe gdth reserve_list=0,1,2,0,0,1,3,0 rescan=1".
*/
/* The meaning of the Scsi_Pointer members in this driver is as follows:
* ptr: Chaining
* this_residual: Command priority
* buffer: phys. DMA sense buffer
* dma_handle: phys. DMA buffer (kernel >= 2.4.0)
* buffers_residual: Timeout value
* Status: Command status (gdth_do_cmd()), DMA mem. mappings
* Message: Additional info (gdth_do_cmd()), DMA direction
* have_data_in: Flag for gdth_wait_completion()
* sent_command: Opcode special command
* phase: Service/parameter/return code special command
*/
/* interrupt coalescing */
/* #define INT_COAL */
/* statistics */
#define GDTH_STATISTICS
#include <linux/module.h>
#include <linux/version.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/in.h>
#include <linux/proc_fs.h>
#include <linux/time.h>
#include <linux/timer.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,6)
#include <linux/dma-mapping.h>
#else
#define DMA_32BIT_MASK 0x00000000ffffffffULL
#define DMA_64BIT_MASK 0xffffffffffffffffULL
#endif
#ifdef GDTH_RTC
#include <linux/mc146818rtc.h>
#endif
#include <linux/reboot.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <linux/spinlock.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
#include <linux/blkdev.h>
#else
#include <linux/blk.h>
#include "sd.h"
#endif
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "gdth_kcompat.h"
#include "gdth.h"
static void gdth_delay(int milliseconds);
static void gdth_eval_mapping(ulong32 size, ulong32 *cyls, int *heads, int *secs);
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
static irqreturn_t gdth_interrupt(int irq, void *dev_id);
static int gdth_sync_event(int hanum,int service,unchar index,Scsi_Cmnd *scp);
static int gdth_async_event(int hanum);
static void gdth_log_event(gdth_evt_data *dvr, char *buffer);
static void gdth_putq(int hanum,Scsi_Cmnd *scp,unchar priority);
static void gdth_next(int hanum);
static int gdth_fill_raw_cmd(int hanum,Scsi_Cmnd *scp,unchar b);
static int gdth_special_cmd(int hanum,Scsi_Cmnd *scp);
static gdth_evt_str *gdth_store_event(gdth_ha_str *ha, ushort source,
ushort idx, gdth_evt_data *evt);
static int gdth_read_event(gdth_ha_str *ha, int handle, gdth_evt_str *estr);
static void gdth_readapp_event(gdth_ha_str *ha, unchar application,
gdth_evt_str *estr);
static void gdth_clear_events(void);
static void gdth_copy_internal_data(int hanum,Scsi_Cmnd *scp,
char *buffer,ushort count);
static int gdth_internal_cache_cmd(int hanum,Scsi_Cmnd *scp);
static int gdth_fill_cache_cmd(int hanum,Scsi_Cmnd *scp,ushort hdrive);
static int gdth_search_eisa(ushort eisa_adr);
static int gdth_search_isa(ulong32 bios_adr);
static int gdth_search_pci(gdth_pci_str *pcistr);
static void gdth_search_dev(gdth_pci_str *pcistr, ushort *cnt,
ushort vendor, ushort dev);
static void gdth_sort_pci(gdth_pci_str *pcistr, int cnt);
static int gdth_init_eisa(ushort eisa_adr,gdth_ha_str *ha);
static int gdth_init_isa(ulong32 bios_adr,gdth_ha_str *ha);
static int gdth_init_pci(gdth_pci_str *pcistr,gdth_ha_str *ha);
static void gdth_enable_int(int hanum);
static int gdth_get_status(unchar *pIStatus,int irq);
static int gdth_test_busy(int hanum);
static int gdth_get_cmd_index(int hanum);
static void gdth_release_event(int hanum);
static int gdth_wait(int hanum,int index,ulong32 time);
static int gdth_internal_cmd(int hanum,unchar service,ushort opcode,ulong32 p1,
ulong64 p2,ulong64 p3);
static int gdth_search_drives(int hanum);
static int gdth_analyse_hdrive(int hanum, ushort hdrive);
static const char *gdth_ctr_name(int hanum);
static int gdth_open(struct inode *inode, struct file *filep);
static int gdth_close(struct inode *inode, struct file *filep);
static int gdth_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg);
static void gdth_flush(int hanum);
static int gdth_halt(struct notifier_block *nb, ulong event, void *buf);
static int gdth_queuecommand(Scsi_Cmnd *scp,void (*done)(Scsi_Cmnd *));
static void gdth_scsi_done(struct scsi_cmnd *scp);
#ifdef DEBUG_GDTH
static unchar DebugState = DEBUG_GDTH;
#ifdef __SERIAL__
#define MAX_SERBUF 160
static void ser_init(void);
static void ser_puts(char *str);
static void ser_putc(char c);
static int ser_printk(const char *fmt, ...);
static char strbuf[MAX_SERBUF+1];
#ifdef __COM2__
#define COM_BASE 0x2f8
#else
#define COM_BASE 0x3f8
#endif
static void ser_init()
{
unsigned port=COM_BASE;
outb(0x80,port+3);
outb(0,port+1);
/* 19200 Baud, if 9600: outb(12,port) */
outb(6, port);
outb(3,port+3);
outb(0,port+1);
/*
ser_putc('I');
ser_putc(' ');
*/
}
static void ser_puts(char *str)
{
char *ptr;
ser_init();
for (ptr=str;*ptr;++ptr)
ser_putc(*ptr);
}
static void ser_putc(char c)
{
unsigned port=COM_BASE;
while ((inb(port+5) & 0x20)==0);
outb(c,port);
if (c==0x0a)
{
while ((inb(port+5) & 0x20)==0);
outb(0x0d,port);
}
}
static int ser_printk(const char *fmt, ...)
{
va_list args;
int i;
va_start(args,fmt);
i = vsprintf(strbuf,fmt,args);
ser_puts(strbuf);
va_end(args);
return i;
}
#define TRACE(a) {if (DebugState==1) {ser_printk a;}}
#define TRACE2(a) {if (DebugState==1 || DebugState==2) {ser_printk a;}}
#define TRACE3(a) {if (DebugState!=0) {ser_printk a;}}
#else /* !__SERIAL__ */
#define TRACE(a) {if (DebugState==1) {printk a;}}
#define TRACE2(a) {if (DebugState==1 || DebugState==2) {printk a;}}
#define TRACE3(a) {if (DebugState!=0) {printk a;}}
#endif
#else /* !DEBUG */
#define TRACE(a)
#define TRACE2(a)
#define TRACE3(a)
#endif
#ifdef GDTH_STATISTICS
static ulong32 max_rq=0, max_index=0, max_sg=0;
#ifdef INT_COAL
static ulong32 max_int_coal=0;
#endif
static ulong32 act_ints=0, act_ios=0, act_stats=0, act_rq=0;
static struct timer_list gdth_timer;
#endif
#define PTR2USHORT(a) (ushort)(ulong)(a)
#define GDTOFFSOF(a,b) (size_t)&(((a*)0)->b)
#define INDEX_OK(i,t) ((i)<ARRAY_SIZE(t))
#define NUMDATA(a) ( (gdth_num_str *)((a)->hostdata))
#define HADATA(a) (&((gdth_ext_str *)((a)->hostdata))->haext)
#define CMDDATA(a) (&((gdth_ext_str *)((a)->hostdata))->cmdext)
#define BUS_L2P(a,b) ((b)>(a)->virt_bus ? (b-1):(b))
#define gdth_readb(addr) readb(addr)
#define gdth_readw(addr) readw(addr)
#define gdth_readl(addr) readl(addr)
#define gdth_writeb(b,addr) writeb((b),(addr))
#define gdth_writew(b,addr) writew((b),(addr))
#define gdth_writel(b,addr) writel((b),(addr))
static unchar gdth_drq_tab[4] = {5,6,7,7}; /* DRQ table */
static unchar gdth_irq_tab[6] = {0,10,11,12,14,0}; /* IRQ table */
static unchar gdth_polling; /* polling if TRUE */
static unchar gdth_from_wait = FALSE; /* gdth_wait() */
static int wait_index,wait_hanum; /* gdth_wait() */
static int gdth_ctr_count = 0; /* controller count */
static int gdth_ctr_vcount = 0; /* virt. ctr. count */
static int gdth_ctr_released = 0; /* gdth_release() */
static struct Scsi_Host *gdth_ctr_tab[MAXHA]; /* controller table */
static struct Scsi_Host *gdth_ctr_vtab[MAXHA*MAXBUS]; /* virt. ctr. table */
static unchar gdth_write_through = FALSE; /* write through */
static gdth_evt_str ebuffer[MAX_EVENTS]; /* event buffer */
static int elastidx;
static int eoldidx;
static int major;
#define DIN 1 /* IN data direction */
#define DOU 2 /* OUT data direction */
#define DNO DIN /* no data transfer */
#define DUN DIN /* unknown data direction */
static unchar gdth_direction_tab[0x100] = {
DNO,DNO,DIN,DIN,DOU,DIN,DIN,DOU,DIN,DUN,DOU,DOU,DUN,DUN,DUN,DIN,
DNO,DIN,DIN,DOU,DIN,DOU,DNO,DNO,DOU,DNO,DIN,DNO,DIN,DOU,DNO,DUN,
DIN,DUN,DIN,DUN,DOU,DIN,DUN,DUN,DIN,DIN,DOU,DNO,DUN,DIN,DOU,DOU,
DOU,DOU,DOU,DNO,DIN,DNO,DNO,DIN,DOU,DOU,DOU,DOU,DIN,DOU,DIN,DOU,
DOU,DOU,DIN,DIN,DIN,DNO,DUN,DNO,DNO,DNO,DUN,DNO,DOU,DIN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DOU,DUN,DUN,DUN,DUN,DIN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DIN,DUN,DOU,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DIN,DUN,
DUN,DUN,DUN,DUN,DUN,DNO,DNO,DUN,DIN,DNO,DOU,DUN,DNO,DUN,DOU,DOU,
DOU,DOU,DOU,DNO,DUN,DIN,DOU,DIN,DIN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DOU,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DOU,DUN,DUN,DUN,DUN,DUN,
DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN,DUN
};
/* LILO and modprobe/insmod parameters */
/* IRQ list for GDT3000/3020 EISA controllers */
static int irq[MAXHA] __initdata =
{0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
/* disable driver flag */
static int disable __initdata = 0;
/* reserve flag */
static int reserve_mode = 1;
/* reserve list */
static int reserve_list[MAX_RES_ARGS] =
{0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
/* scan order for PCI controllers */
static int reverse_scan = 0;
/* virtual channel for the host drives */
static int hdr_channel = 0;
/* max. IDs per channel */
static int max_ids = MAXID;
/* rescan all IDs */
static int rescan = 0;
/* map channels to virtual controllers */
static int virt_ctr = 0;
/* shared access */
static int shared_access = 1;
/* enable support for EISA and ISA controllers */
static int probe_eisa_isa = 0;
/* 64 bit DMA mode, support for drives > 2 TB, if force_dma32 = 0 */
static int force_dma32 = 0;
/* parameters for modprobe/insmod */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,11)
module_param_array(irq, int, NULL, 0);
module_param(disable, int, 0);
module_param(reserve_mode, int, 0);
module_param_array(reserve_list, int, NULL, 0);
module_param(reverse_scan, int, 0);
module_param(hdr_channel, int, 0);
module_param(max_ids, int, 0);
module_param(rescan, int, 0);
module_param(virt_ctr, int, 0);
module_param(shared_access, int, 0);
module_param(probe_eisa_isa, int, 0);
module_param(force_dma32, int, 0);
#else
MODULE_PARM(irq, "i");
MODULE_PARM(disable, "i");
MODULE_PARM(reserve_mode, "i");
MODULE_PARM(reserve_list, "4-" __MODULE_STRING(MAX_RES_ARGS) "i");
MODULE_PARM(reverse_scan, "i");
MODULE_PARM(hdr_channel, "i");
MODULE_PARM(max_ids, "i");
MODULE_PARM(rescan, "i");
MODULE_PARM(virt_ctr, "i");
MODULE_PARM(shared_access, "i");
MODULE_PARM(probe_eisa_isa, "i");
MODULE_PARM(force_dma32, "i");
#endif
MODULE_AUTHOR("Achim Leubner");
MODULE_LICENSE("GPL");
/* ioctl interface */
static const struct file_operations gdth_fops = {
.ioctl = gdth_ioctl,
.open = gdth_open,
.release = gdth_close,
};
#include "gdth_proc.h"
#include "gdth_proc.c"
/* notifier block to get a notify on system shutdown/halt/reboot */
static struct notifier_block gdth_notifier = {
gdth_halt, NULL, 0
};
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 13:16:30 +04:00
static int notifier_disabled = 0;
static void gdth_delay(int milliseconds)
{
if (milliseconds == 0) {
udelay(1);
} else {
mdelay(milliseconds);
}
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static void gdth_scsi_done(struct scsi_cmnd *scp)
{
TRACE2(("gdth_scsi_done()\n"));
if (scp->request)
complete((struct completion *)scp->request);
}
int __gdth_execute(struct scsi_device *sdev, gdth_cmd_str *gdtcmd, char *cmnd,
int timeout, u32 *info)
{
Scsi_Cmnd *scp;
DECLARE_COMPLETION_ONSTACK(wait);
int rval;
scp = kmalloc(sizeof(*scp), GFP_KERNEL);
if (!scp)
return -ENOMEM;
memset(scp, 0, sizeof(*scp));
scp->device = sdev;
/* use request field to save the ptr. to completion struct. */
scp->request = (struct request *)&wait;
scp->timeout_per_command = timeout*HZ;
scp->request_buffer = gdtcmd;
scp->cmd_len = 12;
memcpy(scp->cmnd, cmnd, 12);
scp->SCp.this_residual = IOCTL_PRI; /* priority */
scp->done = gdth_scsi_done; /* some fn. test this */
gdth_queuecommand(scp, gdth_scsi_done);
wait_for_completion(&wait);
rval = scp->SCp.Status;
if (info)
*info = scp->SCp.Message;
kfree(scp);
return rval;
}
#else
static void gdth_scsi_done(Scsi_Cmnd *scp)
{
TRACE2(("gdth_scsi_done()\n"));
scp->request.rq_status = RQ_SCSI_DONE;
if (scp->request.waiting)
complete(scp->request.waiting);
}
int __gdth_execute(struct scsi_device *sdev, gdth_cmd_str *gdtcmd, char *cmnd,
int timeout, u32 *info)
{
Scsi_Cmnd *scp = scsi_allocate_device(sdev, 1, FALSE);
unsigned bufflen = gdtcmd ? sizeof(gdth_cmd_str) : 0;
DECLARE_COMPLETION_ONSTACK(wait);
int rval;
if (!scp)
return -ENOMEM;
scp->cmd_len = 12;
scp->use_sg = 0;
scp->SCp.this_residual = IOCTL_PRI; /* priority */
scp->request.rq_status = RQ_SCSI_BUSY;
scp->request.waiting = &wait;
scsi_do_cmd(scp, cmnd, gdtcmd, bufflen, gdth_scsi_done, timeout*HZ, 1);
wait_for_completion(&wait);
rval = scp->SCp.Status;
if (info)
*info = scp->SCp.Message;
scsi_release_command(scp);
return rval;
}
#endif
int gdth_execute(struct Scsi_Host *shost, gdth_cmd_str *gdtcmd, char *cmnd,
int timeout, u32 *info)
{
struct scsi_device *sdev = scsi_get_host_dev(shost);
int rval = __gdth_execute(sdev, gdtcmd, cmnd, timeout, info);
scsi_free_host_dev(sdev);
return rval;
}
static void gdth_eval_mapping(ulong32 size, ulong32 *cyls, int *heads, int *secs)
{
*cyls = size /HEADS/SECS;
if (*cyls <= MAXCYLS) {
*heads = HEADS;
*secs = SECS;
} else { /* too high for 64*32 */
*cyls = size /MEDHEADS/MEDSECS;
if (*cyls <= MAXCYLS) {
*heads = MEDHEADS;
*secs = MEDSECS;
} else { /* too high for 127*63 */
*cyls = size /BIGHEADS/BIGSECS;
*heads = BIGHEADS;
*secs = BIGSECS;
}
}
}
/* controller search and initialization functions */
static int __init gdth_search_eisa(ushort eisa_adr)
{
ulong32 id;
TRACE(("gdth_search_eisa() adr. %x\n",eisa_adr));
id = inl(eisa_adr+ID0REG);
if (id == GDT3A_ID || id == GDT3B_ID) { /* GDT3000A or GDT3000B */
if ((inb(eisa_adr+EISAREG) & 8) == 0)
return 0; /* not EISA configured */
return 1;
}
if (id == GDT3_ID) /* GDT3000 */
return 1;
return 0;
}
static int __init gdth_search_isa(ulong32 bios_adr)
{
void __iomem *addr;
ulong32 id;
TRACE(("gdth_search_isa() bios adr. %x\n",bios_adr));
if ((addr = ioremap(bios_adr+BIOS_ID_OFFS, sizeof(ulong32))) != NULL) {
id = gdth_readl(addr);
iounmap(addr);
if (id == GDT2_ID) /* GDT2000 */
return 1;
}
return 0;
}
static int __init gdth_search_pci(gdth_pci_str *pcistr)
{
ushort device, cnt;
TRACE(("gdth_search_pci()\n"));
cnt = 0;
for (device = 0; device <= PCI_DEVICE_ID_VORTEX_GDT6555; ++device)
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, device);
for (device = PCI_DEVICE_ID_VORTEX_GDT6x17RP;
device <= PCI_DEVICE_ID_VORTEX_GDTMAXRP; ++device)
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX, device);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX,
PCI_DEVICE_ID_VORTEX_GDTNEWRX);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_VORTEX,
PCI_DEVICE_ID_VORTEX_GDTNEWRX2);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_SRC);
gdth_search_dev(pcistr, &cnt, PCI_VENDOR_ID_INTEL,
PCI_DEVICE_ID_INTEL_SRC_XSCALE);
return cnt;
}
/* Vortex only makes RAID controllers.
* We do not really want to specify all 550 ids here, so wildcard match.
*/
static struct pci_device_id gdthtable[] __maybe_unused = {
{PCI_VENDOR_ID_VORTEX,PCI_ANY_ID,PCI_ANY_ID, PCI_ANY_ID},
{PCI_VENDOR_ID_INTEL,PCI_DEVICE_ID_INTEL_SRC,PCI_ANY_ID,PCI_ANY_ID},
{PCI_VENDOR_ID_INTEL,PCI_DEVICE_ID_INTEL_SRC_XSCALE,PCI_ANY_ID,PCI_ANY_ID},
{0}
};
MODULE_DEVICE_TABLE(pci,gdthtable);
static void __init gdth_search_dev(gdth_pci_str *pcistr, ushort *cnt,
ushort vendor, ushort device)
{
ulong base0, base1, base2;
struct pci_dev *pdev;
TRACE(("gdth_search_dev() cnt %d vendor %x device %x\n",
*cnt, vendor, device));
pdev = NULL;
while ((pdev = pci_find_device(vendor, device, pdev))
!= NULL) {
if (pci_enable_device(pdev))
continue;
if (*cnt >= MAXHA)
return;
/* GDT PCI controller found, resources are already in pdev */
pcistr[*cnt].pdev = pdev;
pcistr[*cnt].irq = pdev->irq;
base0 = pci_resource_flags(pdev, 0);
base1 = pci_resource_flags(pdev, 1);
base2 = pci_resource_flags(pdev, 2);
if (device <= PCI_DEVICE_ID_VORTEX_GDT6000B || /* GDT6000/B */
device >= PCI_DEVICE_ID_VORTEX_GDT6x17RP) { /* MPR */
if (!(base0 & IORESOURCE_MEM))
continue;
pcistr[*cnt].dpmem = pci_resource_start(pdev, 0);
} else { /* GDT6110, GDT6120, .. */
if (!(base0 & IORESOURCE_MEM) ||
!(base2 & IORESOURCE_MEM) ||
!(base1 & IORESOURCE_IO))
continue;
pcistr[*cnt].dpmem = pci_resource_start(pdev, 2);
pcistr[*cnt].io_mm = pci_resource_start(pdev, 0);
pcistr[*cnt].io = pci_resource_start(pdev, 1);
}
TRACE2(("Controller found at %d/%d, irq %d, dpmem 0x%lx\n",
pcistr[*cnt].pdev->bus->number,
PCI_SLOT(pcistr[*cnt].pdev->devfn),
pcistr[*cnt].irq, pcistr[*cnt].dpmem));
(*cnt)++;
}
}
static void __init gdth_sort_pci(gdth_pci_str *pcistr, int cnt)
{
gdth_pci_str temp;
int i, changed;
TRACE(("gdth_sort_pci() cnt %d\n",cnt));
if (cnt == 0)
return;
do {
changed = FALSE;
for (i = 0; i < cnt-1; ++i) {
if (!reverse_scan) {
if ((pcistr[i].pdev->bus->number > pcistr[i+1].pdev->bus->number) ||
(pcistr[i].pdev->bus->number == pcistr[i+1].pdev->bus->number &&
PCI_SLOT(pcistr[i].pdev->devfn) >
PCI_SLOT(pcistr[i+1].pdev->devfn))) {
temp = pcistr[i];
pcistr[i] = pcistr[i+1];
pcistr[i+1] = temp;
changed = TRUE;
}
} else {
if ((pcistr[i].pdev->bus->number < pcistr[i+1].pdev->bus->number) ||
(pcistr[i].pdev->bus->number == pcistr[i+1].pdev->bus->number &&
PCI_SLOT(pcistr[i].pdev->devfn) <
PCI_SLOT(pcistr[i+1].pdev->devfn))) {
temp = pcistr[i];
pcistr[i] = pcistr[i+1];
pcistr[i+1] = temp;
changed = TRUE;
}
}
}
} while (changed);
}
static int __init gdth_init_eisa(ushort eisa_adr,gdth_ha_str *ha)
{
ulong32 retries,id;
unchar prot_ver,eisacf,i,irq_found;
TRACE(("gdth_init_eisa() adr. %x\n",eisa_adr));
/* disable board interrupts, deinitialize services */
outb(0xff,eisa_adr+EDOORREG);
outb(0x00,eisa_adr+EDENABREG);
outb(0x00,eisa_adr+EINTENABREG);
outb(0xff,eisa_adr+LDOORREG);
retries = INIT_RETRIES;
gdth_delay(20);
while (inb(eisa_adr+EDOORREG) != 0xff) {
if (--retries == 0) {
printk("GDT-EISA: Initialization error (DEINIT failed)\n");
return 0;
}
gdth_delay(1);
TRACE2(("wait for DEINIT: retries=%d\n",retries));
}
prot_ver = inb(eisa_adr+MAILBOXREG);
outb(0xff,eisa_adr+EDOORREG);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-EISA: Illegal protocol version\n");
return 0;
}
ha->bmic = eisa_adr;
ha->brd_phys = (ulong32)eisa_adr >> 12;
outl(0,eisa_adr+MAILBOXREG);
outl(0,eisa_adr+MAILBOXREG+4);
outl(0,eisa_adr+MAILBOXREG+8);
outl(0,eisa_adr+MAILBOXREG+12);
/* detect IRQ */
if ((id = inl(eisa_adr+ID0REG)) == GDT3_ID) {
ha->oem_id = OEM_ID_ICP;
ha->type = GDT_EISA;
ha->stype = id;
outl(1,eisa_adr+MAILBOXREG+8);
outb(0xfe,eisa_adr+LDOORREG);
retries = INIT_RETRIES;
gdth_delay(20);
while (inb(eisa_adr+EDOORREG) != 0xfe) {
if (--retries == 0) {
printk("GDT-EISA: Initialization error (get IRQ failed)\n");
return 0;
}
gdth_delay(1);
}
ha->irq = inb(eisa_adr+MAILBOXREG);
outb(0xff,eisa_adr+EDOORREG);
TRACE2(("GDT3000/3020: IRQ=%d\n",ha->irq));
/* check the result */
if (ha->irq == 0) {
TRACE2(("Unknown IRQ, use IRQ table from cmd line !\n"));
for (i = 0, irq_found = FALSE;
i < MAXHA && irq[i] != 0xff; ++i) {
if (irq[i]==10 || irq[i]==11 || irq[i]==12 || irq[i]==14) {
irq_found = TRUE;
break;
}
}
if (irq_found) {
ha->irq = irq[i];
irq[i] = 0;
printk("GDT-EISA: Can not detect controller IRQ,\n");
printk("Use IRQ setting from command line (IRQ = %d)\n",
ha->irq);
} else {
printk("GDT-EISA: Initialization error (unknown IRQ), Enable\n");
printk("the controller BIOS or use command line parameters\n");
return 0;
}
}
} else {
eisacf = inb(eisa_adr+EISAREG) & 7;
if (eisacf > 4) /* level triggered */
eisacf -= 4;
ha->irq = gdth_irq_tab[eisacf];
ha->oem_id = OEM_ID_ICP;
ha->type = GDT_EISA;
ha->stype = id;
}
ha->dma64_support = 0;
return 1;
}
static int __init gdth_init_isa(ulong32 bios_adr,gdth_ha_str *ha)
{
register gdt2_dpram_str __iomem *dp2_ptr;
int i;
unchar irq_drq,prot_ver;
ulong32 retries;
TRACE(("gdth_init_isa() bios adr. %x\n",bios_adr));
ha->brd = ioremap(bios_adr, sizeof(gdt2_dpram_str));
if (ha->brd == NULL) {
printk("GDT-ISA: Initialization error (DPMEM remap error)\n");
return 0;
}
dp2_ptr = ha->brd;
gdth_writeb(1, &dp2_ptr->io.memlock); /* switch off write protection */
/* reset interface area */
memset_io(&dp2_ptr->u, 0, sizeof(dp2_ptr->u));
if (gdth_readl(&dp2_ptr->u) != 0) {
printk("GDT-ISA: Initialization error (DPMEM write error)\n");
iounmap(ha->brd);
return 0;
}
/* disable board interrupts, read DRQ and IRQ */
gdth_writeb(0xff, &dp2_ptr->io.irqdel);
gdth_writeb(0x00, &dp2_ptr->io.irqen);
gdth_writeb(0x00, &dp2_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp2_ptr->u.ic.Cmd_Index);
irq_drq = gdth_readb(&dp2_ptr->io.rq);
for (i=0; i<3; ++i) {
if ((irq_drq & 1)==0)
break;
irq_drq >>= 1;
}
ha->drq = gdth_drq_tab[i];
irq_drq = gdth_readb(&dp2_ptr->io.rq) >> 3;
for (i=1; i<5; ++i) {
if ((irq_drq & 1)==0)
break;
irq_drq >>= 1;
}
ha->irq = gdth_irq_tab[i];
/* deinitialize services */
gdth_writel(bios_adr, &dp2_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp2_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp2_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp2_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-ISA: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp2_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp2_ptr->u.ic.Status);
gdth_writeb(0xff, &dp2_ptr->io.irqdel);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-ISA: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->oem_id = OEM_ID_ICP;
ha->type = GDT_ISA;
ha->ic_all_size = sizeof(dp2_ptr->u);
ha->stype= GDT2_ID;
ha->brd_phys = bios_adr >> 4;
/* special request to controller BIOS */
gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[1]);
gdth_writel(0x01, &dp2_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp2_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp2_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp2_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp2_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-ISA: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp2_ptr->u.ic.Status);
gdth_writeb(0xff, &dp2_ptr->io.irqdel);
ha->dma64_support = 0;
return 1;
}
static int __init gdth_init_pci(gdth_pci_str *pcistr,gdth_ha_str *ha)
{
register gdt6_dpram_str __iomem *dp6_ptr;
register gdt6c_dpram_str __iomem *dp6c_ptr;
register gdt6m_dpram_str __iomem *dp6m_ptr;
ulong32 retries;
unchar prot_ver;
ushort command;
int i, found = FALSE;
TRACE(("gdth_init_pci()\n"));
if (pcistr->pdev->vendor == PCI_VENDOR_ID_INTEL)
ha->oem_id = OEM_ID_INTEL;
else
ha->oem_id = OEM_ID_ICP;
ha->brd_phys = (pcistr->pdev->bus->number << 8) | (pcistr->pdev->devfn & 0xf8);
ha->stype = (ulong32)pcistr->pdev->device;
ha->irq = pcistr->irq;
ha->pdev = pcistr->pdev;
if (ha->pdev->device <= PCI_DEVICE_ID_VORTEX_GDT6000B) { /* GDT6000/B */
TRACE2(("init_pci() dpmem %lx irq %d\n",pcistr->dpmem,ha->irq));
ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
/* check and reset interface area */
dp6_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6_ptr->u);
if (gdth_readl(&dp6_ptr->u) != DPMEM_MAGIC) {
printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n",
pcistr->dpmem);
found = FALSE;
for (i = 0xC8000; i < 0xE8000; i += 0x4000) {
iounmap(ha->brd);
ha->brd = ioremap(i, sizeof(ushort));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
if (gdth_readw(ha->brd) != 0xffff) {
TRACE2(("init_pci_old() address 0x%x busy\n", i));
continue;
}
iounmap(ha->brd);
pci_write_config_dword(pcistr->pdev,
PCI_BASE_ADDRESS_0, i);
ha->brd = ioremap(i, sizeof(gdt6_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
dp6_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6_ptr->u);
if (gdth_readl(&dp6_ptr->u) == DPMEM_MAGIC) {
printk("GDT-PCI: Use free address at 0x%x\n", i);
found = TRUE;
break;
}
}
if (!found) {
printk("GDT-PCI: No free address found!\n");
iounmap(ha->brd);
return 0;
}
}
memset_io(&dp6_ptr->u, 0, sizeof(dp6_ptr->u));
if (gdth_readl(&dp6_ptr->u) != 0) {
printk("GDT-PCI: Initialization error (DPMEM write error)\n");
iounmap(ha->brd);
return 0;
}
/* disable board interrupts, deinit services */
gdth_writeb(0xff, &dp6_ptr->io.irqdel);
gdth_writeb(0x00, &dp6_ptr->io.irqen);
gdth_writeb(0x00, &dp6_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp6_ptr->u.ic.Cmd_Index);
gdth_writel(pcistr->dpmem, &dp6_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp6_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp6_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp6_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp6_ptr->u.ic.S_Status);
gdth_writeb(0xff, &dp6_ptr->io.irqdel);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-PCI: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->type = GDT_PCI;
ha->ic_all_size = sizeof(dp6_ptr->u);
/* special command to controller BIOS */
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[1]);
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp6_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp6_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(0, &dp6_ptr->io.event);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp6_ptr->u.ic.S_Status);
gdth_writeb(0xff, &dp6_ptr->io.irqdel);
ha->dma64_support = 0;
} else if (ha->pdev->device <= PCI_DEVICE_ID_VORTEX_GDT6555) { /* GDT6110, ... */
ha->plx = (gdt6c_plx_regs *)pcistr->io;
TRACE2(("init_pci_new() dpmem %lx irq %d\n",
pcistr->dpmem,ha->irq));
ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6c_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
iounmap(ha->brd);
return 0;
}
/* check and reset interface area */
dp6c_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6c_ptr->u);
if (gdth_readl(&dp6c_ptr->u) != DPMEM_MAGIC) {
printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n",
pcistr->dpmem);
found = FALSE;
for (i = 0xC8000; i < 0xE8000; i += 0x4000) {
iounmap(ha->brd);
ha->brd = ioremap(i, sizeof(ushort));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
if (gdth_readw(ha->brd) != 0xffff) {
TRACE2(("init_pci_plx() address 0x%x busy\n", i));
continue;
}
iounmap(ha->brd);
pci_write_config_dword(pcistr->pdev,
PCI_BASE_ADDRESS_2, i);
ha->brd = ioremap(i, sizeof(gdt6c_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
dp6c_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6c_ptr->u);
if (gdth_readl(&dp6c_ptr->u) == DPMEM_MAGIC) {
printk("GDT-PCI: Use free address at 0x%x\n", i);
found = TRUE;
break;
}
}
if (!found) {
printk("GDT-PCI: No free address found!\n");
iounmap(ha->brd);
return 0;
}
}
memset_io(&dp6c_ptr->u, 0, sizeof(dp6c_ptr->u));
if (gdth_readl(&dp6c_ptr->u) != 0) {
printk("GDT-PCI: Initialization error (DPMEM write error)\n");
iounmap(ha->brd);
return 0;
}
/* disable board interrupts, deinit services */
outb(0x00,PTR2USHORT(&ha->plx->control1));
outb(0xff,PTR2USHORT(&ha->plx->edoor_reg));
gdth_writeb(0x00, &dp6c_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp6c_ptr->u.ic.Cmd_Index);
gdth_writel(pcistr->dpmem, &dp6c_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp6c_ptr->u.ic.S_Cmd_Indx);
outb(1,PTR2USHORT(&ha->plx->ldoor_reg));
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6c_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp6c_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp6c_ptr->u.ic.Status);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-PCI: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->type = GDT_PCINEW;
ha->ic_all_size = sizeof(dp6c_ptr->u);
/* special command to controller BIOS */
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[1]);
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp6c_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp6c_ptr->u.ic.S_Cmd_Indx);
outb(1,PTR2USHORT(&ha->plx->ldoor_reg));
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6c_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp6c_ptr->u.ic.S_Status);
ha->dma64_support = 0;
} else { /* MPR */
TRACE2(("init_pci_mpr() dpmem %lx irq %d\n",pcistr->dpmem,ha->irq));
ha->brd = ioremap(pcistr->dpmem, sizeof(gdt6m_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
/* manipulate config. space to enable DPMEM, start RP controller */
pci_read_config_word(pcistr->pdev, PCI_COMMAND, &command);
command |= 6;
pci_write_config_word(pcistr->pdev, PCI_COMMAND, command);
if (pci_resource_start(pcistr->pdev, 8) == 1UL)
pci_resource_start(pcistr->pdev, 8) = 0UL;
i = 0xFEFF0001UL;
pci_write_config_dword(pcistr->pdev, PCI_ROM_ADDRESS, i);
gdth_delay(1);
pci_write_config_dword(pcistr->pdev, PCI_ROM_ADDRESS,
pci_resource_start(pcistr->pdev, 8));
dp6m_ptr = ha->brd;
/* Ensure that it is safe to access the non HW portions of DPMEM.
* Aditional check needed for Xscale based RAID controllers */
while( ((int)gdth_readb(&dp6m_ptr->i960r.sema0_reg) ) & 3 )
gdth_delay(1);
/* check and reset interface area */
gdth_writel(DPMEM_MAGIC, &dp6m_ptr->u);
if (gdth_readl(&dp6m_ptr->u) != DPMEM_MAGIC) {
printk("GDT-PCI: Cannot access DPMEM at 0x%lx (shadowed?)\n",
pcistr->dpmem);
found = FALSE;
for (i = 0xC8000; i < 0xE8000; i += 0x4000) {
iounmap(ha->brd);
ha->brd = ioremap(i, sizeof(ushort));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
if (gdth_readw(ha->brd) != 0xffff) {
TRACE2(("init_pci_mpr() address 0x%x busy\n", i));
continue;
}
iounmap(ha->brd);
pci_write_config_dword(pcistr->pdev,
PCI_BASE_ADDRESS_0, i);
ha->brd = ioremap(i, sizeof(gdt6m_dpram_str));
if (ha->brd == NULL) {
printk("GDT-PCI: Initialization error (DPMEM remap error)\n");
return 0;
}
dp6m_ptr = ha->brd;
gdth_writel(DPMEM_MAGIC, &dp6m_ptr->u);
if (gdth_readl(&dp6m_ptr->u) == DPMEM_MAGIC) {
printk("GDT-PCI: Use free address at 0x%x\n", i);
found = TRUE;
break;
}
}
if (!found) {
printk("GDT-PCI: No free address found!\n");
iounmap(ha->brd);
return 0;
}
}
memset_io(&dp6m_ptr->u, 0, sizeof(dp6m_ptr->u));
/* disable board interrupts, deinit services */
gdth_writeb(gdth_readb(&dp6m_ptr->i960r.edoor_en_reg) | 4,
&dp6m_ptr->i960r.edoor_en_reg);
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(0x00, &dp6m_ptr->u.ic.S_Status);
gdth_writeb(0x00, &dp6m_ptr->u.ic.Cmd_Index);
gdth_writel(pcistr->dpmem, &dp6m_ptr->u.ic.S_Info[0]);
gdth_writeb(0xff, &dp6m_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xff) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)gdth_readl(&dp6m_ptr->u.ic.S_Info[0]);
gdth_writeb(0, &dp6m_ptr->u.ic.S_Status);
if (prot_ver != PROTOCOL_VERSION) {
printk("GDT-PCI: Illegal protocol version\n");
iounmap(ha->brd);
return 0;
}
ha->type = GDT_PCIMPR;
ha->ic_all_size = sizeof(dp6m_ptr->u);
/* special command to controller BIOS */
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[0]);
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[1]);
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[2]);
gdth_writel(0x00, &dp6m_ptr->u.ic.S_Info[3]);
gdth_writeb(0xfe, &dp6m_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xfe) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
gdth_writeb(0, &dp6m_ptr->u.ic.S_Status);
/* read FW version to detect 64-bit DMA support */
gdth_writeb(0xfd, &dp6m_ptr->u.ic.S_Cmd_Indx);
gdth_writeb(1, &dp6m_ptr->i960r.ldoor_reg);
retries = INIT_RETRIES;
gdth_delay(20);
while (gdth_readb(&dp6m_ptr->u.ic.S_Status) != 0xfd) {
if (--retries == 0) {
printk("GDT-PCI: Initialization error (DEINIT failed)\n");
iounmap(ha->brd);
return 0;
}
gdth_delay(1);
}
prot_ver = (unchar)(gdth_readl(&dp6m_ptr->u.ic.S_Info[0]) >> 16);
gdth_writeb(0, &dp6m_ptr->u.ic.S_Status);
if (prot_ver < 0x2b) /* FW < x.43: no 64-bit DMA support */
ha->dma64_support = 0;
else
ha->dma64_support = 1;
}
return 1;
}
/* controller protocol functions */
static void __init gdth_enable_int(int hanum)
{
gdth_ha_str *ha;
ulong flags;
gdt2_dpram_str __iomem *dp2_ptr;
gdt6_dpram_str __iomem *dp6_ptr;
gdt6m_dpram_str __iomem *dp6m_ptr;
TRACE(("gdth_enable_int() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
spin_lock_irqsave(&ha->smp_lock, flags);
if (ha->type == GDT_EISA) {
outb(0xff, ha->bmic + EDOORREG);
outb(0xff, ha->bmic + EDENABREG);
outb(0x01, ha->bmic + EINTENABREG);
} else if (ha->type == GDT_ISA) {
dp2_ptr = ha->brd;
gdth_writeb(1, &dp2_ptr->io.irqdel);
gdth_writeb(0, &dp2_ptr->u.ic.Cmd_Index);
gdth_writeb(1, &dp2_ptr->io.irqen);
} else if (ha->type == GDT_PCI) {
dp6_ptr = ha->brd;
gdth_writeb(1, &dp6_ptr->io.irqdel);
gdth_writeb(0, &dp6_ptr->u.ic.Cmd_Index);
gdth_writeb(1, &dp6_ptr->io.irqen);
} else if (ha->type == GDT_PCINEW) {
outb(0xff, PTR2USHORT(&ha->plx->edoor_reg));
outb(0x03, PTR2USHORT(&ha->plx->control1));
} else if (ha->type == GDT_PCIMPR) {
dp6m_ptr = ha->brd;
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(gdth_readb(&dp6m_ptr->i960r.edoor_en_reg) & ~4,
&dp6m_ptr->i960r.edoor_en_reg);
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
static int gdth_get_status(unchar *pIStatus,int irq)
{
register gdth_ha_str *ha;
int i;
TRACE(("gdth_get_status() irq %d ctr_count %d\n",
irq,gdth_ctr_count));
*pIStatus = 0;
for (i=0; i<gdth_ctr_count; ++i) {
ha = HADATA(gdth_ctr_tab[i]);
if (ha->irq != (unchar)irq) /* check IRQ */
continue;
if (ha->type == GDT_EISA)
*pIStatus = inb((ushort)ha->bmic + EDOORREG);
else if (ha->type == GDT_ISA)
*pIStatus =
gdth_readb(&((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Cmd_Index);
else if (ha->type == GDT_PCI)
*pIStatus =
gdth_readb(&((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Cmd_Index);
else if (ha->type == GDT_PCINEW)
*pIStatus = inb(PTR2USHORT(&ha->plx->edoor_reg));
else if (ha->type == GDT_PCIMPR)
*pIStatus =
gdth_readb(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.edoor_reg);
if (*pIStatus)
return i; /* board found */
}
return -1;
}
static int gdth_test_busy(int hanum)
{
register gdth_ha_str *ha;
register int gdtsema0 = 0;
TRACE(("gdth_test_busy() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->type == GDT_EISA)
gdtsema0 = (int)inb(ha->bmic + SEMA0REG);
else if (ha->type == GDT_ISA)
gdtsema0 = (int)gdth_readb(&((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
else if (ha->type == GDT_PCI)
gdtsema0 = (int)gdth_readb(&((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
else if (ha->type == GDT_PCINEW)
gdtsema0 = (int)inb(PTR2USHORT(&ha->plx->sema0_reg));
else if (ha->type == GDT_PCIMPR)
gdtsema0 =
(int)gdth_readb(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.sema0_reg);
return (gdtsema0 & 1);
}
static int gdth_get_cmd_index(int hanum)
{
register gdth_ha_str *ha;
int i;
TRACE(("gdth_get_cmd_index() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
for (i=0; i<GDTH_MAXCMDS; ++i) {
if (ha->cmd_tab[i].cmnd == UNUSED_CMND) {
ha->cmd_tab[i].cmnd = ha->pccb->RequestBuffer;
ha->cmd_tab[i].service = ha->pccb->Service;
ha->pccb->CommandIndex = (ulong32)i+2;
return (i+2);
}
}
return 0;
}
static void gdth_set_sema0(int hanum)
{
register gdth_ha_str *ha;
TRACE(("gdth_set_sema0() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->type == GDT_EISA) {
outb(1, ha->bmic + SEMA0REG);
} else if (ha->type == GDT_ISA) {
gdth_writeb(1, &((gdt2_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
} else if (ha->type == GDT_PCI) {
gdth_writeb(1, &((gdt6_dpram_str __iomem *)ha->brd)->u.ic.Sema0);
} else if (ha->type == GDT_PCINEW) {
outb(1, PTR2USHORT(&ha->plx->sema0_reg));
} else if (ha->type == GDT_PCIMPR) {
gdth_writeb(1, &((gdt6m_dpram_str __iomem *)ha->brd)->i960r.sema0_reg);
}
}
static void gdth_copy_command(int hanum)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmd_ptr;
register gdt6m_dpram_str __iomem *dp6m_ptr;
register gdt6c_dpram_str __iomem *dp6c_ptr;
gdt6_dpram_str __iomem *dp6_ptr;
gdt2_dpram_str __iomem *dp2_ptr;
ushort cp_count,dp_offset,cmd_no;
TRACE(("gdth_copy_command() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
cp_count = ha->cmd_len;
dp_offset= ha->cmd_offs_dpmem;
cmd_no = ha->cmd_cnt;
cmd_ptr = ha->pccb;
++ha->cmd_cnt;
if (ha->type == GDT_EISA)
return; /* no DPMEM, no copy */
/* set cpcount dword aligned */
if (cp_count & 3)
cp_count += (4 - (cp_count & 3));
ha->cmd_offs_dpmem += cp_count;
/* set offset and service, copy command to DPMEM */
if (ha->type == GDT_ISA) {
dp2_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp2_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp2_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp2_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
} else if (ha->type == GDT_PCI) {
dp6_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp6_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp6_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp6_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
} else if (ha->type == GDT_PCINEW) {
dp6c_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp6c_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp6c_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp6c_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
} else if (ha->type == GDT_PCIMPR) {
dp6m_ptr = ha->brd;
gdth_writew(dp_offset + DPMEM_COMMAND_OFFSET,
&dp6m_ptr->u.ic.comm_queue[cmd_no].offset);
gdth_writew((ushort)cmd_ptr->Service,
&dp6m_ptr->u.ic.comm_queue[cmd_no].serv_id);
memcpy_toio(&dp6m_ptr->u.ic.gdt_dpr_cmd[dp_offset],cmd_ptr,cp_count);
}
}
static void gdth_release_event(int hanum)
{
register gdth_ha_str *ha;
TRACE(("gdth_release_event() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
#ifdef GDTH_STATISTICS
{
ulong32 i,j;
for (i=0,j=0; j<GDTH_MAXCMDS; ++j) {
if (ha->cmd_tab[j].cmnd != UNUSED_CMND)
++i;
}
if (max_index < i) {
max_index = i;
TRACE3(("GDT: max_index = %d\n",(ushort)i));
}
}
#endif
if (ha->pccb->OpCode == GDT_INIT)
ha->pccb->Service |= 0x80;
if (ha->type == GDT_EISA) {
if (ha->pccb->OpCode == GDT_INIT) /* store DMA buffer */
outl(ha->ccb_phys, ha->bmic + MAILBOXREG);
outb(ha->pccb->Service, ha->bmic + LDOORREG);
} else if (ha->type == GDT_ISA) {
gdth_writeb(0, &((gdt2_dpram_str __iomem *)ha->brd)->io.event);
} else if (ha->type == GDT_PCI) {
gdth_writeb(0, &((gdt6_dpram_str __iomem *)ha->brd)->io.event);
} else if (ha->type == GDT_PCINEW) {
outb(1, PTR2USHORT(&ha->plx->ldoor_reg));
} else if (ha->type == GDT_PCIMPR) {
gdth_writeb(1, &((gdt6m_dpram_str __iomem *)ha->brd)->i960r.ldoor_reg);
}
}
static int gdth_wait(int hanum,int index,ulong32 time)
{
gdth_ha_str *ha;
int answer_found = FALSE;
TRACE(("gdth_wait() hanum %d index %d time %d\n",hanum,index,time));
ha = HADATA(gdth_ctr_tab[hanum]);
if (index == 0)
return 1; /* no wait required */
gdth_from_wait = TRUE;
do {
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
gdth_interrupt((int)ha->irq,ha);
if (wait_hanum==hanum && wait_index==index) {
answer_found = TRUE;
break;
}
gdth_delay(1);
} while (--time);
gdth_from_wait = FALSE;
while (gdth_test_busy(hanum))
gdth_delay(0);
return (answer_found);
}
static int gdth_internal_cmd(int hanum,unchar service,ushort opcode,ulong32 p1,
ulong64 p2,ulong64 p3)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmd_ptr;
int retries,index;
TRACE2(("gdth_internal_cmd() service %d opcode %d\n",service,opcode));
ha = HADATA(gdth_ctr_tab[hanum]);
cmd_ptr = ha->pccb;
memset((char*)cmd_ptr,0,sizeof(gdth_cmd_str));
/* make command */
for (retries = INIT_RETRIES;;) {
cmd_ptr->Service = service;
cmd_ptr->RequestBuffer = INTERNAL_CMND;
if (!(index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
gdth_set_sema0(hanum);
cmd_ptr->OpCode = opcode;
cmd_ptr->BoardNode = LOCALBOARD;
if (service == CACHESERVICE) {
if (opcode == GDT_IOCTL) {
cmd_ptr->u.ioctl.subfunc = p1;
cmd_ptr->u.ioctl.channel = (ulong32)p2;
cmd_ptr->u.ioctl.param_size = (ushort)p3;
cmd_ptr->u.ioctl.p_param = ha->scratch_phys;
} else {
if (ha->cache_feat & GDT_64BIT) {
cmd_ptr->u.cache64.DeviceNo = (ushort)p1;
cmd_ptr->u.cache64.BlockNo = p2;
} else {
cmd_ptr->u.cache.DeviceNo = (ushort)p1;
cmd_ptr->u.cache.BlockNo = (ulong32)p2;
}
}
} else if (service == SCSIRAWSERVICE) {
if (ha->raw_feat & GDT_64BIT) {
cmd_ptr->u.raw64.direction = p1;
cmd_ptr->u.raw64.bus = (unchar)p2;
cmd_ptr->u.raw64.target = (unchar)p3;
cmd_ptr->u.raw64.lun = (unchar)(p3 >> 8);
} else {
cmd_ptr->u.raw.direction = p1;
cmd_ptr->u.raw.bus = (unchar)p2;
cmd_ptr->u.raw.target = (unchar)p3;
cmd_ptr->u.raw.lun = (unchar)(p3 >> 8);
}
} else if (service == SCREENSERVICE) {
if (opcode == GDT_REALTIME) {
*(ulong32 *)&cmd_ptr->u.screen.su.data[0] = p1;
*(ulong32 *)&cmd_ptr->u.screen.su.data[4] = (ulong32)p2;
*(ulong32 *)&cmd_ptr->u.screen.su.data[8] = (ulong32)p3;
}
}
ha->cmd_len = sizeof(gdth_cmd_str);
ha->cmd_offs_dpmem = 0;
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
gdth_release_event(hanum);
gdth_delay(20);
if (!gdth_wait(hanum,index,INIT_TIMEOUT)) {
printk("GDT: Initialization error (timeout service %d)\n",service);
return 0;
}
if (ha->status != S_BSY || --retries == 0)
break;
gdth_delay(1);
}
return (ha->status != S_OK ? 0:1);
}
/* search for devices */
static int __init gdth_search_drives(int hanum)
{
register gdth_ha_str *ha;
ushort cdev_cnt, i;
int ok;
ulong32 bus_no, drv_cnt, drv_no, j;
gdth_getch_str *chn;
gdth_drlist_str *drl;
gdth_iochan_str *ioc;
gdth_raw_iochan_str *iocr;
gdth_arcdl_str *alst;
gdth_alist_str *alst2;
gdth_oem_str_ioctl *oemstr;
#ifdef INT_COAL
gdth_perf_modes *pmod;
#endif
#ifdef GDTH_RTC
unchar rtc[12];
ulong flags;
#endif
TRACE(("gdth_search_drives() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
ok = 0;
/* initialize controller services, at first: screen service */
ha->screen_feat = 0;
if (!force_dma32) {
ok = gdth_internal_cmd(hanum,SCREENSERVICE,GDT_X_INIT_SCR,0,0,0);
if (ok)
ha->screen_feat = GDT_64BIT;
}
if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC))
ok = gdth_internal_cmd(hanum,SCREENSERVICE,GDT_INIT,0,0,0);
if (!ok) {
printk("GDT-HA %d: Initialization error screen service (code %d)\n",
hanum, ha->status);
return 0;
}
TRACE2(("gdth_search_drives(): SCREENSERVICE initialized\n"));
#ifdef GDTH_RTC
/* read realtime clock info, send to controller */
/* 1. wait for the falling edge of update flag */
spin_lock_irqsave(&rtc_lock, flags);
for (j = 0; j < 1000000; ++j)
if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
break;
for (j = 0; j < 1000000; ++j)
if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
break;
/* 2. read info */
do {
for (j = 0; j < 12; ++j)
rtc[j] = CMOS_READ(j);
} while (rtc[0] != CMOS_READ(0));
spin_unlock_irqrestore(&rtc_lock, flags);
TRACE2(("gdth_search_drives(): RTC: %x/%x/%x\n",*(ulong32 *)&rtc[0],
*(ulong32 *)&rtc[4], *(ulong32 *)&rtc[8]));
/* 3. send to controller firmware */
gdth_internal_cmd(hanum,SCREENSERVICE,GDT_REALTIME, *(ulong32 *)&rtc[0],
*(ulong32 *)&rtc[4], *(ulong32 *)&rtc[8]);
#endif
/* unfreeze all IOs */
gdth_internal_cmd(hanum,CACHESERVICE,GDT_UNFREEZE_IO,0,0,0);
/* initialize cache service */
ha->cache_feat = 0;
if (!force_dma32) {
ok = gdth_internal_cmd(hanum,CACHESERVICE,GDT_X_INIT_HOST,LINUX_OS,0,0);
if (ok)
ha->cache_feat = GDT_64BIT;
}
if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC))
ok = gdth_internal_cmd(hanum,CACHESERVICE,GDT_INIT,LINUX_OS,0,0);
if (!ok) {
printk("GDT-HA %d: Initialization error cache service (code %d)\n",
hanum, ha->status);
return 0;
}
TRACE2(("gdth_search_drives(): CACHESERVICE initialized\n"));
cdev_cnt = (ushort)ha->info;
ha->fw_vers = ha->service;
#ifdef INT_COAL
if (ha->type == GDT_PCIMPR) {
/* set perf. modes */
pmod = (gdth_perf_modes *)ha->pscratch;
pmod->version = 1;
pmod->st_mode = 1; /* enable one status buffer */
*((ulong64 *)&pmod->st_buff_addr1) = ha->coal_stat_phys;
pmod->st_buff_indx1 = COALINDEX;
pmod->st_buff_addr2 = 0;
pmod->st_buff_u_addr2 = 0;
pmod->st_buff_indx2 = 0;
pmod->st_buff_size = sizeof(gdth_coal_status) * MAXOFFSETS;
pmod->cmd_mode = 0; // disable all cmd buffers
pmod->cmd_buff_addr1 = 0;
pmod->cmd_buff_u_addr1 = 0;
pmod->cmd_buff_indx1 = 0;
pmod->cmd_buff_addr2 = 0;
pmod->cmd_buff_u_addr2 = 0;
pmod->cmd_buff_indx2 = 0;
pmod->cmd_buff_size = 0;
pmod->reserved1 = 0;
pmod->reserved2 = 0;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,SET_PERF_MODES,
INVALID_CHANNEL,sizeof(gdth_perf_modes))) {
printk("GDT-HA %d: Interrupt coalescing activated\n", hanum);
}
}
#endif
/* detect number of buses - try new IOCTL */
iocr = (gdth_raw_iochan_str *)ha->pscratch;
iocr->hdr.version = 0xffffffff;
iocr->hdr.list_entries = MAXBUS;
iocr->hdr.first_chan = 0;
iocr->hdr.last_chan = MAXBUS-1;
iocr->hdr.list_offset = GDTOFFSOF(gdth_raw_iochan_str, list[0]);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,IOCHAN_RAW_DESC,
INVALID_CHANNEL,sizeof(gdth_raw_iochan_str))) {
TRACE2(("IOCHAN_RAW_DESC supported!\n"));
ha->bus_cnt = iocr->hdr.chan_count;
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
if (iocr->list[bus_no].proc_id < MAXID)
ha->bus_id[bus_no] = iocr->list[bus_no].proc_id;
else
ha->bus_id[bus_no] = 0xff;
}
} else {
/* old method */
chn = (gdth_getch_str *)ha->pscratch;
for (bus_no = 0; bus_no < MAXBUS; ++bus_no) {
chn->channel_no = bus_no;
if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
SCSI_CHAN_CNT | L_CTRL_PATTERN,
IO_CHANNEL | INVALID_CHANNEL,
sizeof(gdth_getch_str))) {
if (bus_no == 0) {
printk("GDT-HA %d: Error detecting channel count (0x%x)\n",
hanum, ha->status);
return 0;
}
break;
}
if (chn->siop_id < MAXID)
ha->bus_id[bus_no] = chn->siop_id;
else
ha->bus_id[bus_no] = 0xff;
}
ha->bus_cnt = (unchar)bus_no;
}
TRACE2(("gdth_search_drives() %d channels\n",ha->bus_cnt));
/* read cache configuration */
if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_INFO,
INVALID_CHANNEL,sizeof(gdth_cinfo_str))) {
printk("GDT-HA %d: Initialization error cache service (code %d)\n",
hanum, ha->status);
return 0;
}
ha->cpar = ((gdth_cinfo_str *)ha->pscratch)->cpar;
TRACE2(("gdth_search_drives() cinfo: vs %x sta %d str %d dw %d b %d\n",
ha->cpar.version,ha->cpar.state,ha->cpar.strategy,
ha->cpar.write_back,ha->cpar.block_size));
/* read board info and features */
ha->more_proc = FALSE;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,BOARD_INFO,
INVALID_CHANNEL,sizeof(gdth_binfo_str))) {
memcpy(&ha->binfo, (gdth_binfo_str *)ha->pscratch,
sizeof(gdth_binfo_str));
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,BOARD_FEATURES,
INVALID_CHANNEL,sizeof(gdth_bfeat_str))) {
TRACE2(("BOARD_INFO/BOARD_FEATURES supported\n"));
ha->bfeat = *(gdth_bfeat_str *)ha->pscratch;
ha->more_proc = TRUE;
}
} else {
TRACE2(("BOARD_INFO requires firmware >= 1.10/2.08\n"));
strcpy(ha->binfo.type_string, gdth_ctr_name(hanum));
}
TRACE2(("Controller name: %s\n",ha->binfo.type_string));
/* read more informations */
if (ha->more_proc) {
/* physical drives, channel addresses */
ioc = (gdth_iochan_str *)ha->pscratch;
ioc->hdr.version = 0xffffffff;
ioc->hdr.list_entries = MAXBUS;
ioc->hdr.first_chan = 0;
ioc->hdr.last_chan = MAXBUS-1;
ioc->hdr.list_offset = GDTOFFSOF(gdth_iochan_str, list[0]);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,IOCHAN_DESC,
INVALID_CHANNEL,sizeof(gdth_iochan_str))) {
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
ha->raw[bus_no].address = ioc->list[bus_no].address;
ha->raw[bus_no].local_no = ioc->list[bus_no].local_no;
}
} else {
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
ha->raw[bus_no].address = IO_CHANNEL;
ha->raw[bus_no].local_no = bus_no;
}
}
for (bus_no = 0; bus_no < ha->bus_cnt; ++bus_no) {
chn = (gdth_getch_str *)ha->pscratch;
chn->channel_no = ha->raw[bus_no].local_no;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
SCSI_CHAN_CNT | L_CTRL_PATTERN,
ha->raw[bus_no].address | INVALID_CHANNEL,
sizeof(gdth_getch_str))) {
ha->raw[bus_no].pdev_cnt = chn->drive_cnt;
TRACE2(("Channel %d: %d phys. drives\n",
bus_no,chn->drive_cnt));
}
if (ha->raw[bus_no].pdev_cnt > 0) {
drl = (gdth_drlist_str *)ha->pscratch;
drl->sc_no = ha->raw[bus_no].local_no;
drl->sc_cnt = ha->raw[bus_no].pdev_cnt;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
SCSI_DR_LIST | L_CTRL_PATTERN,
ha->raw[bus_no].address | INVALID_CHANNEL,
sizeof(gdth_drlist_str))) {
for (j = 0; j < ha->raw[bus_no].pdev_cnt; ++j)
ha->raw[bus_no].id_list[j] = drl->sc_list[j];
} else {
ha->raw[bus_no].pdev_cnt = 0;
}
}
}
/* logical drives */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_DRV_CNT,
INVALID_CHANNEL,sizeof(ulong32))) {
drv_cnt = *(ulong32 *)ha->pscratch;
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,CACHE_DRV_LIST,
INVALID_CHANNEL,drv_cnt * sizeof(ulong32))) {
for (j = 0; j < drv_cnt; ++j) {
drv_no = ((ulong32 *)ha->pscratch)[j];
if (drv_no < MAX_LDRIVES) {
ha->hdr[drv_no].is_logdrv = TRUE;
TRACE2(("Drive %d is log. drive\n",drv_no));
}
}
}
alst = (gdth_arcdl_str *)ha->pscratch;
alst->entries_avail = MAX_LDRIVES;
alst->first_entry = 0;
alst->list_offset = GDTOFFSOF(gdth_arcdl_str, list[0]);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
ARRAY_DRV_LIST2 | LA_CTRL_PATTERN,
INVALID_CHANNEL, sizeof(gdth_arcdl_str) +
(alst->entries_avail-1) * sizeof(gdth_alist_str))) {
for (j = 0; j < alst->entries_init; ++j) {
ha->hdr[j].is_arraydrv = alst->list[j].is_arrayd;
ha->hdr[j].is_master = alst->list[j].is_master;
ha->hdr[j].is_parity = alst->list[j].is_parity;
ha->hdr[j].is_hotfix = alst->list[j].is_hotfix;
ha->hdr[j].master_no = alst->list[j].cd_handle;
}
} else if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
ARRAY_DRV_LIST | LA_CTRL_PATTERN,
0, 35 * sizeof(gdth_alist_str))) {
for (j = 0; j < 35; ++j) {
alst2 = &((gdth_alist_str *)ha->pscratch)[j];
ha->hdr[j].is_arraydrv = alst2->is_arrayd;
ha->hdr[j].is_master = alst2->is_master;
ha->hdr[j].is_parity = alst2->is_parity;
ha->hdr[j].is_hotfix = alst2->is_hotfix;
ha->hdr[j].master_no = alst2->cd_handle;
}
}
}
}
/* initialize raw service */
ha->raw_feat = 0;
if (!force_dma32) {
ok = gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_X_INIT_RAW,0,0,0);
if (ok)
ha->raw_feat = GDT_64BIT;
}
if (force_dma32 || (!ok && ha->status == (ushort)S_NOFUNC))
ok = gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_INIT,0,0,0);
if (!ok) {
printk("GDT-HA %d: Initialization error raw service (code %d)\n",
hanum, ha->status);
return 0;
}
TRACE2(("gdth_search_drives(): RAWSERVICE initialized\n"));
/* set/get features raw service (scatter/gather) */
if (gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_SET_FEAT,SCATTER_GATHER,
0,0)) {
TRACE2(("gdth_search_drives(): set features RAWSERVICE OK\n"));
if (gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_GET_FEAT,0,0,0)) {
TRACE2(("gdth_search_dr(): get feat RAWSERVICE %d\n",
ha->info));
ha->raw_feat |= (ushort)ha->info;
}
}
/* set/get features cache service (equal to raw service) */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_SET_FEAT,0,
SCATTER_GATHER,0)) {
TRACE2(("gdth_search_drives(): set features CACHESERVICE OK\n"));
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_GET_FEAT,0,0,0)) {
TRACE2(("gdth_search_dr(): get feat CACHESERV. %d\n",
ha->info));
ha->cache_feat |= (ushort)ha->info;
}
}
/* reserve drives for raw service */
if (reserve_mode != 0) {
gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_RESERVE_ALL,
reserve_mode == 1 ? 1 : 3, 0, 0);
TRACE2(("gdth_search_drives(): RESERVE_ALL code %d\n",
ha->status));
}
for (i = 0; i < MAX_RES_ARGS; i += 4) {
if (reserve_list[i] == hanum && reserve_list[i+1] < ha->bus_cnt &&
reserve_list[i+2] < ha->tid_cnt && reserve_list[i+3] < MAXLUN) {
TRACE2(("gdth_search_drives(): reserve ha %d bus %d id %d lun %d\n",
reserve_list[i], reserve_list[i+1],
reserve_list[i+2], reserve_list[i+3]));
if (!gdth_internal_cmd(hanum,SCSIRAWSERVICE,GDT_RESERVE,0,
reserve_list[i+1], reserve_list[i+2] |
(reserve_list[i+3] << 8))) {
printk("GDT-HA %d: Error raw service (RESERVE, code %d)\n",
hanum, ha->status);
}
}
}
/* Determine OEM string using IOCTL */
oemstr = (gdth_oem_str_ioctl *)ha->pscratch;
oemstr->params.ctl_version = 0x01;
oemstr->params.buffer_size = sizeof(oemstr->text);
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_IOCTL,
CACHE_READ_OEM_STRING_RECORD,INVALID_CHANNEL,
sizeof(gdth_oem_str_ioctl))) {
TRACE2(("gdth_search_drives(): CACHE_READ_OEM_STRING_RECORD OK\n"));
printk("GDT-HA %d: Vendor: %s Name: %s\n",
hanum,oemstr->text.oem_company_name,ha->binfo.type_string);
/* Save the Host Drive inquiry data */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
strlcpy(ha->oem_name,oemstr->text.scsi_host_drive_inquiry_vendor_id,
sizeof(ha->oem_name));
#else
strncpy(ha->oem_name,oemstr->text.scsi_host_drive_inquiry_vendor_id,7);
ha->oem_name[7] = '\0';
#endif
} else {
/* Old method, based on PCI ID */
TRACE2(("gdth_search_drives(): CACHE_READ_OEM_STRING_RECORD failed\n"));
printk("GDT-HA %d: Name: %s\n",
hanum,ha->binfo.type_string);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
if (ha->oem_id == OEM_ID_INTEL)
strlcpy(ha->oem_name,"Intel ", sizeof(ha->oem_name));
else
strlcpy(ha->oem_name,"ICP ", sizeof(ha->oem_name));
#else
if (ha->oem_id == OEM_ID_INTEL)
strcpy(ha->oem_name,"Intel ");
else
strcpy(ha->oem_name,"ICP ");
#endif
}
/* scanning for host drives */
for (i = 0; i < cdev_cnt; ++i)
gdth_analyse_hdrive(hanum,i);
TRACE(("gdth_search_drives() OK\n"));
return 1;
}
static int gdth_analyse_hdrive(int hanum,ushort hdrive)
{
register gdth_ha_str *ha;
ulong32 drv_cyls;
int drv_hds, drv_secs;
TRACE(("gdth_analyse_hdrive() hanum %d drive %d\n",hanum,hdrive));
if (hdrive >= MAX_HDRIVES)
return 0;
ha = HADATA(gdth_ctr_tab[hanum]);
if (!gdth_internal_cmd(hanum,CACHESERVICE,GDT_INFO,hdrive,0,0))
return 0;
ha->hdr[hdrive].present = TRUE;
ha->hdr[hdrive].size = ha->info;
/* evaluate mapping (sectors per head, heads per cylinder) */
ha->hdr[hdrive].size &= ~SECS32;
if (ha->info2 == 0) {
gdth_eval_mapping(ha->hdr[hdrive].size,&drv_cyls,&drv_hds,&drv_secs);
} else {
drv_hds = ha->info2 & 0xff;
drv_secs = (ha->info2 >> 8) & 0xff;
drv_cyls = (ulong32)ha->hdr[hdrive].size / drv_hds / drv_secs;
}
ha->hdr[hdrive].heads = (unchar)drv_hds;
ha->hdr[hdrive].secs = (unchar)drv_secs;
/* round size */
ha->hdr[hdrive].size = drv_cyls * drv_hds * drv_secs;
if (ha->cache_feat & GDT_64BIT) {
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_X_INFO,hdrive,0,0)
&& ha->info2 != 0) {
ha->hdr[hdrive].size = ((ulong64)ha->info2 << 32) | ha->info;
}
}
TRACE2(("gdth_search_dr() cdr. %d size %d hds %d scs %d\n",
hdrive,ha->hdr[hdrive].size,drv_hds,drv_secs));
/* get informations about device */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_DEVTYPE,hdrive,0,0)) {
TRACE2(("gdth_search_dr() cache drive %d devtype %d\n",
hdrive,ha->info));
ha->hdr[hdrive].devtype = (ushort)ha->info;
}
/* cluster info */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_CLUST_INFO,hdrive,0,0)) {
TRACE2(("gdth_search_dr() cache drive %d cluster info %d\n",
hdrive,ha->info));
if (!shared_access)
ha->hdr[hdrive].cluster_type = (unchar)ha->info;
}
/* R/W attributes */
if (gdth_internal_cmd(hanum,CACHESERVICE,GDT_RW_ATTRIBS,hdrive,0,0)) {
TRACE2(("gdth_search_dr() cache drive %d r/w attrib. %d\n",
hdrive,ha->info));
ha->hdr[hdrive].rw_attribs = (unchar)ha->info;
}
return 1;
}
/* command queueing/sending functions */
static void gdth_putq(int hanum,Scsi_Cmnd *scp,unchar priority)
{
register gdth_ha_str *ha;
register Scsi_Cmnd *pscp;
register Scsi_Cmnd *nscp;
ulong flags;
unchar b, t;
TRACE(("gdth_putq() priority %d\n",priority));
ha = HADATA(gdth_ctr_tab[hanum]);
spin_lock_irqsave(&ha->smp_lock, flags);
if (scp->done != gdth_scsi_done) {
scp->SCp.this_residual = (int)priority;
b = virt_ctr ? NUMDATA(scp->device->host)->busnum:scp->device->channel;
t = scp->device->id;
if (priority >= DEFAULT_PRI) {
if ((b != ha->virt_bus && ha->raw[BUS_L2P(ha,b)].lock) ||
(b==ha->virt_bus && t<MAX_HDRIVES && ha->hdr[t].lock)) {
TRACE2(("gdth_putq(): locked IO ->update_timeout()\n"));
scp->SCp.buffers_residual = gdth_update_timeout(hanum, scp, 0);
}
}
}
if (ha->req_first==NULL) {
ha->req_first = scp; /* queue was empty */
scp->SCp.ptr = NULL;
} else { /* queue not empty */
pscp = ha->req_first;
nscp = (Scsi_Cmnd *)pscp->SCp.ptr;
/* priority: 0-highest,..,0xff-lowest */
while (nscp && (unchar)nscp->SCp.this_residual <= priority) {
pscp = nscp;
nscp = (Scsi_Cmnd *)pscp->SCp.ptr;
}
pscp->SCp.ptr = (char *)scp;
scp->SCp.ptr = (char *)nscp;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
#ifdef GDTH_STATISTICS
flags = 0;
for (nscp=ha->req_first; nscp; nscp=(Scsi_Cmnd*)nscp->SCp.ptr)
++flags;
if (max_rq < flags) {
max_rq = flags;
TRACE3(("GDT: max_rq = %d\n",(ushort)max_rq));
}
#endif
}
static void gdth_next(int hanum)
{
register gdth_ha_str *ha;
register Scsi_Cmnd *pscp;
register Scsi_Cmnd *nscp;
unchar b, t, l, firsttime;
unchar this_cmd, next_cmd;
ulong flags = 0;
int cmd_index;
TRACE(("gdth_next() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
if (!gdth_polling)
spin_lock_irqsave(&ha->smp_lock, flags);
ha->cmd_cnt = ha->cmd_offs_dpmem = 0;
this_cmd = firsttime = TRUE;
next_cmd = gdth_polling ? FALSE:TRUE;
cmd_index = 0;
for (nscp = pscp = ha->req_first; nscp; nscp = (Scsi_Cmnd *)nscp->SCp.ptr) {
if (nscp != pscp && nscp != (Scsi_Cmnd *)pscp->SCp.ptr)
pscp = (Scsi_Cmnd *)pscp->SCp.ptr;
if (nscp->done != gdth_scsi_done) {
b = virt_ctr ?
NUMDATA(nscp->device->host)->busnum : nscp->device->channel;
t = nscp->device->id;
l = nscp->device->lun;
if (nscp->SCp.this_residual >= DEFAULT_PRI) {
if ((b != ha->virt_bus && ha->raw[BUS_L2P(ha,b)].lock) ||
(b == ha->virt_bus && t < MAX_HDRIVES && ha->hdr[t].lock))
continue;
}
} else
b = t = l = 0;
if (firsttime) {
if (gdth_test_busy(hanum)) { /* controller busy ? */
TRACE(("gdth_next() controller %d busy !\n",hanum));
if (!gdth_polling) {
spin_unlock_irqrestore(&ha->smp_lock, flags);
return;
}
while (gdth_test_busy(hanum))
gdth_delay(1);
}
firsttime = FALSE;
}
if (nscp->done != gdth_scsi_done) {
if (nscp->SCp.phase == -1) {
nscp->SCp.phase = CACHESERVICE; /* default: cache svc. */
if (nscp->cmnd[0] == TEST_UNIT_READY) {
TRACE2(("TEST_UNIT_READY Bus %d Id %d LUN %d\n",
b, t, l));
/* TEST_UNIT_READY -> set scan mode */
if ((ha->scan_mode & 0x0f) == 0) {
if (b == 0 && t == 0 && l == 0) {
ha->scan_mode |= 1;
TRACE2(("Scan mode: 0x%x\n", ha->scan_mode));
}
} else if ((ha->scan_mode & 0x0f) == 1) {
if (b == 0 && ((t == 0 && l == 1) ||
(t == 1 && l == 0))) {
nscp->SCp.sent_command = GDT_SCAN_START;
nscp->SCp.phase = ((ha->scan_mode & 0x10 ? 1:0) << 8)
| SCSIRAWSERVICE;
ha->scan_mode = 0x12;
TRACE2(("Scan mode: 0x%x (SCAN_START)\n",
ha->scan_mode));
} else {
ha->scan_mode &= 0x10;
TRACE2(("Scan mode: 0x%x\n", ha->scan_mode));
}
} else if (ha->scan_mode == 0x12) {
if (b == ha->bus_cnt && t == ha->tid_cnt-1) {
nscp->SCp.phase = SCSIRAWSERVICE;
nscp->SCp.sent_command = GDT_SCAN_END;
ha->scan_mode &= 0x10;
TRACE2(("Scan mode: 0x%x (SCAN_END)\n",
ha->scan_mode));
}
}
}
if (b == ha->virt_bus && nscp->cmnd[0] != INQUIRY &&
nscp->cmnd[0] != READ_CAPACITY && nscp->cmnd[0] != MODE_SENSE &&
(ha->hdr[t].cluster_type & CLUSTER_DRIVE)) {
/* always GDT_CLUST_INFO! */
nscp->SCp.sent_command = GDT_CLUST_INFO;
}
}
}
if (nscp->SCp.sent_command != -1) {
if ((nscp->SCp.phase & 0xff) == CACHESERVICE) {
if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
next_cmd = FALSE;
} else if ((nscp->SCp.phase & 0xff) == SCSIRAWSERVICE) {
if (!(cmd_index=gdth_fill_raw_cmd(hanum,nscp,BUS_L2P(ha,b))))
this_cmd = FALSE;
next_cmd = FALSE;
} else {
memset((char*)nscp->sense_buffer,0,16);
nscp->sense_buffer[0] = 0x70;
nscp->sense_buffer[2] = NOT_READY;
nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
}
} else if (nscp->done == gdth_scsi_done) {
if (!(cmd_index=gdth_special_cmd(hanum,nscp)))
this_cmd = FALSE;
next_cmd = FALSE;
} else if (b != ha->virt_bus) {
if (ha->raw[BUS_L2P(ha,b)].io_cnt[t] >= GDTH_MAX_RAW ||
!(cmd_index=gdth_fill_raw_cmd(hanum,nscp,BUS_L2P(ha,b))))
this_cmd = FALSE;
else
ha->raw[BUS_L2P(ha,b)].io_cnt[t]++;
} else if (t >= MAX_HDRIVES || !ha->hdr[t].present || l != 0) {
TRACE2(("Command 0x%x to bus %d id %d lun %d -> IGNORE\n",
nscp->cmnd[0], b, t, l));
nscp->result = DID_BAD_TARGET << 16;
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else {
switch (nscp->cmnd[0]) {
case TEST_UNIT_READY:
case INQUIRY:
case REQUEST_SENSE:
case READ_CAPACITY:
case VERIFY:
case START_STOP:
case MODE_SENSE:
case SERVICE_ACTION_IN:
TRACE(("cache cmd %x/%x/%x/%x/%x/%x\n",nscp->cmnd[0],
nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3],
nscp->cmnd[4],nscp->cmnd[5]));
if (ha->hdr[t].media_changed && nscp->cmnd[0] != INQUIRY) {
/* return UNIT_ATTENTION */
TRACE2(("cmd 0x%x target %d: UNIT_ATTENTION\n",
nscp->cmnd[0], t));
ha->hdr[t].media_changed = FALSE;
memset((char*)nscp->sense_buffer,0,16);
nscp->sense_buffer[0] = 0x70;
nscp->sense_buffer[2] = UNIT_ATTENTION;
nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else if (gdth_internal_cache_cmd(hanum,nscp))
nscp->scsi_done(nscp);
break;
case ALLOW_MEDIUM_REMOVAL:
TRACE(("cache cmd %x/%x/%x/%x/%x/%x\n",nscp->cmnd[0],
nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3],
nscp->cmnd[4],nscp->cmnd[5]));
if ( (nscp->cmnd[4]&1) && !(ha->hdr[t].devtype&1) ) {
TRACE(("Prevent r. nonremov. drive->do nothing\n"));
nscp->result = DID_OK << 16;
nscp->sense_buffer[0] = 0;
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else {
nscp->cmnd[3] = (ha->hdr[t].devtype&1) ? 1:0;
TRACE(("Prevent/allow r. %d rem. drive %d\n",
nscp->cmnd[4],nscp->cmnd[3]));
if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
}
break;
case RESERVE:
case RELEASE:
TRACE2(("cache cmd %s\n",nscp->cmnd[0] == RESERVE ?
"RESERVE" : "RELEASE"));
if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
break;
case READ_6:
case WRITE_6:
case READ_10:
case WRITE_10:
case READ_16:
case WRITE_16:
if (ha->hdr[t].media_changed) {
/* return UNIT_ATTENTION */
TRACE2(("cmd 0x%x target %d: UNIT_ATTENTION\n",
nscp->cmnd[0], t));
ha->hdr[t].media_changed = FALSE;
memset((char*)nscp->sense_buffer,0,16);
nscp->sense_buffer[0] = 0x70;
nscp->sense_buffer[2] = UNIT_ATTENTION;
nscp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
} else if (!(cmd_index=gdth_fill_cache_cmd(hanum,nscp,t)))
this_cmd = FALSE;
break;
default:
TRACE2(("cache cmd %x/%x/%x/%x/%x/%x unknown\n",nscp->cmnd[0],
nscp->cmnd[1],nscp->cmnd[2],nscp->cmnd[3],
nscp->cmnd[4],nscp->cmnd[5]));
printk("GDT-HA %d: Unknown SCSI command 0x%x to cache service !\n",
hanum, nscp->cmnd[0]);
nscp->result = DID_ABORT << 16;
if (!nscp->SCp.have_data_in)
nscp->SCp.have_data_in++;
else
nscp->scsi_done(nscp);
break;
}
}
if (!this_cmd)
break;
if (nscp == ha->req_first)
ha->req_first = pscp = (Scsi_Cmnd *)nscp->SCp.ptr;
else
pscp->SCp.ptr = nscp->SCp.ptr;
if (!next_cmd)
break;
}
if (ha->cmd_cnt > 0) {
gdth_release_event(hanum);
}
if (!gdth_polling)
spin_unlock_irqrestore(&ha->smp_lock, flags);
if (gdth_polling && ha->cmd_cnt > 0) {
if (!gdth_wait(hanum,cmd_index,POLL_TIMEOUT))
printk("GDT-HA %d: Command %d timed out !\n",
hanum,cmd_index);
}
}
static void gdth_copy_internal_data(int hanum,Scsi_Cmnd *scp,
char *buffer,ushort count)
{
ushort cpcount,i;
ushort cpsum,cpnow;
struct scatterlist *sl;
gdth_ha_str *ha;
char *address;
cpcount = count<=(ushort)scp->request_bufflen ? count:(ushort)scp->request_bufflen;
ha = HADATA(gdth_ctr_tab[hanum]);
if (scp->use_sg) {
sl = (struct scatterlist *)scp->request_buffer;
for (i=0,cpsum=0; i<scp->use_sg; ++i,++sl) {
unsigned long flags;
cpnow = (ushort)sl->length;
TRACE(("copy_internal() now %d sum %d count %d %d\n",
cpnow,cpsum,cpcount,(ushort)scp->bufflen));
if (cpsum+cpnow > cpcount)
cpnow = cpcount - cpsum;
cpsum += cpnow;
if (!sl->page) {
printk("GDT-HA %d: invalid sc/gt element in gdth_copy_internal_data()\n",
hanum);
return;
}
local_irq_save(flags);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
address = kmap_atomic(sl->page, KM_BIO_SRC_IRQ) + sl->offset;
memcpy(address,buffer,cpnow);
flush_dcache_page(sl->page);
kunmap_atomic(address, KM_BIO_SRC_IRQ);
#else
address = kmap_atomic(sl->page, KM_BH_IRQ) + sl->offset;
memcpy(address,buffer,cpnow);
flush_dcache_page(sl->page);
kunmap_atomic(address, KM_BH_IRQ);
#endif
local_irq_restore(flags);
if (cpsum == cpcount)
break;
buffer += cpnow;
}
} else {
TRACE(("copy_internal() count %d\n",cpcount));
memcpy((char*)scp->request_buffer,buffer,cpcount);
}
}
static int gdth_internal_cache_cmd(int hanum,Scsi_Cmnd *scp)
{
register gdth_ha_str *ha;
unchar t;
gdth_inq_data inq;
gdth_rdcap_data rdc;
gdth_sense_data sd;
gdth_modep_data mpd;
ha = HADATA(gdth_ctr_tab[hanum]);
t = scp->device->id;
TRACE(("gdth_internal_cache_cmd() cmd 0x%x hdrive %d\n",
scp->cmnd[0],t));
scp->result = DID_OK << 16;
scp->sense_buffer[0] = 0;
switch (scp->cmnd[0]) {
case TEST_UNIT_READY:
case VERIFY:
case START_STOP:
TRACE2(("Test/Verify/Start hdrive %d\n",t));
break;
case INQUIRY:
TRACE2(("Inquiry hdrive %d devtype %d\n",
t,ha->hdr[t].devtype));
inq.type_qual = (ha->hdr[t].devtype&4) ? TYPE_ROM:TYPE_DISK;
/* you can here set all disks to removable, if you want to do
a flush using the ALLOW_MEDIUM_REMOVAL command */
inq.modif_rmb = 0x00;
if ((ha->hdr[t].devtype & 1) ||
(ha->hdr[t].cluster_type & CLUSTER_DRIVE))
inq.modif_rmb = 0x80;
inq.version = 2;
inq.resp_aenc = 2;
inq.add_length= 32;
strcpy(inq.vendor,ha->oem_name);
sprintf(inq.product,"Host Drive #%02d",t);
strcpy(inq.revision," ");
gdth_copy_internal_data(hanum,scp,(char*)&inq,sizeof(gdth_inq_data));
break;
case REQUEST_SENSE:
TRACE2(("Request sense hdrive %d\n",t));
sd.errorcode = 0x70;
sd.segno = 0x00;
sd.key = NO_SENSE;
sd.info = 0;
sd.add_length= 0;
gdth_copy_internal_data(hanum,scp,(char*)&sd,sizeof(gdth_sense_data));
break;
case MODE_SENSE:
TRACE2(("Mode sense hdrive %d\n",t));
memset((char*)&mpd,0,sizeof(gdth_modep_data));
mpd.hd.data_length = sizeof(gdth_modep_data);
mpd.hd.dev_par = (ha->hdr[t].devtype&2) ? 0x80:0;
mpd.hd.bd_length = sizeof(mpd.bd);
mpd.bd.block_length[0] = (SECTOR_SIZE & 0x00ff0000) >> 16;
mpd.bd.block_length[1] = (SECTOR_SIZE & 0x0000ff00) >> 8;
mpd.bd.block_length[2] = (SECTOR_SIZE & 0x000000ff);
gdth_copy_internal_data(hanum,scp,(char*)&mpd,sizeof(gdth_modep_data));
break;
case READ_CAPACITY:
TRACE2(("Read capacity hdrive %d\n",t));
if (ha->hdr[t].size > (ulong64)0xffffffff)
rdc.last_block_no = 0xffffffff;
else
rdc.last_block_no = cpu_to_be32(ha->hdr[t].size-1);
rdc.block_length = cpu_to_be32(SECTOR_SIZE);
gdth_copy_internal_data(hanum,scp,(char*)&rdc,sizeof(gdth_rdcap_data));
break;
case SERVICE_ACTION_IN:
if ((scp->cmnd[1] & 0x1f) == SAI_READ_CAPACITY_16 &&
(ha->cache_feat & GDT_64BIT)) {
gdth_rdcap16_data rdc16;
TRACE2(("Read capacity (16) hdrive %d\n",t));
rdc16.last_block_no = cpu_to_be64(ha->hdr[t].size-1);
rdc16.block_length = cpu_to_be32(SECTOR_SIZE);
gdth_copy_internal_data(hanum,scp,(char*)&rdc16,sizeof(gdth_rdcap16_data));
} else {
scp->result = DID_ABORT << 16;
}
break;
default:
TRACE2(("Internal cache cmd 0x%x unknown\n",scp->cmnd[0]));
break;
}
if (!scp->SCp.have_data_in)
scp->SCp.have_data_in++;
else
return 1;
return 0;
}
static int gdth_fill_cache_cmd(int hanum,Scsi_Cmnd *scp,ushort hdrive)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmdp;
struct scatterlist *sl;
ulong32 cnt, blockcnt;
ulong64 no, blockno;
dma_addr_t phys_addr;
int i, cmd_index, read_write, sgcnt, mode64;
struct page *page;
ulong offset;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp = ha->pccb;
TRACE(("gdth_fill_cache_cmd() cmd 0x%x cmdsize %d hdrive %d\n",
scp->cmnd[0],scp->cmd_len,hdrive));
if (ha->type==GDT_EISA && ha->cmd_cnt>0)
return 0;
mode64 = (ha->cache_feat & GDT_64BIT) ? TRUE : FALSE;
/* test for READ_16, WRITE_16 if !mode64 ? ---
not required, should not occur due to error return on
READ_CAPACITY_16 */
cmdp->Service = CACHESERVICE;
cmdp->RequestBuffer = scp;
/* search free command index */
if (!(cmd_index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
/* if it's the first command, set command semaphore */
if (ha->cmd_cnt == 0)
gdth_set_sema0(hanum);
/* fill command */
read_write = 0;
if (scp->SCp.sent_command != -1)
cmdp->OpCode = scp->SCp.sent_command; /* special cache cmd. */
else if (scp->cmnd[0] == RESERVE)
cmdp->OpCode = GDT_RESERVE_DRV;
else if (scp->cmnd[0] == RELEASE)
cmdp->OpCode = GDT_RELEASE_DRV;
else if (scp->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
if (scp->cmnd[4] & 1) /* prevent ? */
cmdp->OpCode = GDT_MOUNT;
else if (scp->cmnd[3] & 1) /* removable drive ? */
cmdp->OpCode = GDT_UNMOUNT;
else
cmdp->OpCode = GDT_FLUSH;
} else if (scp->cmnd[0] == WRITE_6 || scp->cmnd[0] == WRITE_10 ||
scp->cmnd[0] == WRITE_12 || scp->cmnd[0] == WRITE_16
) {
read_write = 1;
if (gdth_write_through || ((ha->hdr[hdrive].rw_attribs & 1) &&
(ha->cache_feat & GDT_WR_THROUGH)))
cmdp->OpCode = GDT_WRITE_THR;
else
cmdp->OpCode = GDT_WRITE;
} else {
read_write = 2;
cmdp->OpCode = GDT_READ;
}
cmdp->BoardNode = LOCALBOARD;
if (mode64) {
cmdp->u.cache64.DeviceNo = hdrive;
cmdp->u.cache64.BlockNo = 1;
cmdp->u.cache64.sg_canz = 0;
} else {
cmdp->u.cache.DeviceNo = hdrive;
cmdp->u.cache.BlockNo = 1;
cmdp->u.cache.sg_canz = 0;
}
if (read_write) {
if (scp->cmd_len == 16) {
memcpy(&no, &scp->cmnd[2], sizeof(ulong64));
blockno = be64_to_cpu(no);
memcpy(&cnt, &scp->cmnd[10], sizeof(ulong32));
blockcnt = be32_to_cpu(cnt);
} else if (scp->cmd_len == 10) {
memcpy(&no, &scp->cmnd[2], sizeof(ulong32));
blockno = be32_to_cpu(no);
memcpy(&cnt, &scp->cmnd[7], sizeof(ushort));
blockcnt = be16_to_cpu(cnt);
} else {
memcpy(&no, &scp->cmnd[0], sizeof(ulong32));
blockno = be32_to_cpu(no) & 0x001fffffUL;
blockcnt= scp->cmnd[4]==0 ? 0x100 : scp->cmnd[4];
}
if (mode64) {
cmdp->u.cache64.BlockNo = blockno;
cmdp->u.cache64.BlockCnt = blockcnt;
} else {
cmdp->u.cache.BlockNo = (ulong32)blockno;
cmdp->u.cache.BlockCnt = blockcnt;
}
if (scp->use_sg) {
sl = (struct scatterlist *)scp->request_buffer;
sgcnt = scp->use_sg;
scp->SCp.Status = GDTH_MAP_SG;
scp->SCp.Message = (read_write == 1 ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
sgcnt = pci_map_sg(ha->pdev,sl,scp->use_sg,scp->SCp.Message);
if (mode64) {
cmdp->u.cache64.DestAddr= (ulong64)-1;
cmdp->u.cache64.sg_canz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.cache64.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
if (cmdp->u.cache64.sg_lst[i].sg_ptr > (ulong64)0xffffffff)
ha->dma64_cnt++;
else
ha->dma32_cnt++;
#endif
cmdp->u.cache64.sg_lst[i].sg_len = sg_dma_len(sl);
}
} else {
cmdp->u.cache.DestAddr= 0xffffffff;
cmdp->u.cache.sg_canz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.cache.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
ha->dma32_cnt++;
#endif
cmdp->u.cache.sg_lst[i].sg_len = sg_dma_len(sl);
}
}
#ifdef GDTH_STATISTICS
if (max_sg < (ulong32)sgcnt) {
max_sg = (ulong32)sgcnt;
TRACE3(("GDT: max_sg = %d\n",max_sg));
}
#endif
} else if (scp->request_bufflen) {
scp->SCp.Status = GDTH_MAP_SINGLE;
scp->SCp.Message = (read_write == 1 ?
PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
page = virt_to_page(scp->request_buffer);
offset = (ulong)scp->request_buffer & ~PAGE_MASK;
phys_addr = pci_map_page(ha->pdev,page,offset,
scp->request_bufflen,scp->SCp.Message);
scp->SCp.dma_handle = phys_addr;
if (mode64) {
if (ha->cache_feat & SCATTER_GATHER) {
cmdp->u.cache64.DestAddr = (ulong64)-1;
cmdp->u.cache64.sg_canz = 1;
cmdp->u.cache64.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.cache64.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.cache64.sg_lst[1].sg_len = 0;
} else {
cmdp->u.cache64.DestAddr = phys_addr;
cmdp->u.cache64.sg_canz= 0;
}
} else {
if (ha->cache_feat & SCATTER_GATHER) {
cmdp->u.cache.DestAddr = 0xffffffff;
cmdp->u.cache.sg_canz = 1;
cmdp->u.cache.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.cache.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.cache.sg_lst[1].sg_len = 0;
} else {
cmdp->u.cache.DestAddr = phys_addr;
cmdp->u.cache.sg_canz= 0;
}
}
}
}
/* evaluate command size, check space */
if (mode64) {
TRACE(("cache cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.cache64.DestAddr,cmdp->u.cache64.sg_canz,
cmdp->u.cache64.sg_lst[0].sg_ptr,
cmdp->u.cache64.sg_lst[0].sg_len));
TRACE(("cache cmd: cmd %d blockno. %d, blockcnt %d\n",
cmdp->OpCode,cmdp->u.cache64.BlockNo,cmdp->u.cache64.BlockCnt));
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache64.sg_lst) +
(ushort)cmdp->u.cache64.sg_canz * sizeof(gdth_sg64_str);
} else {
TRACE(("cache cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.cache.DestAddr,cmdp->u.cache.sg_canz,
cmdp->u.cache.sg_lst[0].sg_ptr,
cmdp->u.cache.sg_lst[0].sg_len));
TRACE(("cache cmd: cmd %d blockno. %d, blockcnt %d\n",
cmdp->OpCode,cmdp->u.cache.BlockNo,cmdp->u.cache.BlockCnt));
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.cache.sg_lst) +
(ushort)cmdp->u.cache.sg_canz * sizeof(gdth_sg_str);
}
if (ha->cmd_len & 3)
ha->cmd_len += (4 - (ha->cmd_len & 3));
if (ha->cmd_cnt > 0) {
if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) >
ha->ic_all_size) {
TRACE2(("gdth_fill_cache() DPMEM overflow\n"));
ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND;
return 0;
}
}
/* copy command */
gdth_copy_command(hanum);
return cmd_index;
}
static int gdth_fill_raw_cmd(int hanum,Scsi_Cmnd *scp,unchar b)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmdp;
struct scatterlist *sl;
ushort i;
dma_addr_t phys_addr, sense_paddr;
int cmd_index, sgcnt, mode64;
unchar t,l;
struct page *page;
ulong offset;
ha = HADATA(gdth_ctr_tab[hanum]);
t = scp->device->id;
l = scp->device->lun;
cmdp = ha->pccb;
TRACE(("gdth_fill_raw_cmd() cmd 0x%x bus %d ID %d LUN %d\n",
scp->cmnd[0],b,t,l));
if (ha->type==GDT_EISA && ha->cmd_cnt>0)
return 0;
mode64 = (ha->raw_feat & GDT_64BIT) ? TRUE : FALSE;
cmdp->Service = SCSIRAWSERVICE;
cmdp->RequestBuffer = scp;
/* search free command index */
if (!(cmd_index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
/* if it's the first command, set command semaphore */
if (ha->cmd_cnt == 0)
gdth_set_sema0(hanum);
/* fill command */
if (scp->SCp.sent_command != -1) {
cmdp->OpCode = scp->SCp.sent_command; /* special raw cmd. */
cmdp->BoardNode = LOCALBOARD;
if (mode64) {
cmdp->u.raw64.direction = (scp->SCp.phase >> 8);
TRACE2(("special raw cmd 0x%x param 0x%x\n",
cmdp->OpCode, cmdp->u.raw64.direction));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst);
} else {
cmdp->u.raw.direction = (scp->SCp.phase >> 8);
TRACE2(("special raw cmd 0x%x param 0x%x\n",
cmdp->OpCode, cmdp->u.raw.direction));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst);
}
} else {
page = virt_to_page(scp->sense_buffer);
offset = (ulong)scp->sense_buffer & ~PAGE_MASK;
sense_paddr = pci_map_page(ha->pdev,page,offset,
16,PCI_DMA_FROMDEVICE);
*(ulong32 *)&scp->SCp.buffer = (ulong32)sense_paddr;
/* high part, if 64bit */
*(ulong32 *)&scp->host_scribble = (ulong32)((ulong64)sense_paddr >> 32);
cmdp->OpCode = GDT_WRITE; /* always */
cmdp->BoardNode = LOCALBOARD;
if (mode64) {
cmdp->u.raw64.reserved = 0;
cmdp->u.raw64.mdisc_time = 0;
cmdp->u.raw64.mcon_time = 0;
cmdp->u.raw64.clen = scp->cmd_len;
cmdp->u.raw64.target = t;
cmdp->u.raw64.lun = l;
cmdp->u.raw64.bus = b;
cmdp->u.raw64.priority = 0;
cmdp->u.raw64.sdlen = scp->request_bufflen;
cmdp->u.raw64.sense_len = 16;
cmdp->u.raw64.sense_data = sense_paddr;
cmdp->u.raw64.direction =
gdth_direction_tab[scp->cmnd[0]]==DOU ? GDTH_DATA_OUT:GDTH_DATA_IN;
memcpy(cmdp->u.raw64.cmd,scp->cmnd,16);
cmdp->u.raw64.sg_ranz = 0;
} else {
cmdp->u.raw.reserved = 0;
cmdp->u.raw.mdisc_time = 0;
cmdp->u.raw.mcon_time = 0;
cmdp->u.raw.clen = scp->cmd_len;
cmdp->u.raw.target = t;
cmdp->u.raw.lun = l;
cmdp->u.raw.bus = b;
cmdp->u.raw.priority = 0;
cmdp->u.raw.link_p = 0;
cmdp->u.raw.sdlen = scp->request_bufflen;
cmdp->u.raw.sense_len = 16;
cmdp->u.raw.sense_data = sense_paddr;
cmdp->u.raw.direction =
gdth_direction_tab[scp->cmnd[0]]==DOU ? GDTH_DATA_OUT:GDTH_DATA_IN;
memcpy(cmdp->u.raw.cmd,scp->cmnd,12);
cmdp->u.raw.sg_ranz = 0;
}
if (scp->use_sg) {
sl = (struct scatterlist *)scp->request_buffer;
sgcnt = scp->use_sg;
scp->SCp.Status = GDTH_MAP_SG;
scp->SCp.Message = PCI_DMA_BIDIRECTIONAL;
sgcnt = pci_map_sg(ha->pdev,sl,scp->use_sg,scp->SCp.Message);
if (mode64) {
cmdp->u.raw64.sdata = (ulong64)-1;
cmdp->u.raw64.sg_ranz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.raw64.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
if (cmdp->u.raw64.sg_lst[i].sg_ptr > (ulong64)0xffffffff)
ha->dma64_cnt++;
else
ha->dma32_cnt++;
#endif
cmdp->u.raw64.sg_lst[i].sg_len = sg_dma_len(sl);
}
} else {
cmdp->u.raw.sdata = 0xffffffff;
cmdp->u.raw.sg_ranz = sgcnt;
for (i=0; i<sgcnt; ++i,++sl) {
cmdp->u.raw.sg_lst[i].sg_ptr = sg_dma_address(sl);
#ifdef GDTH_DMA_STATISTICS
ha->dma32_cnt++;
#endif
cmdp->u.raw.sg_lst[i].sg_len = sg_dma_len(sl);
}
}
#ifdef GDTH_STATISTICS
if (max_sg < sgcnt) {
max_sg = sgcnt;
TRACE3(("GDT: max_sg = %d\n",sgcnt));
}
#endif
} else if (scp->request_bufflen) {
scp->SCp.Status = GDTH_MAP_SINGLE;
scp->SCp.Message = PCI_DMA_BIDIRECTIONAL;
page = virt_to_page(scp->request_buffer);
offset = (ulong)scp->request_buffer & ~PAGE_MASK;
phys_addr = pci_map_page(ha->pdev,page,offset,
scp->request_bufflen,scp->SCp.Message);
scp->SCp.dma_handle = phys_addr;
if (mode64) {
if (ha->raw_feat & SCATTER_GATHER) {
cmdp->u.raw64.sdata = (ulong64)-1;
cmdp->u.raw64.sg_ranz= 1;
cmdp->u.raw64.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.raw64.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.raw64.sg_lst[1].sg_len = 0;
} else {
cmdp->u.raw64.sdata = phys_addr;
cmdp->u.raw64.sg_ranz= 0;
}
} else {
if (ha->raw_feat & SCATTER_GATHER) {
cmdp->u.raw.sdata = 0xffffffff;
cmdp->u.raw.sg_ranz= 1;
cmdp->u.raw.sg_lst[0].sg_ptr = phys_addr;
cmdp->u.raw.sg_lst[0].sg_len = scp->request_bufflen;
cmdp->u.raw.sg_lst[1].sg_len = 0;
} else {
cmdp->u.raw.sdata = phys_addr;
cmdp->u.raw.sg_ranz= 0;
}
}
}
if (mode64) {
TRACE(("raw cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.raw64.sdata,cmdp->u.raw64.sg_ranz,
cmdp->u.raw64.sg_lst[0].sg_ptr,
cmdp->u.raw64.sg_lst[0].sg_len));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst) +
(ushort)cmdp->u.raw64.sg_ranz * sizeof(gdth_sg64_str);
} else {
TRACE(("raw cmd: addr. %x sganz %x sgptr0 %x sglen0 %x\n",
cmdp->u.raw.sdata,cmdp->u.raw.sg_ranz,
cmdp->u.raw.sg_lst[0].sg_ptr,
cmdp->u.raw.sg_lst[0].sg_len));
/* evaluate command size */
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst) +
(ushort)cmdp->u.raw.sg_ranz * sizeof(gdth_sg_str);
}
}
/* check space */
if (ha->cmd_len & 3)
ha->cmd_len += (4 - (ha->cmd_len & 3));
if (ha->cmd_cnt > 0) {
if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) >
ha->ic_all_size) {
TRACE2(("gdth_fill_raw() DPMEM overflow\n"));
ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND;
return 0;
}
}
/* copy command */
gdth_copy_command(hanum);
return cmd_index;
}
static int gdth_special_cmd(int hanum,Scsi_Cmnd *scp)
{
register gdth_ha_str *ha;
register gdth_cmd_str *cmdp;
int cmd_index;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp= ha->pccb;
TRACE2(("gdth_special_cmd(): "));
if (ha->type==GDT_EISA && ha->cmd_cnt>0)
return 0;
memcpy( cmdp, scp->request_buffer, sizeof(gdth_cmd_str));
cmdp->RequestBuffer = scp;
/* search free command index */
if (!(cmd_index=gdth_get_cmd_index(hanum))) {
TRACE(("GDT: No free command index found\n"));
return 0;
}
/* if it's the first command, set command semaphore */
if (ha->cmd_cnt == 0)
gdth_set_sema0(hanum);
/* evaluate command size, check space */
if (cmdp->OpCode == GDT_IOCTL) {
TRACE2(("IOCTL\n"));
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.ioctl.p_param) + sizeof(ulong64);
} else if (cmdp->Service == CACHESERVICE) {
TRACE2(("cache command %d\n",cmdp->OpCode));
if (ha->cache_feat & GDT_64BIT)
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.cache64.sg_lst) + sizeof(gdth_sg64_str);
else
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.cache.sg_lst) + sizeof(gdth_sg_str);
} else if (cmdp->Service == SCSIRAWSERVICE) {
TRACE2(("raw command %d\n",cmdp->OpCode));
if (ha->raw_feat & GDT_64BIT)
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.raw64.sg_lst) + sizeof(gdth_sg64_str);
else
ha->cmd_len =
GDTOFFSOF(gdth_cmd_str,u.raw.sg_lst) + sizeof(gdth_sg_str);
}
if (ha->cmd_len & 3)
ha->cmd_len += (4 - (ha->cmd_len & 3));
if (ha->cmd_cnt > 0) {
if ((ha->cmd_offs_dpmem + ha->cmd_len + DPMEM_COMMAND_OFFSET) >
ha->ic_all_size) {
TRACE2(("gdth_special_cmd() DPMEM overflow\n"));
ha->cmd_tab[cmd_index-2].cmnd = UNUSED_CMND;
return 0;
}
}
/* copy command */
gdth_copy_command(hanum);
return cmd_index;
}
/* Controller event handling functions */
static gdth_evt_str *gdth_store_event(gdth_ha_str *ha, ushort source,
ushort idx, gdth_evt_data *evt)
{
gdth_evt_str *e;
struct timeval tv;
/* no GDTH_LOCK_HA() ! */
TRACE2(("gdth_store_event() source %d idx %d\n", source, idx));
if (source == 0) /* no source -> no event */
return NULL;
if (ebuffer[elastidx].event_source == source &&
ebuffer[elastidx].event_idx == idx &&
((evt->size != 0 && ebuffer[elastidx].event_data.size != 0 &&
!memcmp((char *)&ebuffer[elastidx].event_data.eu,
(char *)&evt->eu, evt->size)) ||
(evt->size == 0 && ebuffer[elastidx].event_data.size == 0 &&
!strcmp((char *)&ebuffer[elastidx].event_data.event_string,
(char *)&evt->event_string)))) {
e = &ebuffer[elastidx];
do_gettimeofday(&tv);
e->last_stamp = tv.tv_sec;
++e->same_count;
} else {
if (ebuffer[elastidx].event_source != 0) { /* entry not free ? */
++elastidx;
if (elastidx == MAX_EVENTS)
elastidx = 0;
if (elastidx == eoldidx) { /* reached mark ? */
++eoldidx;
if (eoldidx == MAX_EVENTS)
eoldidx = 0;
}
}
e = &ebuffer[elastidx];
e->event_source = source;
e->event_idx = idx;
do_gettimeofday(&tv);
e->first_stamp = e->last_stamp = tv.tv_sec;
e->same_count = 1;
e->event_data = *evt;
e->application = 0;
}
return e;
}
static int gdth_read_event(gdth_ha_str *ha, int handle, gdth_evt_str *estr)
{
gdth_evt_str *e;
int eindex;
ulong flags;
TRACE2(("gdth_read_event() handle %d\n", handle));
spin_lock_irqsave(&ha->smp_lock, flags);
if (handle == -1)
eindex = eoldidx;
else
eindex = handle;
estr->event_source = 0;
if (eindex >= MAX_EVENTS) {
spin_unlock_irqrestore(&ha->smp_lock, flags);
return eindex;
}
e = &ebuffer[eindex];
if (e->event_source != 0) {
if (eindex != elastidx) {
if (++eindex == MAX_EVENTS)
eindex = 0;
} else {
eindex = -1;
}
memcpy(estr, e, sizeof(gdth_evt_str));
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
return eindex;
}
static void gdth_readapp_event(gdth_ha_str *ha,
unchar application, gdth_evt_str *estr)
{
gdth_evt_str *e;
int eindex;
ulong flags;
unchar found = FALSE;
TRACE2(("gdth_readapp_event() app. %d\n", application));
spin_lock_irqsave(&ha->smp_lock, flags);
eindex = eoldidx;
for (;;) {
e = &ebuffer[eindex];
if (e->event_source == 0)
break;
if ((e->application & application) == 0) {
e->application |= application;
found = TRUE;
break;
}
if (eindex == elastidx)
break;
if (++eindex == MAX_EVENTS)
eindex = 0;
}
if (found)
memcpy(estr, e, sizeof(gdth_evt_str));
else
estr->event_source = 0;
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
static void gdth_clear_events(void)
{
TRACE(("gdth_clear_events()"));
eoldidx = elastidx = 0;
ebuffer[0].event_source = 0;
}
/* SCSI interface functions */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 17:55:46 +04:00
static irqreturn_t gdth_interrupt(int irq,void *dev_id)
{
gdth_ha_str *ha2 = (gdth_ha_str *)dev_id;
register gdth_ha_str *ha;
gdt6m_dpram_str __iomem *dp6m_ptr = NULL;
gdt6_dpram_str __iomem *dp6_ptr;
gdt2_dpram_str __iomem *dp2_ptr;
Scsi_Cmnd *scp;
int hanum, rval, i;
unchar IStatus;
ushort Service;
ulong flags = 0;
#ifdef INT_COAL
int coalesced = FALSE;
int next = FALSE;
gdth_coal_status *pcs = NULL;
int act_int_coal = 0;
#endif
TRACE(("gdth_interrupt() IRQ %d\n",irq));
/* if polling and not from gdth_wait() -> return */
if (gdth_polling) {
if (!gdth_from_wait) {
return IRQ_HANDLED;
}
}
if (!gdth_polling)
spin_lock_irqsave(&ha2->smp_lock, flags);
wait_index = 0;
/* search controller */
if ((hanum = gdth_get_status(&IStatus,irq)) == -1) {
/* spurious interrupt */
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
ha = HADATA(gdth_ctr_tab[hanum]);
#ifdef GDTH_STATISTICS
++act_ints;
#endif
#ifdef INT_COAL
/* See if the fw is returning coalesced status */
if (IStatus == COALINDEX) {
/* Coalesced status. Setup the initial status
buffer pointer and flags */
pcs = ha->coal_stat;
coalesced = TRUE;
next = TRUE;
}
do {
if (coalesced) {
/* For coalesced requests all status
information is found in the status buffer */
IStatus = (unchar)(pcs->status & 0xff);
}
#endif
if (ha->type == GDT_EISA) {
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = inw(ha->bmic + MAILBOXREG+8);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
ha->info = inl(ha->bmic + MAILBOXREG+12);
ha->service = inw(ha->bmic + MAILBOXREG+10);
ha->info2 = inl(ha->bmic + MAILBOXREG+4);
outb(0xff, ha->bmic + EDOORREG); /* acknowledge interrupt */
outb(0x00, ha->bmic + SEMA1REG); /* reset status semaphore */
} else if (ha->type == GDT_ISA) {
dp2_ptr = ha->brd;
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = gdth_readw(&dp2_ptr->u.ic.Status);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
ha->info = gdth_readl(&dp2_ptr->u.ic.Info[0]);
ha->service = gdth_readw(&dp2_ptr->u.ic.Service);
ha->info2 = gdth_readl(&dp2_ptr->u.ic.Info[1]);
gdth_writeb(0xff, &dp2_ptr->io.irqdel); /* acknowledge interrupt */
gdth_writeb(0, &dp2_ptr->u.ic.Cmd_Index);/* reset command index */
gdth_writeb(0, &dp2_ptr->io.Sema1); /* reset status semaphore */
} else if (ha->type == GDT_PCI) {
dp6_ptr = ha->brd;
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = gdth_readw(&dp6_ptr->u.ic.Status);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
ha->info = gdth_readl(&dp6_ptr->u.ic.Info[0]);
ha->service = gdth_readw(&dp6_ptr->u.ic.Service);
ha->info2 = gdth_readl(&dp6_ptr->u.ic.Info[1]);
gdth_writeb(0xff, &dp6_ptr->io.irqdel); /* acknowledge interrupt */
gdth_writeb(0, &dp6_ptr->u.ic.Cmd_Index);/* reset command index */
gdth_writeb(0, &dp6_ptr->io.Sema1); /* reset status semaphore */
} else if (ha->type == GDT_PCINEW) {
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
ha->status = inw(PTR2USHORT(&ha->plx->status));
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else
ha->status = S_OK;
ha->info = inl(PTR2USHORT(&ha->plx->info[0]));
ha->service = inw(PTR2USHORT(&ha->plx->service));
ha->info2 = inl(PTR2USHORT(&ha->plx->info[1]));
outb(0xff, PTR2USHORT(&ha->plx->edoor_reg));
outb(0x00, PTR2USHORT(&ha->plx->sema1_reg));
} else if (ha->type == GDT_PCIMPR) {
dp6m_ptr = ha->brd;
if (IStatus & 0x80) { /* error flag */
IStatus &= ~0x80;
#ifdef INT_COAL
if (coalesced)
ha->status = pcs->ext_status & 0xffff;
else
#endif
ha->status = gdth_readw(&dp6m_ptr->i960r.status);
TRACE2(("gdth_interrupt() error %d/%d\n",IStatus,ha->status));
} else /* no error */
ha->status = S_OK;
#ifdef INT_COAL
/* get information */
if (coalesced) {
ha->info = pcs->info0;
ha->info2 = pcs->info1;
ha->service = (pcs->ext_status >> 16) & 0xffff;
} else
#endif
{
ha->info = gdth_readl(&dp6m_ptr->i960r.info[0]);
ha->service = gdth_readw(&dp6m_ptr->i960r.service);
ha->info2 = gdth_readl(&dp6m_ptr->i960r.info[1]);
}
/* event string */
if (IStatus == ASYNCINDEX) {
if (ha->service != SCREENSERVICE &&
(ha->fw_vers & 0xff) >= 0x1a) {
ha->dvr.severity = gdth_readb
(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.severity);
for (i = 0; i < 256; ++i) {
ha->dvr.event_string[i] = gdth_readb
(&((gdt6m_dpram_str __iomem *)ha->brd)->i960r.evt_str[i]);
if (ha->dvr.event_string[i] == 0)
break;
}
}
}
#ifdef INT_COAL
/* Make sure that non coalesced interrupts get cleared
before being handled by gdth_async_event/gdth_sync_event */
if (!coalesced)
#endif
{
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(0, &dp6m_ptr->i960r.sema1_reg);
}
} else {
TRACE2(("gdth_interrupt() unknown controller type\n"));
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
TRACE(("gdth_interrupt() index %d stat %d info %d\n",
IStatus,ha->status,ha->info));
if (gdth_from_wait) {
wait_hanum = hanum;
wait_index = (int)IStatus;
}
if (IStatus == ASYNCINDEX) {
TRACE2(("gdth_interrupt() async. event\n"));
gdth_async_event(hanum);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
gdth_next(hanum);
return IRQ_HANDLED;
}
if (IStatus == SPEZINDEX) {
TRACE2(("Service unknown or not initialized !\n"));
ha->dvr.size = sizeof(ha->dvr.eu.driver);
ha->dvr.eu.driver.ionode = hanum;
gdth_store_event(ha, ES_DRIVER, 4, &ha->dvr);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
scp = ha->cmd_tab[IStatus-2].cmnd;
Service = ha->cmd_tab[IStatus-2].service;
ha->cmd_tab[IStatus-2].cmnd = UNUSED_CMND;
if (scp == UNUSED_CMND) {
TRACE2(("gdth_interrupt() index to unused command (%d)\n",IStatus));
ha->dvr.size = sizeof(ha->dvr.eu.driver);
ha->dvr.eu.driver.ionode = hanum;
ha->dvr.eu.driver.index = IStatus;
gdth_store_event(ha, ES_DRIVER, 1, &ha->dvr);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
if (scp == INTERNAL_CMND) {
TRACE(("gdth_interrupt() answer to internal command\n"));
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
return IRQ_HANDLED;
}
TRACE(("gdth_interrupt() sync. status\n"));
rval = gdth_sync_event(hanum,Service,IStatus,scp);
if (!gdth_polling)
spin_unlock_irqrestore(&ha2->smp_lock, flags);
if (rval == 2) {
gdth_putq(hanum,scp,scp->SCp.this_residual);
} else if (rval == 1) {
scp->scsi_done(scp);
}
#ifdef INT_COAL
if (coalesced) {
/* go to the next status in the status buffer */
++pcs;
#ifdef GDTH_STATISTICS
++act_int_coal;
if (act_int_coal > max_int_coal) {
max_int_coal = act_int_coal;
printk("GDT: max_int_coal = %d\n",(ushort)max_int_coal);
}
#endif
/* see if there is another status */
if (pcs->status == 0)
/* Stop the coalesce loop */
next = FALSE;
}
} while (next);
/* coalescing only for new GDT_PCIMPR controllers available */
if (ha->type == GDT_PCIMPR && coalesced) {
gdth_writeb(0xff, &dp6m_ptr->i960r.edoor_reg);
gdth_writeb(0, &dp6m_ptr->i960r.sema1_reg);
}
#endif
gdth_next(hanum);
return IRQ_HANDLED;
}
static int gdth_sync_event(int hanum,int service,unchar index,Scsi_Cmnd *scp)
{
register gdth_ha_str *ha;
gdth_msg_str *msg;
gdth_cmd_str *cmdp;
unchar b, t;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp = ha->pccb;
TRACE(("gdth_sync_event() serv %d status %d\n",
service,ha->status));
if (service == SCREENSERVICE) {
msg = ha->pmsg;
TRACE(("len: %d, answer: %d, ext: %d, alen: %d\n",
msg->msg_len,msg->msg_answer,msg->msg_ext,msg->msg_alen));
if (msg->msg_len > MSGLEN+1)
msg->msg_len = MSGLEN+1;
if (msg->msg_len)
if (!(msg->msg_answer && msg->msg_ext)) {
msg->msg_text[msg->msg_len] = '\0';
printk("%s",msg->msg_text);
}
if (msg->msg_ext && !msg->msg_answer) {
while (gdth_test_busy(hanum))
gdth_delay(0);
cmdp->Service = SCREENSERVICE;
cmdp->RequestBuffer = SCREEN_CMND;
gdth_get_cmd_index(hanum);
gdth_set_sema0(hanum);
cmdp->OpCode = GDT_READ;
cmdp->BoardNode = LOCALBOARD;
cmdp->u.screen.reserved = 0;
cmdp->u.screen.su.msg.msg_handle= msg->msg_handle;
cmdp->u.screen.su.msg.msg_addr = ha->msg_phys;
ha->cmd_offs_dpmem = 0;
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr)
+ sizeof(ulong64);
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
gdth_release_event(hanum);
return 0;
}
if (msg->msg_answer && msg->msg_alen) {
/* default answers (getchar() not possible) */
if (msg->msg_alen == 1) {
msg->msg_alen = 0;
msg->msg_len = 1;
msg->msg_text[0] = 0;
} else {
msg->msg_alen -= 2;
msg->msg_len = 2;
msg->msg_text[0] = 1;
msg->msg_text[1] = 0;
}
msg->msg_ext = 0;
msg->msg_answer = 0;
while (gdth_test_busy(hanum))
gdth_delay(0);
cmdp->Service = SCREENSERVICE;
cmdp->RequestBuffer = SCREEN_CMND;
gdth_get_cmd_index(hanum);
gdth_set_sema0(hanum);
cmdp->OpCode = GDT_WRITE;
cmdp->BoardNode = LOCALBOARD;
cmdp->u.screen.reserved = 0;
cmdp->u.screen.su.msg.msg_handle= msg->msg_handle;
cmdp->u.screen.su.msg.msg_addr = ha->msg_phys;
ha->cmd_offs_dpmem = 0;
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr)
+ sizeof(ulong64);
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
gdth_release_event(hanum);
return 0;
}
printk("\n");
} else {
b = virt_ctr ? NUMDATA(scp->device->host)->busnum : scp->device->channel;
t = scp->device->id;
if (scp->SCp.sent_command == -1 && b != ha->virt_bus) {
ha->raw[BUS_L2P(ha,b)].io_cnt[t]--;
}
/* cache or raw service */
if (ha->status == S_BSY) {
TRACE2(("Controller busy -> retry !\n"));
if (scp->SCp.sent_command == GDT_MOUNT)
scp->SCp.sent_command = GDT_CLUST_INFO;
/* retry */
return 2;
}
if (scp->SCp.Status == GDTH_MAP_SG)
pci_unmap_sg(ha->pdev,scp->request_buffer,
scp->use_sg,scp->SCp.Message);
else if (scp->SCp.Status == GDTH_MAP_SINGLE)
pci_unmap_page(ha->pdev,scp->SCp.dma_handle,
scp->request_bufflen,scp->SCp.Message);
if (scp->SCp.buffer) {
dma_addr_t addr;
addr = (dma_addr_t)*(ulong32 *)&scp->SCp.buffer;
if (scp->host_scribble)
addr += (dma_addr_t)
((ulong64)(*(ulong32 *)&scp->host_scribble) << 32);
pci_unmap_page(ha->pdev,addr,16,PCI_DMA_FROMDEVICE);
}
if (ha->status == S_OK) {
scp->SCp.Status = S_OK;
scp->SCp.Message = ha->info;
if (scp->SCp.sent_command != -1) {
TRACE2(("gdth_sync_event(): special cmd 0x%x OK\n",
scp->SCp.sent_command));
/* special commands GDT_CLUST_INFO/GDT_MOUNT ? */
if (scp->SCp.sent_command == GDT_CLUST_INFO) {
ha->hdr[t].cluster_type = (unchar)ha->info;
if (!(ha->hdr[t].cluster_type &
CLUSTER_MOUNTED)) {
/* NOT MOUNTED -> MOUNT */
scp->SCp.sent_command = GDT_MOUNT;
if (ha->hdr[t].cluster_type &
CLUSTER_RESERVED) {
/* cluster drive RESERVED (on the other node) */
scp->SCp.phase = -2; /* reservation conflict */
}
} else {
scp->SCp.sent_command = -1;
}
} else {
if (scp->SCp.sent_command == GDT_MOUNT) {
ha->hdr[t].cluster_type |= CLUSTER_MOUNTED;
ha->hdr[t].media_changed = TRUE;
} else if (scp->SCp.sent_command == GDT_UNMOUNT) {
ha->hdr[t].cluster_type &= ~CLUSTER_MOUNTED;
ha->hdr[t].media_changed = TRUE;
}
scp->SCp.sent_command = -1;
}
/* retry */
scp->SCp.this_residual = HIGH_PRI;
return 2;
} else {
/* RESERVE/RELEASE ? */
if (scp->cmnd[0] == RESERVE) {
ha->hdr[t].cluster_type |= CLUSTER_RESERVED;
} else if (scp->cmnd[0] == RELEASE) {
ha->hdr[t].cluster_type &= ~CLUSTER_RESERVED;
}
scp->result = DID_OK << 16;
scp->sense_buffer[0] = 0;
}
} else {
scp->SCp.Status = ha->status;
scp->SCp.Message = ha->info;
if (scp->SCp.sent_command != -1) {
TRACE2(("gdth_sync_event(): special cmd 0x%x error 0x%x\n",
scp->SCp.sent_command, ha->status));
if (scp->SCp.sent_command == GDT_SCAN_START ||
scp->SCp.sent_command == GDT_SCAN_END) {
scp->SCp.sent_command = -1;
/* retry */
scp->SCp.this_residual = HIGH_PRI;
return 2;
}
memset((char*)scp->sense_buffer,0,16);
scp->sense_buffer[0] = 0x70;
scp->sense_buffer[2] = NOT_READY;
scp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
} else if (service == CACHESERVICE) {
if (ha->status == S_CACHE_UNKNOWN &&
(ha->hdr[t].cluster_type &
CLUSTER_RESERVE_STATE) == CLUSTER_RESERVE_STATE) {
/* bus reset -> force GDT_CLUST_INFO */
ha->hdr[t].cluster_type &= ~CLUSTER_RESERVED;
}
memset((char*)scp->sense_buffer,0,16);
if (ha->status == (ushort)S_CACHE_RESERV) {
scp->result = (DID_OK << 16) | (RESERVATION_CONFLICT << 1);
} else {
scp->sense_buffer[0] = 0x70;
scp->sense_buffer[2] = NOT_READY;
scp->result = (DID_OK << 16) | (CHECK_CONDITION << 1);
}
if (scp->done != gdth_scsi_done) {
ha->dvr.size = sizeof(ha->dvr.eu.sync);
ha->dvr.eu.sync.ionode = hanum;
ha->dvr.eu.sync.service = service;
ha->dvr.eu.sync.status = ha->status;
ha->dvr.eu.sync.info = ha->info;
ha->dvr.eu.sync.hostdrive = t;
if (ha->status >= 0x8000)
gdth_store_event(ha, ES_SYNC, 0, &ha->dvr);
else
gdth_store_event(ha, ES_SYNC, service, &ha->dvr);
}
} else {
/* sense buffer filled from controller firmware (DMA) */
if (ha->status != S_RAW_SCSI || ha->info >= 0x100) {
scp->result = DID_BAD_TARGET << 16;
} else {
scp->result = (DID_OK << 16) | ha->info;
}
}
}
if (!scp->SCp.have_data_in)
scp->SCp.have_data_in++;
else
return 1;
}
return 0;
}
static char *async_cache_tab[] = {
/* 0*/ "\011\000\002\002\002\004\002\006\004"
"GDT HA %u, service %u, async. status %u/%lu unknown",
/* 1*/ "\011\000\002\002\002\004\002\006\004"
"GDT HA %u, service %u, async. status %u/%lu unknown",
/* 2*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu not ready",
/* 3*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu: REASSIGN not successful and/or data error on reassigned blocks. Drive may crash in the future and should be replaced",
/* 4*/ "\005\000\002\006\004"
"GDT HA %u, mirror update on Host Drive %lu failed",
/* 5*/ "\005\000\002\006\004"
"GDT HA %u, Mirror Drive %lu failed",
/* 6*/ "\005\000\002\006\004"
"GDT HA %u, Mirror Drive %lu: REASSIGN not successful and/or data error on reassigned blocks. Drive may crash in the future and should be replaced",
/* 7*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu write protected",
/* 8*/ "\005\000\002\006\004"
"GDT HA %u, media changed in Host Drive %lu",
/* 9*/ "\005\000\002\006\004"
"GDT HA %u, Host Drive %lu is offline",
/*10*/ "\005\000\002\006\004"
"GDT HA %u, media change of Mirror Drive %lu",
/*11*/ "\005\000\002\006\004"
"GDT HA %u, Mirror Drive %lu is write protected",
/*12*/ "\005\000\002\006\004"
"GDT HA %u, general error on Host Drive %lu. Please check the devices of this drive!",
/*13*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Array Drive %u: Cache Drive %u failed",
/*14*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: FAIL state entered",
/*15*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: error",
/*16*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Array Drive %u: failed drive replaced by Cache Drive %u",
/*17*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity build failed",
/*18*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild failed",
/*19*/ "\005\000\002\010\002"
"GDT HA %u, Test of Hot Fix %u failed",
/*20*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive build finished successfully",
/*21*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild finished successfully",
/*22*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Array Drive %u: Hot Fix %u activated",
/*23*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u: processing of i/o aborted due to serious drive error",
/*24*/ "\005\000\002\010\002"
"GDT HA %u, mirror update on Cache Drive %u completed",
/*25*/ "\005\000\002\010\002"
"GDT HA %u, mirror update on Cache Drive %lu failed",
/*26*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild started",
/*27*/ "\005\000\002\012\001"
"GDT HA %u, Fault bus %u: SHELF OK detected",
/*28*/ "\005\000\002\012\001"
"GDT HA %u, Fault bus %u: SHELF not OK detected",
/*29*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug started",
/*30*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: new disk detected",
/*31*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: old disk detected",
/*32*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: plugging an active disk is invalid",
/*33*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: invalid device detected",
/*34*/ "\011\000\002\012\001\013\001\006\004"
"GDT HA %u, Fault bus %u, ID %u: insufficient disk capacity (%lu MB required)",
/*35*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: disk write protected",
/*36*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: disk not available",
/*37*/ "\007\000\002\012\001\006\004"
"GDT HA %u, Fault bus %u: swap detected (%lu)",
/*38*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug finished successfully",
/*39*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug aborted due to user Hot Plug",
/*40*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug aborted",
/*41*/ "\007\000\002\012\001\013\001"
"GDT HA %u, Fault bus %u, ID %u: Auto Hot Plug for Hot Fix started",
/*42*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive build started",
/*43*/ "\003\000\002"
"GDT HA %u, DRAM parity error detected",
/*44*/ "\005\000\002\006\002"
"GDT HA %u, Mirror Drive %u: update started",
/*45*/ "\007\000\002\006\002\010\002"
"GDT HA %u, Mirror Drive %u: Hot Fix %u activated",
/*46*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: no matching Pool Hot Fix Drive available",
/*47*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: Pool Hot Fix Drive available",
/*48*/ "\005\000\002\006\002"
"GDT HA %u, Mirror Drive %u: no matching Pool Hot Fix Drive available",
/*49*/ "\005\000\002\006\002"
"GDT HA %u, Mirror Drive %u: Pool Hot Fix Drive available",
/*50*/ "\007\000\002\012\001\013\001"
"GDT HA %u, SCSI bus %u, ID %u: IGNORE_WIDE_RESIDUE message received",
/*51*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand started",
/*52*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand finished successfully",
/*53*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand failed",
/*54*/ "\003\000\002"
"GDT HA %u, CPU temperature critical",
/*55*/ "\003\000\002"
"GDT HA %u, CPU temperature OK",
/*56*/ "\005\000\002\006\004"
"GDT HA %u, Host drive %lu created",
/*57*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand restarted",
/*58*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: expand stopped",
/*59*/ "\005\000\002\010\002"
"GDT HA %u, Mirror Drive %u: drive build quited",
/*60*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity build quited",
/*61*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: drive rebuild quited",
/*62*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify started",
/*63*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify done",
/*64*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify failed",
/*65*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity error detected",
/*66*/ "\005\000\002\006\002"
"GDT HA %u, Array Drive %u: parity verify quited",
/*67*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u reserved",
/*68*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u mounted and released",
/*69*/ "\005\000\002\006\002"
"GDT HA %u, Host Drive %u released",
/*70*/ "\003\000\002"
"GDT HA %u, DRAM error detected and corrected with ECC",
/*71*/ "\003\000\002"
"GDT HA %u, Uncorrectable DRAM error detected with ECC",
/*72*/ "\011\000\002\012\001\013\001\014\001"
"GDT HA %u, SCSI bus %u, ID %u, LUN %u: reassigning block",
/*73*/ "\005\000\002\006\002"
"GDT HA %u, Host drive %u resetted locally",
/*74*/ "\005\000\002\006\002"
"GDT HA %u, Host drive %u resetted remotely",
/*75*/ "\003\000\002"
"GDT HA %u, async. status 75 unknown",
};
static int gdth_async_event(int hanum)
{
gdth_ha_str *ha;
gdth_cmd_str *cmdp;
int cmd_index;
ha = HADATA(gdth_ctr_tab[hanum]);
cmdp= ha->pccb;
TRACE2(("gdth_async_event() ha %d serv %d\n",
hanum,ha->service));
if (ha->service == SCREENSERVICE) {
if (ha->status == MSG_REQUEST) {
while (gdth_test_busy(hanum))
gdth_delay(0);
cmdp->Service = SCREENSERVICE;
cmdp->RequestBuffer = SCREEN_CMND;
cmd_index = gdth_get_cmd_index(hanum);
gdth_set_sema0(hanum);
cmdp->OpCode = GDT_READ;
cmdp->BoardNode = LOCALBOARD;
cmdp->u.screen.reserved = 0;
cmdp->u.screen.su.msg.msg_handle= MSG_INV_HANDLE;
cmdp->u.screen.su.msg.msg_addr = ha->msg_phys;
ha->cmd_offs_dpmem = 0;
ha->cmd_len = GDTOFFSOF(gdth_cmd_str,u.screen.su.msg.msg_addr)
+ sizeof(ulong64);
ha->cmd_cnt = 0;
gdth_copy_command(hanum);
if (ha->type == GDT_EISA)
printk("[EISA slot %d] ",(ushort)ha->brd_phys);
else if (ha->type == GDT_ISA)
printk("[DPMEM 0x%4X] ",(ushort)ha->brd_phys);
else
printk("[PCI %d/%d] ",(ushort)(ha->brd_phys>>8),
(ushort)((ha->brd_phys>>3)&0x1f));
gdth_release_event(hanum);
}
} else {
if (ha->type == GDT_PCIMPR &&
(ha->fw_vers & 0xff) >= 0x1a) {
ha->dvr.size = 0;
ha->dvr.eu.async.ionode = hanum;
ha->dvr.eu.async.status = ha->status;
/* severity and event_string already set! */
} else {
ha->dvr.size = sizeof(ha->dvr.eu.async);
ha->dvr.eu.async.ionode = hanum;
ha->dvr.eu.async.service = ha->service;
ha->dvr.eu.async.status = ha->status;
ha->dvr.eu.async.info = ha->info;
*(ulong32 *)ha->dvr.eu.async.scsi_coord = ha->info2;
}
gdth_store_event( ha, ES_ASYNC, ha->service, &ha->dvr );
gdth_log_event( &ha->dvr, NULL );
/* new host drive from expand? */
if (ha->service == CACHESERVICE && ha->status == 56) {
TRACE2(("gdth_async_event(): new host drive %d created\n",
(ushort)ha->info));
/* gdth_analyse_hdrive(hanum, (ushort)ha->info); */
}
}
return 1;
}
static void gdth_log_event(gdth_evt_data *dvr, char *buffer)
{
gdth_stackframe stack;
char *f = NULL;
int i,j;
TRACE2(("gdth_log_event()\n"));
if (dvr->size == 0) {
if (buffer == NULL) {
printk("Adapter %d: %s\n",dvr->eu.async.ionode,dvr->event_string);
} else {
sprintf(buffer,"Adapter %d: %s\n",
dvr->eu.async.ionode,dvr->event_string);
}
} else if (dvr->eu.async.service == CACHESERVICE &&
INDEX_OK(dvr->eu.async.status, async_cache_tab)) {
TRACE2(("GDT: Async. event cache service, event no.: %d\n",
dvr->eu.async.status));
f = async_cache_tab[dvr->eu.async.status];
/* i: parameter to push, j: stack element to fill */
for (j=0,i=1; i < f[0]; i+=2) {
switch (f[i+1]) {
case 4:
stack.b[j++] = *(ulong32*)&dvr->eu.stream[(int)f[i]];
break;
case 2:
stack.b[j++] = *(ushort*)&dvr->eu.stream[(int)f[i]];
break;
case 1:
stack.b[j++] = *(unchar*)&dvr->eu.stream[(int)f[i]];
break;
default:
break;
}
}
if (buffer == NULL) {
printk(&f[(int)f[0]],stack);
printk("\n");
} else {
sprintf(buffer,&f[(int)f[0]],stack);
}
} else {
if (buffer == NULL) {
printk("GDT HA %u, Unknown async. event service %d event no. %d\n",
dvr->eu.async.ionode,dvr->eu.async.service,dvr->eu.async.status);
} else {
sprintf(buffer,"GDT HA %u, Unknown async. event service %d event no. %d",
dvr->eu.async.ionode,dvr->eu.async.service,dvr->eu.async.status);
}
}
}
#ifdef GDTH_STATISTICS
static void gdth_timeout(ulong data)
{
ulong32 i;
Scsi_Cmnd *nscp;
gdth_ha_str *ha;
ulong flags;
int hanum = 0;
ha = HADATA(gdth_ctr_tab[hanum]);
spin_lock_irqsave(&ha->smp_lock, flags);
for (act_stats=0,i=0; i<GDTH_MAXCMDS; ++i)
if (ha->cmd_tab[i].cmnd != UNUSED_CMND)
++act_stats;
for (act_rq=0,nscp=ha->req_first; nscp; nscp=(Scsi_Cmnd*)nscp->SCp.ptr)
++act_rq;
TRACE2(("gdth_to(): ints %d, ios %d, act_stats %d, act_rq %d\n",
act_ints, act_ios, act_stats, act_rq));
act_ints = act_ios = 0;
gdth_timer.expires = jiffies + 30 * HZ;
add_timer(&gdth_timer);
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
#endif
static void __init internal_setup(char *str,int *ints)
{
int i, argc;
char *cur_str, *argv;
TRACE2(("internal_setup() str %s ints[0] %d\n",
str ? str:"NULL", ints ? ints[0]:0));
/* read irq[] from ints[] */
if (ints) {
argc = ints[0];
if (argc > 0) {
if (argc > MAXHA)
argc = MAXHA;
for (i = 0; i < argc; ++i)
irq[i] = ints[i+1];
}
}
/* analyse string */
argv = str;
while (argv && (cur_str = strchr(argv, ':'))) {
int val = 0, c = *++cur_str;
if (c == 'n' || c == 'N')
val = 0;
else if (c == 'y' || c == 'Y')
val = 1;
else
val = (int)simple_strtoul(cur_str, NULL, 0);
if (!strncmp(argv, "disable:", 8))
disable = val;
else if (!strncmp(argv, "reserve_mode:", 13))
reserve_mode = val;
else if (!strncmp(argv, "reverse_scan:", 13))
reverse_scan = val;
else if (!strncmp(argv, "hdr_channel:", 12))
hdr_channel = val;
else if (!strncmp(argv, "max_ids:", 8))
max_ids = val;
else if (!strncmp(argv, "rescan:", 7))
rescan = val;
else if (!strncmp(argv, "virt_ctr:", 9))
virt_ctr = val;
else if (!strncmp(argv, "shared_access:", 14))
shared_access = val;
else if (!strncmp(argv, "probe_eisa_isa:", 15))
probe_eisa_isa = val;
else if (!strncmp(argv, "reserve_list:", 13)) {
reserve_list[0] = val;
for (i = 1; i < MAX_RES_ARGS; i++) {
cur_str = strchr(cur_str, ',');
if (!cur_str)
break;
if (!isdigit((int)*++cur_str)) {
--cur_str;
break;
}
reserve_list[i] =
(int)simple_strtoul(cur_str, NULL, 0);
}
if (!cur_str)
break;
argv = ++cur_str;
continue;
}
if ((argv = strchr(argv, ',')))
++argv;
}
}
int __init option_setup(char *str)
{
int ints[MAXHA];
char *cur = str;
int i = 1;
TRACE2(("option_setup() str %s\n", str ? str:"NULL"));
while (cur && isdigit(*cur) && i <= MAXHA) {
ints[i++] = simple_strtoul(cur, NULL, 0);
if ((cur = strchr(cur, ',')) != NULL) cur++;
}
ints[0] = i - 1;
internal_setup(cur, ints);
return 1;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static int __init gdth_detect(struct scsi_host_template *shtp)
#else
static int __init gdth_detect(Scsi_Host_Template *shtp)
#endif
{
struct Scsi_Host *shp;
gdth_pci_str pcistr[MAXHA];
gdth_ha_str *ha;
ulong32 isa_bios;
ushort eisa_slot;
int i,hanum,cnt,ctr,err;
unchar b;
#ifdef DEBUG_GDTH
printk("GDT: This driver contains debugging information !! Trace level = %d\n",
DebugState);
printk(" Destination of debugging information: ");
#ifdef __SERIAL__
#ifdef __COM2__
printk("Serial port COM2\n");
#else
printk("Serial port COM1\n");
#endif
#else
printk("Console\n");
#endif
gdth_delay(3000);
#endif
TRACE(("gdth_detect()\n"));
if (disable) {
printk("GDT-HA: Controller driver disabled from command line !\n");
return 0;
}
printk("GDT-HA: Storage RAID Controller Driver. Version: %s\n",GDTH_VERSION_STR);
/* initializations */
gdth_polling = TRUE; b = 0;
gdth_clear_events();
/* As default we do not probe for EISA or ISA controllers */
if (probe_eisa_isa) {
/* scanning for controllers, at first: ISA controller */
for (isa_bios=0xc8000UL; isa_bios<=0xd8000UL; isa_bios+=0x8000UL) {
dma_addr_t scratch_dma_handle;
scratch_dma_handle = 0;
if (gdth_ctr_count >= MAXHA)
break;
if (gdth_search_isa(isa_bios)) { /* controller found */
shp = scsi_register(shtp,sizeof(gdth_ext_str));
if (shp == NULL)
continue;
ha = HADATA(shp);
if (!gdth_init_isa(isa_bios,ha)) {
scsi_unregister(shp);
continue;
}
#ifdef __ia64__
break;
#else
/* controller found and initialized */
printk("Configuring GDT-ISA HA at BIOS 0x%05X IRQ %u DRQ %u\n",
isa_bios,ha->irq,ha->drq);
if (request_irq(ha->irq,gdth_interrupt,IRQF_DISABLED,"gdth",ha)) {
printk("GDT-ISA: Unable to allocate IRQ\n");
scsi_unregister(shp);
continue;
}
if (request_dma(ha->drq,"gdth")) {
printk("GDT-ISA: Unable to allocate DMA channel\n");
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
set_dma_mode(ha->drq,DMA_MODE_CASCADE);
enable_dma(ha->drq);
shp->unchecked_isa_dma = 1;
shp->irq = ha->irq;
shp->dma_channel = ha->drq;
hanum = gdth_ctr_count;
gdth_ctr_tab[gdth_ctr_count++] = shp;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum= 0;
ha->pccb = CMDDATA(shp);
ha->ccb_phys = 0L;
ha->pdev = NULL;
ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH,
&scratch_dma_handle);
ha->scratch_phys = scratch_dma_handle;
ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str),
&scratch_dma_handle);
ha->msg_phys = scratch_dma_handle;
#ifdef INT_COAL
ha->coal_stat = (gdth_coal_status *)
pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, &scratch_dma_handle);
ha->coal_stat_phys = scratch_dma_handle;
#endif
ha->scratch_busy = FALSE;
ha->req_first = NULL;
ha->tid_cnt = MAX_HDRIVES;
if (max_ids > 0 && max_ids < ha->tid_cnt)
ha->tid_cnt = max_ids;
for (i=0; i<GDTH_MAXCMDS; ++i)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
ha->scan_mode = rescan ? 0x10 : 0;
if (ha->pscratch == NULL || ha->pmsg == NULL ||
!gdth_search_drives(hanum)) {
printk("GDT-ISA: Error during device scan\n");
--gdth_ctr_count;
--gdth_ctr_vcount;
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat,
ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
if (hdr_channel < 0 || hdr_channel > ha->bus_cnt)
hdr_channel = ha->bus_cnt;
ha->virt_bus = hdr_channel;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20) && \
LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
shp->highmem_io = 0;
#endif
if (ha->cache_feat & ha->raw_feat & ha->screen_feat & GDT_64BIT)
shp->max_cmd_len = 16;
shp->max_id = ha->tid_cnt;
shp->max_lun = MAXLUN;
shp->max_channel = virt_ctr ? 0 : ha->bus_cnt;
if (virt_ctr) {
virt_ctr = 1;
/* register addit. SCSI channels as virtual controllers */
for (b = 1; b < ha->bus_cnt + 1; ++b) {
shp = scsi_register(shtp,sizeof(gdth_num_str));
shp->unchecked_isa_dma = 1;
shp->irq = ha->irq;
shp->dma_channel = ha->drq;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum = b;
}
}
spin_lock_init(&ha->smp_lock);
gdth_enable_int(hanum);
#endif /* !__ia64__ */
}
}
/* scanning for EISA controllers */
for (eisa_slot=0x1000; eisa_slot<=0x8000; eisa_slot+=0x1000) {
dma_addr_t scratch_dma_handle;
scratch_dma_handle = 0;
if (gdth_ctr_count >= MAXHA)
break;
if (gdth_search_eisa(eisa_slot)) { /* controller found */
shp = scsi_register(shtp,sizeof(gdth_ext_str));
if (shp == NULL)
continue;
ha = HADATA(shp);
if (!gdth_init_eisa(eisa_slot,ha)) {
scsi_unregister(shp);
continue;
}
/* controller found and initialized */
printk("Configuring GDT-EISA HA at Slot %d IRQ %u\n",
eisa_slot>>12,ha->irq);
if (request_irq(ha->irq,gdth_interrupt,IRQF_DISABLED,"gdth",ha)) {
printk("GDT-EISA: Unable to allocate IRQ\n");
scsi_unregister(shp);
continue;
}
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
hanum = gdth_ctr_count;
gdth_ctr_tab[gdth_ctr_count++] = shp;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum= 0;
TRACE2(("EISA detect Bus 0: hanum %d\n",
NUMDATA(shp)->hanum));
ha->pccb = CMDDATA(shp);
ha->ccb_phys = 0L;
ha->pdev = NULL;
ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH,
&scratch_dma_handle);
ha->scratch_phys = scratch_dma_handle;
ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str),
&scratch_dma_handle);
ha->msg_phys = scratch_dma_handle;
#ifdef INT_COAL
ha->coal_stat = (gdth_coal_status *)
pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, &scratch_dma_handle);
ha->coal_stat_phys = scratch_dma_handle;
#endif
ha->ccb_phys =
pci_map_single(ha->pdev,ha->pccb,
sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL);
ha->scratch_busy = FALSE;
ha->req_first = NULL;
ha->tid_cnt = MAX_HDRIVES;
if (max_ids > 0 && max_ids < ha->tid_cnt)
ha->tid_cnt = max_ids;
for (i=0; i<GDTH_MAXCMDS; ++i)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
ha->scan_mode = rescan ? 0x10 : 0;
if (ha->pscratch == NULL || ha->pmsg == NULL ||
!gdth_search_drives(hanum)) {
printk("GDT-EISA: Error during device scan\n");
--gdth_ctr_count;
--gdth_ctr_vcount;
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat,
ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
if (ha->ccb_phys)
pci_unmap_single(ha->pdev,ha->ccb_phys,
sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL);
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
if (hdr_channel < 0 || hdr_channel > ha->bus_cnt)
hdr_channel = ha->bus_cnt;
ha->virt_bus = hdr_channel;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20) && \
LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
shp->highmem_io = 0;
#endif
if (ha->cache_feat & ha->raw_feat & ha->screen_feat & GDT_64BIT)
shp->max_cmd_len = 16;
shp->max_id = ha->tid_cnt;
shp->max_lun = MAXLUN;
shp->max_channel = virt_ctr ? 0 : ha->bus_cnt;
if (virt_ctr) {
virt_ctr = 1;
/* register addit. SCSI channels as virtual controllers */
for (b = 1; b < ha->bus_cnt + 1; ++b) {
shp = scsi_register(shtp,sizeof(gdth_num_str));
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum = b;
}
}
spin_lock_init(&ha->smp_lock);
gdth_enable_int(hanum);
}
}
}
/* scanning for PCI controllers */
cnt = gdth_search_pci(pcistr);
printk("GDT-HA: Found %d PCI Storage RAID Controllers\n",cnt);
gdth_sort_pci(pcistr,cnt);
for (ctr = 0; ctr < cnt; ++ctr) {
dma_addr_t scratch_dma_handle;
scratch_dma_handle = 0;
if (gdth_ctr_count >= MAXHA)
break;
shp = scsi_register(shtp,sizeof(gdth_ext_str));
if (shp == NULL)
continue;
ha = HADATA(shp);
if (!gdth_init_pci(&pcistr[ctr],ha)) {
scsi_unregister(shp);
continue;
}
/* controller found and initialized */
printk("Configuring GDT-PCI HA at %d/%d IRQ %u\n",
pcistr[ctr].pdev->bus->number,
PCI_SLOT(pcistr[ctr].pdev->devfn), ha->irq);
if (request_irq(ha->irq, gdth_interrupt,
IRQF_DISABLED|IRQF_SHARED, "gdth", ha))
{
printk("GDT-PCI: Unable to allocate IRQ\n");
scsi_unregister(shp);
continue;
}
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
hanum = gdth_ctr_count;
gdth_ctr_tab[gdth_ctr_count++] = shp;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum= 0;
ha->pccb = CMDDATA(shp);
ha->ccb_phys = 0L;
ha->pscratch = pci_alloc_consistent(ha->pdev, GDTH_SCRATCH,
&scratch_dma_handle);
ha->scratch_phys = scratch_dma_handle;
ha->pmsg = pci_alloc_consistent(ha->pdev, sizeof(gdth_msg_str),
&scratch_dma_handle);
ha->msg_phys = scratch_dma_handle;
#ifdef INT_COAL
ha->coal_stat = (gdth_coal_status *)
pci_alloc_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, &scratch_dma_handle);
ha->coal_stat_phys = scratch_dma_handle;
#endif
ha->scratch_busy = FALSE;
ha->req_first = NULL;
ha->tid_cnt = pcistr[ctr].pdev->device >= 0x200 ? MAXID : MAX_HDRIVES;
if (max_ids > 0 && max_ids < ha->tid_cnt)
ha->tid_cnt = max_ids;
for (i=0; i<GDTH_MAXCMDS; ++i)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
ha->scan_mode = rescan ? 0x10 : 0;
err = FALSE;
if (ha->pscratch == NULL || ha->pmsg == NULL ||
!gdth_search_drives(hanum)) {
err = TRUE;
} else {
if (hdr_channel < 0 || hdr_channel > ha->bus_cnt)
hdr_channel = ha->bus_cnt;
ha->virt_bus = hdr_channel;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
scsi_set_pci_device(shp, pcistr[ctr].pdev);
#endif
if (!(ha->cache_feat & ha->raw_feat & ha->screen_feat &GDT_64BIT)||
/* 64-bit DMA only supported from FW >= x.43 */
(!ha->dma64_support)) {
if (pci_set_dma_mask(pcistr[ctr].pdev, DMA_32BIT_MASK)) {
printk(KERN_WARNING "GDT-PCI %d: Unable to set 32-bit DMA\n", hanum);
err = TRUE;
}
} else {
shp->max_cmd_len = 16;
if (!pci_set_dma_mask(pcistr[ctr].pdev, DMA_64BIT_MASK)) {
printk("GDT-PCI %d: 64-bit DMA enabled\n", hanum);
} else if (pci_set_dma_mask(pcistr[ctr].pdev, DMA_32BIT_MASK)) {
printk(KERN_WARNING "GDT-PCI %d: Unable to set 64/32-bit DMA\n", hanum);
err = TRUE;
}
}
}
if (err) {
printk("GDT-PCI %d: Error during device scan\n", hanum);
--gdth_ctr_count;
--gdth_ctr_vcount;
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat,
ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
free_irq(ha->irq,ha);
scsi_unregister(shp);
continue;
}
shp->max_id = ha->tid_cnt;
shp->max_lun = MAXLUN;
shp->max_channel = virt_ctr ? 0 : ha->bus_cnt;
if (virt_ctr) {
virt_ctr = 1;
/* register addit. SCSI channels as virtual controllers */
for (b = 1; b < ha->bus_cnt + 1; ++b) {
shp = scsi_register(shtp,sizeof(gdth_num_str));
shp->unchecked_isa_dma = 0;
shp->irq = ha->irq;
shp->dma_channel = 0xff;
gdth_ctr_vtab[gdth_ctr_vcount++] = shp;
NUMDATA(shp)->hanum = (ushort)hanum;
NUMDATA(shp)->busnum = b;
}
}
spin_lock_init(&ha->smp_lock);
gdth_enable_int(hanum);
}
TRACE2(("gdth_detect() %d controller detected\n",gdth_ctr_count));
if (gdth_ctr_count > 0) {
#ifdef GDTH_STATISTICS
TRACE2(("gdth_detect(): Initializing timer !\n"));
init_timer(&gdth_timer);
gdth_timer.expires = jiffies + HZ;
gdth_timer.data = 0L;
gdth_timer.function = gdth_timeout;
add_timer(&gdth_timer);
#endif
major = register_chrdev(0,"gdth",&gdth_fops);
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 13:16:30 +04:00
notifier_disabled = 0;
register_reboot_notifier(&gdth_notifier);
}
gdth_polling = FALSE;
return gdth_ctr_vcount;
}
static int gdth_release(struct Scsi_Host *shp)
{
int hanum;
gdth_ha_str *ha;
TRACE2(("gdth_release()\n"));
if (NUMDATA(shp)->busnum == 0) {
hanum = NUMDATA(shp)->hanum;
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->sdev) {
scsi_free_host_dev(ha->sdev);
ha->sdev = NULL;
}
gdth_flush(hanum);
if (shp->irq) {
free_irq(shp->irq,ha);
}
#ifndef __ia64__
if (shp->dma_channel != 0xff) {
free_dma(shp->dma_channel);
}
#endif
#ifdef INT_COAL
if (ha->coal_stat)
pci_free_consistent(ha->pdev, sizeof(gdth_coal_status) *
MAXOFFSETS, ha->coal_stat, ha->coal_stat_phys);
#endif
if (ha->pscratch)
pci_free_consistent(ha->pdev, GDTH_SCRATCH,
ha->pscratch, ha->scratch_phys);
if (ha->pmsg)
pci_free_consistent(ha->pdev, sizeof(gdth_msg_str),
ha->pmsg, ha->msg_phys);
if (ha->ccb_phys)
pci_unmap_single(ha->pdev,ha->ccb_phys,
sizeof(gdth_cmd_str),PCI_DMA_BIDIRECTIONAL);
gdth_ctr_released++;
TRACE2(("gdth_release(): HA %d of %d\n",
gdth_ctr_released, gdth_ctr_count));
if (gdth_ctr_released == gdth_ctr_count) {
#ifdef GDTH_STATISTICS
del_timer(&gdth_timer);
#endif
unregister_chrdev(major,"gdth");
unregister_reboot_notifier(&gdth_notifier);
}
}
scsi_unregister(shp);
return 0;
}
static const char *gdth_ctr_name(int hanum)
{
gdth_ha_str *ha;
TRACE2(("gdth_ctr_name()\n"));
ha = HADATA(gdth_ctr_tab[hanum]);
if (ha->type == GDT_EISA) {
switch (ha->stype) {
case GDT3_ID:
return("GDT3000/3020");
case GDT3A_ID:
return("GDT3000A/3020A/3050A");
case GDT3B_ID:
return("GDT3000B/3010A");
}
} else if (ha->type == GDT_ISA) {
return("GDT2000/2020");
} else if (ha->type == GDT_PCI) {
switch (ha->pdev->device) {
case PCI_DEVICE_ID_VORTEX_GDT60x0:
return("GDT6000/6020/6050");
case PCI_DEVICE_ID_VORTEX_GDT6000B:
return("GDT6000B/6010");
}
}
/* new controllers (GDT_PCINEW, GDT_PCIMPR, ..) use board_info IOCTL! */
return("");
}
static const char *gdth_info(struct Scsi_Host *shp)
{
int hanum;
gdth_ha_str *ha;
TRACE2(("gdth_info()\n"));
hanum = NUMDATA(shp)->hanum;
ha = HADATA(gdth_ctr_tab[hanum]);
return ((const char *)ha->binfo.type_string);
}
static int gdth_eh_bus_reset(Scsi_Cmnd *scp)
{
int i, hanum;
gdth_ha_str *ha;
ulong flags;
Scsi_Cmnd *cmnd;
unchar b;
TRACE2(("gdth_eh_bus_reset()\n"));
hanum = NUMDATA(scp->device->host)->hanum;
b = virt_ctr ? NUMDATA(scp->device->host)->busnum : scp->device->channel;
ha = HADATA(gdth_ctr_tab[hanum]);
/* clear command tab */
spin_lock_irqsave(&ha->smp_lock, flags);
for (i = 0; i < GDTH_MAXCMDS; ++i) {
cmnd = ha->cmd_tab[i].cmnd;
if (!SPECIAL_SCP(cmnd) && cmnd->device->channel == b)
ha->cmd_tab[i].cmnd = UNUSED_CMND;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
if (b == ha->virt_bus) {
/* host drives */
for (i = 0; i < MAX_HDRIVES; ++i) {
if (ha->hdr[i].present) {
spin_lock_irqsave(&ha->smp_lock, flags);
gdth_polling = TRUE;
while (gdth_test_busy(hanum))
gdth_delay(0);
if (gdth_internal_cmd(hanum, CACHESERVICE,
GDT_CLUST_RESET, i, 0, 0))
ha->hdr[i].cluster_type &= ~CLUSTER_RESERVED;
gdth_polling = FALSE;
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
}
} else {
/* raw devices */
spin_lock_irqsave(&ha->smp_lock, flags);
for (i = 0; i < MAXID; ++i)
ha->raw[BUS_L2P(ha,b)].io_cnt[i] = 0;
gdth_polling = TRUE;
while (gdth_test_busy(hanum))
gdth_delay(0);
gdth_internal_cmd(hanum, SCSIRAWSERVICE, GDT_RESET_BUS,
BUS_L2P(ha,b), 0, 0);
gdth_polling = FALSE;
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
return SUCCESS;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static int gdth_bios_param(struct scsi_device *sdev,struct block_device *bdev,sector_t cap,int *ip)
#else
static int gdth_bios_param(Disk *disk,kdev_t dev,int *ip)
#endif
{
unchar b, t;
int hanum;
gdth_ha_str *ha;
struct scsi_device *sd;
unsigned capacity;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
sd = sdev;
capacity = cap;
#else
sd = disk->device;
capacity = disk->capacity;
#endif
hanum = NUMDATA(sd->host)->hanum;
b = virt_ctr ? NUMDATA(sd->host)->busnum : sd->channel;
t = sd->id;
TRACE2(("gdth_bios_param() ha %d bus %d target %d\n", hanum, b, t));
ha = HADATA(gdth_ctr_tab[hanum]);
if (b != ha->virt_bus || ha->hdr[t].heads == 0) {
/* raw device or host drive without mapping information */
TRACE2(("Evaluate mapping\n"));
gdth_eval_mapping(capacity,&ip[2],&ip[0],&ip[1]);
} else {
ip[0] = ha->hdr[t].heads;
ip[1] = ha->hdr[t].secs;
ip[2] = capacity / ip[0] / ip[1];
}
TRACE2(("gdth_bios_param(): %d heads, %d secs, %d cyls\n",
ip[0],ip[1],ip[2]));
return 0;
}
static int gdth_queuecommand(Scsi_Cmnd *scp,void (*done)(Scsi_Cmnd *))
{
int hanum;
int priority;
TRACE(("gdth_queuecommand() cmd 0x%x\n", scp->cmnd[0]));
scp->scsi_done = (void *)done;
scp->SCp.have_data_in = 1;
scp->SCp.phase = -1;
scp->SCp.sent_command = -1;
scp->SCp.Status = GDTH_MAP_NONE;
scp->SCp.buffer = (struct scatterlist *)NULL;
hanum = NUMDATA(scp->device->host)->hanum;
#ifdef GDTH_STATISTICS
++act_ios;
#endif
priority = DEFAULT_PRI;
if (scp->done == gdth_scsi_done)
priority = scp->SCp.this_residual;
else
gdth_update_timeout(hanum, scp, scp->timeout_per_command * 6);
gdth_putq( hanum, scp, priority );
gdth_next( hanum );
return 0;
}
static int gdth_open(struct inode *inode, struct file *filep)
{
gdth_ha_str *ha;
int i;
for (i = 0; i < gdth_ctr_count; i++) {
ha = HADATA(gdth_ctr_tab[i]);
if (!ha->sdev)
ha->sdev = scsi_get_host_dev(gdth_ctr_tab[i]);
}
TRACE(("gdth_open()\n"));
return 0;
}
static int gdth_close(struct inode *inode, struct file *filep)
{
TRACE(("gdth_close()\n"));
return 0;
}
static int ioc_event(void __user *arg)
{
gdth_ioctl_event evt;
gdth_ha_str *ha;
ulong flags;
if (copy_from_user(&evt, arg, sizeof(gdth_ioctl_event)) ||
evt.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[evt.ionode]);
if (evt.erase == 0xff) {
if (evt.event.event_source == ES_TEST)
evt.event.event_data.size=sizeof(evt.event.event_data.eu.test);
else if (evt.event.event_source == ES_DRIVER)
evt.event.event_data.size=sizeof(evt.event.event_data.eu.driver);
else if (evt.event.event_source == ES_SYNC)
evt.event.event_data.size=sizeof(evt.event.event_data.eu.sync);
else
evt.event.event_data.size=sizeof(evt.event.event_data.eu.async);
spin_lock_irqsave(&ha->smp_lock, flags);
gdth_store_event(ha, evt.event.event_source, evt.event.event_idx,
&evt.event.event_data);
spin_unlock_irqrestore(&ha->smp_lock, flags);
} else if (evt.erase == 0xfe) {
gdth_clear_events();
} else if (evt.erase == 0) {
evt.handle = gdth_read_event(ha, evt.handle, &evt.event);
} else {
gdth_readapp_event(ha, evt.erase, &evt.event);
}
if (copy_to_user(arg, &evt, sizeof(gdth_ioctl_event)))
return -EFAULT;
return 0;
}
static int ioc_lockdrv(void __user *arg)
{
gdth_ioctl_lockdrv ldrv;
unchar i, j;
ulong flags;
gdth_ha_str *ha;
if (copy_from_user(&ldrv, arg, sizeof(gdth_ioctl_lockdrv)) ||
ldrv.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[ldrv.ionode]);
for (i = 0; i < ldrv.drive_cnt && i < MAX_HDRIVES; ++i) {
j = ldrv.drives[i];
if (j >= MAX_HDRIVES || !ha->hdr[j].present)
continue;
if (ldrv.lock) {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[j].lock = 1;
spin_unlock_irqrestore(&ha->smp_lock, flags);
gdth_wait_completion(ldrv.ionode, ha->bus_cnt, j);
gdth_stop_timeout(ldrv.ionode, ha->bus_cnt, j);
} else {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[j].lock = 0;
spin_unlock_irqrestore(&ha->smp_lock, flags);
gdth_start_timeout(ldrv.ionode, ha->bus_cnt, j);
gdth_next(ldrv.ionode);
}
}
return 0;
}
static int ioc_resetdrv(void __user *arg, char *cmnd)
{
gdth_ioctl_reset res;
gdth_cmd_str cmd;
int hanum;
gdth_ha_str *ha;
int rval;
if (copy_from_user(&res, arg, sizeof(gdth_ioctl_reset)) ||
res.ionode >= gdth_ctr_count || res.number >= MAX_HDRIVES)
return -EFAULT;
hanum = res.ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
if (!ha->hdr[res.number].present)
return 0;
memset(&cmd, 0, sizeof(gdth_cmd_str));
cmd.Service = CACHESERVICE;
cmd.OpCode = GDT_CLUST_RESET;
if (ha->cache_feat & GDT_64BIT)
cmd.u.cache64.DeviceNo = res.number;
else
cmd.u.cache.DeviceNo = res.number;
rval = __gdth_execute(ha->sdev, &cmd, cmnd, 30, NULL);
if (rval < 0)
return rval;
res.status = rval;
if (copy_to_user(arg, &res, sizeof(gdth_ioctl_reset)))
return -EFAULT;
return 0;
}
static int ioc_general(void __user *arg, char *cmnd)
{
gdth_ioctl_general gen;
char *buf = NULL;
ulong64 paddr;
int hanum;
gdth_ha_str *ha;
int rval;
if (copy_from_user(&gen, arg, sizeof(gdth_ioctl_general)) ||
gen.ionode >= gdth_ctr_count)
return -EFAULT;
hanum = gen.ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
if (gen.data_len + gen.sense_len != 0) {
if (!(buf = gdth_ioctl_alloc(hanum, gen.data_len + gen.sense_len,
FALSE, &paddr)))
return -EFAULT;
if (copy_from_user(buf, arg + sizeof(gdth_ioctl_general),
gen.data_len + gen.sense_len)) {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
if (gen.command.OpCode == GDT_IOCTL) {
gen.command.u.ioctl.p_param = paddr;
} else if (gen.command.Service == CACHESERVICE) {
if (ha->cache_feat & GDT_64BIT) {
/* copy elements from 32-bit IOCTL structure */
gen.command.u.cache64.BlockCnt = gen.command.u.cache.BlockCnt;
gen.command.u.cache64.BlockNo = gen.command.u.cache.BlockNo;
gen.command.u.cache64.DeviceNo = gen.command.u.cache.DeviceNo;
/* addresses */
if (ha->cache_feat & SCATTER_GATHER) {
gen.command.u.cache64.DestAddr = (ulong64)-1;
gen.command.u.cache64.sg_canz = 1;
gen.command.u.cache64.sg_lst[0].sg_ptr = paddr;
gen.command.u.cache64.sg_lst[0].sg_len = gen.data_len;
gen.command.u.cache64.sg_lst[1].sg_len = 0;
} else {
gen.command.u.cache64.DestAddr = paddr;
gen.command.u.cache64.sg_canz = 0;
}
} else {
if (ha->cache_feat & SCATTER_GATHER) {
gen.command.u.cache.DestAddr = 0xffffffff;
gen.command.u.cache.sg_canz = 1;
gen.command.u.cache.sg_lst[0].sg_ptr = (ulong32)paddr;
gen.command.u.cache.sg_lst[0].sg_len = gen.data_len;
gen.command.u.cache.sg_lst[1].sg_len = 0;
} else {
gen.command.u.cache.DestAddr = paddr;
gen.command.u.cache.sg_canz = 0;
}
}
} else if (gen.command.Service == SCSIRAWSERVICE) {
if (ha->raw_feat & GDT_64BIT) {
/* copy elements from 32-bit IOCTL structure */
char cmd[16];
gen.command.u.raw64.sense_len = gen.command.u.raw.sense_len;
gen.command.u.raw64.bus = gen.command.u.raw.bus;
gen.command.u.raw64.lun = gen.command.u.raw.lun;
gen.command.u.raw64.target = gen.command.u.raw.target;
memcpy(cmd, gen.command.u.raw.cmd, 16);
memcpy(gen.command.u.raw64.cmd, cmd, 16);
gen.command.u.raw64.clen = gen.command.u.raw.clen;
gen.command.u.raw64.sdlen = gen.command.u.raw.sdlen;
gen.command.u.raw64.direction = gen.command.u.raw.direction;
/* addresses */
if (ha->raw_feat & SCATTER_GATHER) {
gen.command.u.raw64.sdata = (ulong64)-1;
gen.command.u.raw64.sg_ranz = 1;
gen.command.u.raw64.sg_lst[0].sg_ptr = paddr;
gen.command.u.raw64.sg_lst[0].sg_len = gen.data_len;
gen.command.u.raw64.sg_lst[1].sg_len = 0;
} else {
gen.command.u.raw64.sdata = paddr;
gen.command.u.raw64.sg_ranz = 0;
}
gen.command.u.raw64.sense_data = paddr + gen.data_len;
} else {
if (ha->raw_feat & SCATTER_GATHER) {
gen.command.u.raw.sdata = 0xffffffff;
gen.command.u.raw.sg_ranz = 1;
gen.command.u.raw.sg_lst[0].sg_ptr = (ulong32)paddr;
gen.command.u.raw.sg_lst[0].sg_len = gen.data_len;
gen.command.u.raw.sg_lst[1].sg_len = 0;
} else {
gen.command.u.raw.sdata = paddr;
gen.command.u.raw.sg_ranz = 0;
}
gen.command.u.raw.sense_data = (ulong32)paddr + gen.data_len;
}
} else {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
}
rval = __gdth_execute(ha->sdev, &gen.command, cmnd, gen.timeout, &gen.info);
if (rval < 0)
return rval;
gen.status = rval;
if (copy_to_user(arg + sizeof(gdth_ioctl_general), buf,
gen.data_len + gen.sense_len)) {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
if (copy_to_user(arg, &gen,
sizeof(gdth_ioctl_general) - sizeof(gdth_cmd_str))) {
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return -EFAULT;
}
gdth_ioctl_free(hanum, gen.data_len+gen.sense_len, buf, paddr);
return 0;
}
static int ioc_hdrlist(void __user *arg, char *cmnd)
{
gdth_ioctl_rescan *rsc;
gdth_cmd_str *cmd;
gdth_ha_str *ha;
unchar i;
int hanum, rc = -ENOMEM;
u32 cluster_type = 0;
rsc = kmalloc(sizeof(*rsc), GFP_KERNEL);
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!rsc || !cmd)
goto free_fail;
if (copy_from_user(rsc, arg, sizeof(gdth_ioctl_rescan)) ||
rsc->ionode >= gdth_ctr_count) {
rc = -EFAULT;
goto free_fail;
}
hanum = rsc->ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
memset(cmd, 0, sizeof(gdth_cmd_str));
for (i = 0; i < MAX_HDRIVES; ++i) {
if (!ha->hdr[i].present) {
rsc->hdr_list[i].bus = 0xff;
continue;
}
rsc->hdr_list[i].bus = ha->virt_bus;
rsc->hdr_list[i].target = i;
rsc->hdr_list[i].lun = 0;
rsc->hdr_list[i].cluster_type = ha->hdr[i].cluster_type;
if (ha->hdr[i].cluster_type & CLUSTER_DRIVE) {
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_CLUST_INFO;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
if (__gdth_execute(ha->sdev, cmd, cmnd, 30, &cluster_type) == S_OK)
rsc->hdr_list[i].cluster_type = cluster_type;
}
}
if (copy_to_user(arg, rsc, sizeof(gdth_ioctl_rescan)))
rc = -EFAULT;
else
rc = 0;
free_fail:
kfree(rsc);
kfree(cmd);
return rc;
}
static int ioc_rescan(void __user *arg, char *cmnd)
{
gdth_ioctl_rescan *rsc;
gdth_cmd_str *cmd;
ushort i, status, hdr_cnt;
ulong32 info;
int hanum, cyls, hds, secs;
int rc = -ENOMEM;
ulong flags;
gdth_ha_str *ha;
rsc = kmalloc(sizeof(*rsc), GFP_KERNEL);
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd || !rsc)
goto free_fail;
if (copy_from_user(rsc, arg, sizeof(gdth_ioctl_rescan)) ||
rsc->ionode >= gdth_ctr_count) {
rc = -EFAULT;
goto free_fail;
}
hanum = rsc->ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
memset(cmd, 0, sizeof(gdth_cmd_str));
if (rsc->flag == 0) {
/* old method: re-init. cache service */
cmd->Service = CACHESERVICE;
if (ha->cache_feat & GDT_64BIT) {
cmd->OpCode = GDT_X_INIT_HOST;
cmd->u.cache64.DeviceNo = LINUX_OS;
} else {
cmd->OpCode = GDT_INIT;
cmd->u.cache.DeviceNo = LINUX_OS;
}
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
i = 0;
hdr_cnt = (status == S_OK ? (ushort)info : 0);
} else {
i = rsc->hdr_no;
hdr_cnt = i + 1;
}
for (; i < hdr_cnt && i < MAX_HDRIVES; ++i) {
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_INFO;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
rsc->hdr_list[i].bus = ha->virt_bus;
rsc->hdr_list[i].target = i;
rsc->hdr_list[i].lun = 0;
if (status != S_OK) {
ha->hdr[i].present = FALSE;
} else {
ha->hdr[i].present = TRUE;
ha->hdr[i].size = info;
/* evaluate mapping */
ha->hdr[i].size &= ~SECS32;
gdth_eval_mapping(ha->hdr[i].size,&cyls,&hds,&secs);
ha->hdr[i].heads = hds;
ha->hdr[i].secs = secs;
/* round size */
ha->hdr[i].size = cyls * hds * secs;
}
spin_unlock_irqrestore(&ha->smp_lock, flags);
if (status != S_OK)
continue;
/* extended info, if GDT_64BIT, for drives > 2 TB */
/* but we need ha->info2, not yet stored in scp->SCp */
/* devtype, cluster info, R/W attribs */
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_DEVTYPE;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[i].devtype = (status == S_OK ? (ushort)info : 0);
spin_unlock_irqrestore(&ha->smp_lock, flags);
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_CLUST_INFO;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[i].cluster_type =
((status == S_OK && !shared_access) ? (ushort)info : 0);
spin_unlock_irqrestore(&ha->smp_lock, flags);
rsc->hdr_list[i].cluster_type = ha->hdr[i].cluster_type;
cmd->Service = CACHESERVICE;
cmd->OpCode = GDT_RW_ATTRIBS;
if (ha->cache_feat & GDT_64BIT)
cmd->u.cache64.DeviceNo = i;
else
cmd->u.cache.DeviceNo = i;
status = __gdth_execute(ha->sdev, cmd, cmnd, 30, &info);
spin_lock_irqsave(&ha->smp_lock, flags);
ha->hdr[i].rw_attribs = (status == S_OK ? (ushort)info : 0);
spin_unlock_irqrestore(&ha->smp_lock, flags);
}
if (copy_to_user(arg, rsc, sizeof(gdth_ioctl_rescan)))
rc = -EFAULT;
else
rc = 0;
free_fail:
kfree(rsc);
kfree(cmd);
return rc;
}
static int gdth_ioctl(struct inode *inode, struct file *filep,
unsigned int cmd, unsigned long arg)
{
gdth_ha_str *ha;
Scsi_Cmnd *scp;
ulong flags;
char cmnd[MAX_COMMAND_SIZE];
void __user *argp = (void __user *)arg;
memset(cmnd, 0xff, 12);
TRACE(("gdth_ioctl() cmd 0x%x\n", cmd));
switch (cmd) {
case GDTIOCTL_CTRCNT:
{
int cnt = gdth_ctr_count;
if (put_user(cnt, (int __user *)argp))
return -EFAULT;
break;
}
case GDTIOCTL_DRVERS:
{
int ver = (GDTH_VERSION<<8) | GDTH_SUBVERSION;
if (put_user(ver, (int __user *)argp))
return -EFAULT;
break;
}
case GDTIOCTL_OSVERS:
{
gdth_ioctl_osvers osv;
osv.version = (unchar)(LINUX_VERSION_CODE >> 16);
osv.subversion = (unchar)(LINUX_VERSION_CODE >> 8);
osv.revision = (ushort)(LINUX_VERSION_CODE & 0xff);
if (copy_to_user(argp, &osv, sizeof(gdth_ioctl_osvers)))
return -EFAULT;
break;
}
case GDTIOCTL_CTRTYPE:
{
gdth_ioctl_ctrtype ctrt;
if (copy_from_user(&ctrt, argp, sizeof(gdth_ioctl_ctrtype)) ||
ctrt.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[ctrt.ionode]);
if (ha->type == GDT_ISA || ha->type == GDT_EISA) {
ctrt.type = (unchar)((ha->stype>>20) - 0x10);
} else {
if (ha->type != GDT_PCIMPR) {
ctrt.type = (unchar)((ha->stype<<4) + 6);
} else {
ctrt.type =
(ha->oem_id == OEM_ID_INTEL ? 0xfd : 0xfe);
if (ha->stype >= 0x300)
ctrt.ext_type = 0x6000 | ha->pdev->subsystem_device;
else
ctrt.ext_type = 0x6000 | ha->stype;
}
ctrt.device_id = ha->pdev->device;
ctrt.sub_device_id = ha->pdev->subsystem_device;
}
ctrt.info = ha->brd_phys;
ctrt.oem_id = ha->oem_id;
if (copy_to_user(argp, &ctrt, sizeof(gdth_ioctl_ctrtype)))
return -EFAULT;
break;
}
case GDTIOCTL_GENERAL:
return ioc_general(argp, cmnd);
case GDTIOCTL_EVENT:
return ioc_event(argp);
case GDTIOCTL_LOCKDRV:
return ioc_lockdrv(argp);
case GDTIOCTL_LOCKCHN:
{
gdth_ioctl_lockchn lchn;
unchar i, j;
if (copy_from_user(&lchn, argp, sizeof(gdth_ioctl_lockchn)) ||
lchn.ionode >= gdth_ctr_count)
return -EFAULT;
ha = HADATA(gdth_ctr_tab[lchn.ionode]);
i = lchn.channel;
if (i < ha->bus_cnt) {
if (lchn.lock) {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->raw[i].lock = 1;
spin_unlock_irqrestore(&ha->smp_lock, flags);
for (j = 0; j < ha->tid_cnt; ++j) {
gdth_wait_completion(lchn.ionode, i, j);
gdth_stop_timeout(lchn.ionode, i, j);
}
} else {
spin_lock_irqsave(&ha->smp_lock, flags);
ha->raw[i].lock = 0;
spin_unlock_irqrestore(&ha->smp_lock, flags);
for (j = 0; j < ha->tid_cnt; ++j) {
gdth_start_timeout(lchn.ionode, i, j);
gdth_next(lchn.ionode);
}
}
}
break;
}
case GDTIOCTL_RESCAN:
return ioc_rescan(argp, cmnd);
case GDTIOCTL_HDRLIST:
return ioc_hdrlist(argp, cmnd);
case GDTIOCTL_RESET_BUS:
{
gdth_ioctl_reset res;
int hanum, rval;
if (copy_from_user(&res, argp, sizeof(gdth_ioctl_reset)) ||
res.ionode >= gdth_ctr_count)
return -EFAULT;
hanum = res.ionode;
ha = HADATA(gdth_ctr_tab[hanum]);
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
scp = kmalloc(sizeof(*scp), GFP_KERNEL);
if (!scp)
return -ENOMEM;
memset(scp, 0, sizeof(*scp));
scp->device = ha->sdev;
scp->cmd_len = 12;
scp->use_sg = 0;
scp->device->channel = virt_ctr ? 0 : res.number;
rval = gdth_eh_bus_reset(scp);
res.status = (rval == SUCCESS ? S_OK : S_GENERR);
kfree(scp);
#else
scp = scsi_allocate_device(ha->sdev, 1, FALSE);
if (!scp)
return -ENOMEM;
scp->cmd_len = 12;
scp->use_sg = 0;
scp->channel = virt_ctr ? 0 : res.number;
rval = gdth_eh_bus_reset(scp);
res.status = (rval == SUCCESS ? S_OK : S_GENERR);
scsi_release_command(scp);
#endif
if (copy_to_user(argp, &res, sizeof(gdth_ioctl_reset)))
return -EFAULT;
break;
}
case GDTIOCTL_RESET_DRV:
return ioc_resetdrv(argp, cmnd);
default:
break;
}
return 0;
}
/* flush routine */
static void gdth_flush(int hanum)
{
int i;
gdth_ha_str *ha;
gdth_cmd_str gdtcmd;
char cmnd[MAX_COMMAND_SIZE];
memset(cmnd, 0xff, MAX_COMMAND_SIZE);
TRACE2(("gdth_flush() hanum %d\n",hanum));
ha = HADATA(gdth_ctr_tab[hanum]);
for (i = 0; i < MAX_HDRIVES; ++i) {
if (ha->hdr[i].present) {
gdtcmd.BoardNode = LOCALBOARD;
gdtcmd.Service = CACHESERVICE;
gdtcmd.OpCode = GDT_FLUSH;
if (ha->cache_feat & GDT_64BIT) {
gdtcmd.u.cache64.DeviceNo = i;
gdtcmd.u.cache64.BlockNo = 1;
gdtcmd.u.cache64.sg_canz = 0;
} else {
gdtcmd.u.cache.DeviceNo = i;
gdtcmd.u.cache.BlockNo = 1;
gdtcmd.u.cache.sg_canz = 0;
}
TRACE2(("gdth_flush(): flush ha %d drive %d\n", hanum, i));
gdth_execute(gdth_ctr_tab[hanum], &gdtcmd, cmnd, 30, NULL);
}
}
}
/* shutdown routine */
static int gdth_halt(struct notifier_block *nb, ulong event, void *buf)
{
int hanum;
#ifndef __alpha__
gdth_cmd_str gdtcmd;
char cmnd[MAX_COMMAND_SIZE];
#endif
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 13:16:30 +04:00
if (notifier_disabled)
return NOTIFY_OK;
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 13:16:30 +04:00
TRACE2(("gdth_halt() event %d\n",(int)event));
if (event != SYS_RESTART && event != SYS_HALT && event != SYS_POWER_OFF)
return NOTIFY_DONE;
[PATCH] Notifier chain update: API changes The kernel's implementation of notifier chains is unsafe. There is no protection against entries being added to or removed from a chain while the chain is in use. The issues were discussed in this thread: http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2 We noticed that notifier chains in the kernel fall into two basic usage classes: "Blocking" chains are always called from a process context and the callout routines are allowed to sleep; "Atomic" chains can be called from an atomic context and the callout routines are not allowed to sleep. We decided to codify this distinction and make it part of the API. Therefore this set of patches introduces three new, parallel APIs: one for blocking notifiers, one for atomic notifiers, and one for "raw" notifiers (which is really just the old API under a new name). New kinds of data structures are used for the heads of the chains, and new routines are defined for registration, unregistration, and calling a chain. The three APIs are explained in include/linux/notifier.h and their implementation is in kernel/sys.c. With atomic and blocking chains, the implementation guarantees that the chain links will not be corrupted and that chain callers will not get messed up by entries being added or removed. For raw chains the implementation provides no guarantees at all; users of this API must provide their own protections. (The idea was that situations may come up where the assumptions of the atomic and blocking APIs are not appropriate, so it should be possible for users to handle these things in their own way.) There are some limitations, which should not be too hard to live with. For atomic/blocking chains, registration and unregistration must always be done in a process context since the chain is protected by a mutex/rwsem. Also, a callout routine for a non-raw chain must not try to register or unregister entries on its own chain. (This did happen in a couple of places and the code had to be changed to avoid it.) Since atomic chains may be called from within an NMI handler, they cannot use spinlocks for synchronization. Instead we use RCU. The overhead falls almost entirely in the unregister routine, which is okay since unregistration is much less frequent that calling a chain. Here is the list of chains that we adjusted and their classifications. None of them use the raw API, so for the moment it is only a placeholder. ATOMIC CHAINS ------------- arch/i386/kernel/traps.c: i386die_chain arch/ia64/kernel/traps.c: ia64die_chain arch/powerpc/kernel/traps.c: powerpc_die_chain arch/sparc64/kernel/traps.c: sparc64die_chain arch/x86_64/kernel/traps.c: die_chain drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list kernel/panic.c: panic_notifier_list kernel/profile.c: task_free_notifier net/bluetooth/hci_core.c: hci_notifier net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain net/ipv6/addrconf.c: inet6addr_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_chain net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain net/netlink/af_netlink.c: netlink_chain BLOCKING CHAINS --------------- arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain arch/s390/kernel/process.c: idle_chain arch/x86_64/kernel/process.c idle_notifier drivers/base/memory.c: memory_chain drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list drivers/macintosh/adb.c: adb_client_list drivers/macintosh/via-pmu.c sleep_notifier_list drivers/macintosh/via-pmu68k.c sleep_notifier_list drivers/macintosh/windfarm_core.c wf_client_list drivers/usb/core/notify.c usb_notifier_list drivers/video/fbmem.c fb_notifier_list kernel/cpu.c cpu_chain kernel/module.c module_notify_list kernel/profile.c munmap_notifier kernel/profile.c task_exit_notifier kernel/sys.c reboot_notifier_list net/core/dev.c netdev_chain net/decnet/dn_dev.c: dnaddr_chain net/ipv4/devinet.c: inetaddr_chain It's possible that some of these classifications are wrong. If they are, please let us know or submit a patch to fix them. Note that any chain that gets called very frequently should be atomic, because the rwsem read-locking used for blocking chains is very likely to incur cache misses on SMP systems. (However, if the chain's callout routines may sleep then the chain cannot be atomic.) The patch set was written by Alan Stern and Chandra Seetharaman, incorporating material written by Keith Owens and suggestions from Paul McKenney and Andrew Morton. [jes@sgi.com: restructure the notifier chain initialization macros] Signed-off-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com> Signed-off-by: Jes Sorensen <jes@sgi.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-03-27 13:16:30 +04:00
notifier_disabled = 1;
printk("GDT-HA: Flushing all host drives .. ");
for (hanum = 0; hanum < gdth_ctr_count; ++hanum) {
gdth_flush(hanum);
#ifndef __alpha__
/* controller reset */
memset(cmnd, 0xff, MAX_COMMAND_SIZE);
gdtcmd.BoardNode = LOCALBOARD;
gdtcmd.Service = CACHESERVICE;
gdtcmd.OpCode = GDT_RESET;
TRACE2(("gdth_halt(): reset controller %d\n", hanum));
gdth_execute(gdth_ctr_tab[hanum], &gdtcmd, cmnd, 10, NULL);
#endif
}
printk("Done.\n");
#ifdef GDTH_STATISTICS
del_timer(&gdth_timer);
#endif
return NOTIFY_OK;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
/* configure lun */
static int gdth_slave_configure(struct scsi_device *sdev)
{
scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun);
sdev->skip_ms_page_3f = 1;
sdev->skip_ms_page_8 = 1;
return 0;
}
#endif
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
static struct scsi_host_template driver_template = {
#else
static Scsi_Host_Template driver_template = {
#endif
.proc_name = "gdth",
.proc_info = gdth_proc_info,
.name = "GDT SCSI Disk Array Controller",
.detect = gdth_detect,
.release = gdth_release,
.info = gdth_info,
.queuecommand = gdth_queuecommand,
.eh_bus_reset_handler = gdth_eh_bus_reset,
.bios_param = gdth_bios_param,
.can_queue = GDTH_MAXCMDS,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,0)
.slave_configure = gdth_slave_configure,
#endif
.this_id = -1,
.sg_tablesize = GDTH_MAXSG,
.cmd_per_lun = GDTH_MAXC_P_L,
.unchecked_isa_dma = 1,
.use_clustering = ENABLE_CLUSTERING,
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,0)
.use_new_eh_code = 1,
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,20)
.highmem_io = 1,
#endif
#endif
};
#include "scsi_module.c"
#ifndef MODULE
__setup("gdth=", option_setup);
#endif