2019-06-03 08:44:50 +03:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
2015-10-19 20:02:48 +03:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2012-2015 - ARM Ltd
|
|
|
|
* Author: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/compiler.h>
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
|
2019-01-24 19:32:54 +03:00
|
|
|
#include <asm/kprobes.h>
|
2015-10-25 22:57:11 +03:00
|
|
|
#include <asm/kvm_asm.h>
|
2017-12-14 00:56:48 +03:00
|
|
|
#include <asm/kvm_emulate.h>
|
2016-01-28 16:44:07 +03:00
|
|
|
#include <asm/kvm_hyp.h>
|
2015-10-19 20:02:48 +03:00
|
|
|
|
2015-10-28 15:39:38 +03:00
|
|
|
/*
|
|
|
|
* Non-VHE: Both host and guest must save everything.
|
|
|
|
*
|
2016-03-15 21:43:45 +03:00
|
|
|
* VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and pstate,
|
|
|
|
* which are handled as part of the el2 return state) on every switch.
|
|
|
|
* tpidr_el0 and tpidrro_el0 only need to be switched when going
|
|
|
|
* to host userspace or a different VCPU. EL1 registers only need to be
|
|
|
|
* switched when potentially going to run a different VCPU. The latter two
|
|
|
|
* classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
|
2015-10-28 15:39:38 +03:00
|
|
|
*/
|
|
|
|
|
|
|
|
static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
|
|
|
|
{
|
2016-07-19 15:56:54 +03:00
|
|
|
ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1);
|
2016-03-15 23:41:55 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The host arm64 Linux uses sp_el0 to point to 'current' and it must
|
|
|
|
* therefore be saved/restored on every entry/exit to/from the guest.
|
|
|
|
*/
|
2015-10-28 15:39:38 +03:00
|
|
|
ctxt->gp_regs.regs.sp = read_sysreg(sp_el0);
|
|
|
|
}
|
|
|
|
|
2016-03-15 23:41:55 +03:00
|
|
|
static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
|
|
|
|
{
|
|
|
|
ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0);
|
|
|
|
ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
|
2015-10-19 20:02:48 +03:00
|
|
|
{
|
|
|
|
ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
|
2016-03-15 23:41:55 +03:00
|
|
|
ctxt->sys_regs[ACTLR_EL1] = read_sysreg(actlr_el1);
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
|
|
|
|
ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
|
|
|
|
ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
|
|
|
|
ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR);
|
|
|
|
ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR);
|
|
|
|
ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0);
|
|
|
|
ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1);
|
|
|
|
ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR);
|
|
|
|
ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR);
|
|
|
|
ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR);
|
|
|
|
ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR);
|
|
|
|
ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR);
|
|
|
|
ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL);
|
2015-10-19 20:02:48 +03:00
|
|
|
ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1);
|
2018-01-08 18:38:07 +03:00
|
|
|
ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1);
|
2015-10-19 20:02:48 +03:00
|
|
|
|
|
|
|
ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1);
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR);
|
|
|
|
ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
|
2017-10-10 23:54:57 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
|
|
|
|
{
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR);
|
|
|
|
ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
|
2018-01-15 22:39:02 +03:00
|
|
|
|
arm64: kvm: hyp: use cpus_have_final_cap()
The KVM hyp code is only run after system capabilities have been
finalized, and thus all const cap checks have been patched. This is
noted in in __cpu_init_hyp_mode(), where we BUG() if called too early:
| /*
| * Call initialization code, and switch to the full blown HYP code.
| * If the cpucaps haven't been finalized yet, something has gone very
| * wrong, and hyp will crash and burn when it uses any
| * cpus_have_const_cap() wrapper.
| */
Given this, the hyp code can use cpus_have_final_cap() and avoid
generating code to check the cpu_hwcaps array, which would be unsafe to
run in hyp context.
This patch migrate the KVM hyp code to cpus_have_final_cap(), avoiding
this redundant code generation, and making it possible to detect if we
accidentally invoke this code too early. In the latter case, the BUG()
in cpus_have_final_cap() will cause a hyp panic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-02-21 17:50:22 +03:00
|
|
|
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
|
2018-01-15 22:39:02 +03:00
|
|
|
ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
|
2015-10-19 20:02:48 +03:00
|
|
|
}
|
|
|
|
|
2017-10-10 23:40:13 +03:00
|
|
|
void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
|
2017-10-10 23:19:31 +03:00
|
|
|
{
|
|
|
|
__sysreg_save_el1_state(ctxt);
|
|
|
|
__sysreg_save_common_state(ctxt);
|
|
|
|
__sysreg_save_user_state(ctxt);
|
2017-10-10 23:54:57 +03:00
|
|
|
__sysreg_save_el2_return_state(ctxt);
|
2017-10-10 23:19:31 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
|
2015-10-28 15:17:35 +03:00
|
|
|
{
|
2015-10-28 15:39:38 +03:00
|
|
|
__sysreg_save_common_state(ctxt);
|
2015-10-28 15:17:35 +03:00
|
|
|
}
|
2019-01-24 19:32:54 +03:00
|
|
|
NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
|
2015-10-28 15:17:35 +03:00
|
|
|
|
2017-10-10 23:19:31 +03:00
|
|
|
void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
|
2015-10-28 15:17:35 +03:00
|
|
|
{
|
2015-10-28 15:39:38 +03:00
|
|
|
__sysreg_save_common_state(ctxt);
|
2017-10-10 23:54:57 +03:00
|
|
|
__sysreg_save_el2_return_state(ctxt);
|
2015-10-28 15:39:38 +03:00
|
|
|
}
|
2019-01-24 19:32:54 +03:00
|
|
|
NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
|
2015-10-28 15:39:38 +03:00
|
|
|
|
|
|
|
static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
|
|
|
|
{
|
2016-07-19 15:56:54 +03:00
|
|
|
write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1);
|
2016-03-15 23:41:55 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The host arm64 Linux uses sp_el0 to point to 'current' and it must
|
|
|
|
* therefore be saved/restored on every entry/exit to/from the guest.
|
|
|
|
*/
|
2015-10-28 15:39:38 +03:00
|
|
|
write_sysreg(ctxt->gp_regs.regs.sp, sp_el0);
|
2015-10-28 15:17:35 +03:00
|
|
|
}
|
|
|
|
|
2016-03-15 23:41:55 +03:00
|
|
|
static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
|
|
|
|
{
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0);
|
|
|
|
write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0);
|
2016-03-15 23:41:55 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
|
2015-10-19 20:02:48 +03:00
|
|
|
{
|
2015-10-28 15:56:25 +03:00
|
|
|
write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
|
|
|
|
write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
|
2019-07-30 13:15:31 +03:00
|
|
|
|
arm64: kvm: hyp: use cpus_have_final_cap()
The KVM hyp code is only run after system capabilities have been
finalized, and thus all const cap checks have been patched. This is
noted in in __cpu_init_hyp_mode(), where we BUG() if called too early:
| /*
| * Call initialization code, and switch to the full blown HYP code.
| * If the cpucaps haven't been finalized yet, something has gone very
| * wrong, and hyp will crash and burn when it uses any
| * cpus_have_const_cap() wrapper.
| */
Given this, the hyp code can use cpus_have_final_cap() and avoid
generating code to check the cpu_hwcaps array, which would be unsafe to
run in hyp context.
This patch migrate the KVM hyp code to cpus_have_final_cap(), avoiding
this redundant code generation, and making it possible to detect if we
accidentally invoke this code too early. In the latter case, the BUG()
in cpus_have_final_cap() will cause a hyp panic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-02-21 17:50:22 +03:00
|
|
|
if (!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
|
2019-07-30 13:15:31 +03:00
|
|
|
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
|
|
|
|
} else if (!ctxt->__hyp_running_vcpu) {
|
|
|
|
/*
|
|
|
|
* Must only be done for guest registers, hence the context
|
|
|
|
* test. We're coming from the host, so SCTLR.M is already
|
|
|
|
* set. Pairs with __activate_traps_nvhe().
|
|
|
|
*/
|
|
|
|
write_sysreg_el1((ctxt->sys_regs[TCR_EL1] |
|
|
|
|
TCR_EPD1_MASK | TCR_EPD0_MASK),
|
|
|
|
SYS_TCR);
|
|
|
|
isb();
|
|
|
|
}
|
|
|
|
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR);
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL);
|
2015-10-28 15:56:25 +03:00
|
|
|
write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
|
2018-01-08 18:38:07 +03:00
|
|
|
write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
|
2015-10-28 15:56:25 +03:00
|
|
|
|
arm64: kvm: hyp: use cpus_have_final_cap()
The KVM hyp code is only run after system capabilities have been
finalized, and thus all const cap checks have been patched. This is
noted in in __cpu_init_hyp_mode(), where we BUG() if called too early:
| /*
| * Call initialization code, and switch to the full blown HYP code.
| * If the cpucaps haven't been finalized yet, something has gone very
| * wrong, and hyp will crash and burn when it uses any
| * cpus_have_const_cap() wrapper.
| */
Given this, the hyp code can use cpus_have_final_cap() and avoid
generating code to check the cpu_hwcaps array, which would be unsafe to
run in hyp context.
This patch migrate the KVM hyp code to cpus_have_final_cap(), avoiding
this redundant code generation, and making it possible to detect if we
accidentally invoke this code too early. In the latter case, the BUG()
in cpus_have_final_cap() will cause a hyp panic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-02-21 17:50:22 +03:00
|
|
|
if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE) &&
|
2019-07-30 13:15:31 +03:00
|
|
|
ctxt->__hyp_running_vcpu) {
|
|
|
|
/*
|
|
|
|
* Must only be done for host registers, hence the context
|
|
|
|
* test. Pairs with __deactivate_traps_nvhe().
|
|
|
|
*/
|
|
|
|
isb();
|
|
|
|
/*
|
|
|
|
* At this stage, and thanks to the above isb(), S2 is
|
|
|
|
* deconfigured and disabled. We can now restore the host's
|
|
|
|
* S1 configuration: SCTLR, and only then TCR.
|
|
|
|
*/
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
|
|
|
|
isb();
|
|
|
|
write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
|
|
|
|
}
|
|
|
|
|
2015-10-28 15:56:25 +03:00
|
|
|
write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
|
|
|
|
write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
|
2017-10-10 23:54:57 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static void __hyp_text
|
|
|
|
__sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
|
|
|
|
{
|
2018-10-17 21:21:16 +03:00
|
|
|
u64 pstate = ctxt->gp_regs.regs.pstate;
|
|
|
|
u64 mode = pstate & PSR_AA32_MODE_MASK;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Safety check to ensure we're setting the CPU up to enter the guest
|
|
|
|
* in a less privileged mode.
|
|
|
|
*
|
|
|
|
* If we are attempting a return to EL2 or higher in AArch64 state,
|
|
|
|
* program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
|
|
|
|
* we'll take an illegal exception state exception immediately after
|
|
|
|
* the ERET to the guest. Attempts to return to AArch32 Hyp will
|
|
|
|
* result in an illegal exception return because EL2's execution state
|
|
|
|
* is determined by SCR_EL3.RW.
|
|
|
|
*/
|
|
|
|
if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
|
|
|
|
pstate = PSR_MODE_EL2h | PSR_IL_BIT;
|
|
|
|
|
KVM: arm64: Migrate _elx sysreg accessors to msr_s/mrs_s
Currently, the {read,write}_sysreg_el*() accessors for accessing
particular ELs' sysregs in the presence of VHE rely on some local
hacks and define their system register encodings in a way that is
inconsistent with the core definitions in <asm/sysreg.h>.
As a result, it is necessary to add duplicate definitions for any
system register that already needs a definition in sysreg.h for
other reasons.
This is a bit of a maintenance headache, and the reasons for the
_el*() accessors working the way they do is a bit historical.
This patch gets rid of the shadow sysreg definitions in
<asm/kvm_hyp.h>, converts the _el*() accessors to use the core
__msr_s/__mrs_s interface, and converts all call sites to use the
standard sysreg #define names (i.e., upper case, with SYS_ prefix).
This patch will conflict heavily anyway, so the opportunity
to clean up some bad whitespace in the context of the changes is
taken.
The change exposes a few system registers that have no sysreg.h
definition, due to msr_s/mrs_s being used in place of msr/mrs:
additions are made in order to fill in the gaps.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://www.spinics.net/lists/kvm-arm/msg31717.html
[Rebased to v4.21-rc1]
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
[Rebased to v5.2-rc5, changelog updates]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-06 13:29:40 +03:00
|
|
|
write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR);
|
|
|
|
write_sysreg_el2(pstate, SYS_SPSR);
|
2018-01-15 22:39:02 +03:00
|
|
|
|
arm64: kvm: hyp: use cpus_have_final_cap()
The KVM hyp code is only run after system capabilities have been
finalized, and thus all const cap checks have been patched. This is
noted in in __cpu_init_hyp_mode(), where we BUG() if called too early:
| /*
| * Call initialization code, and switch to the full blown HYP code.
| * If the cpucaps haven't been finalized yet, something has gone very
| * wrong, and hyp will crash and burn when it uses any
| * cpus_have_const_cap() wrapper.
| */
Given this, the hyp code can use cpus_have_final_cap() and avoid
generating code to check the cpu_hwcaps array, which would be unsafe to
run in hyp context.
This patch migrate the KVM hyp code to cpus_have_final_cap(), avoiding
this redundant code generation, and making it possible to detect if we
accidentally invoke this code too early. In the latter case, the BUG()
in cpus_have_final_cap() will cause a hyp panic.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Cc: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Cc: Suzuki Poulouse <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2020-02-21 17:50:22 +03:00
|
|
|
if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
|
2018-01-15 22:39:02 +03:00
|
|
|
write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
|
2015-10-19 20:02:48 +03:00
|
|
|
}
|
2015-10-19 21:28:29 +03:00
|
|
|
|
2017-10-10 23:40:13 +03:00
|
|
|
void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
|
2017-10-10 23:19:31 +03:00
|
|
|
{
|
|
|
|
__sysreg_restore_el1_state(ctxt);
|
|
|
|
__sysreg_restore_common_state(ctxt);
|
|
|
|
__sysreg_restore_user_state(ctxt);
|
2017-10-10 23:54:57 +03:00
|
|
|
__sysreg_restore_el2_return_state(ctxt);
|
2017-10-10 23:19:31 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
|
2015-10-28 15:17:35 +03:00
|
|
|
{
|
2015-10-28 15:39:38 +03:00
|
|
|
__sysreg_restore_common_state(ctxt);
|
2015-10-28 15:17:35 +03:00
|
|
|
}
|
2019-01-24 19:32:54 +03:00
|
|
|
NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
|
2015-10-28 15:17:35 +03:00
|
|
|
|
2017-10-10 23:19:31 +03:00
|
|
|
void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
|
2015-10-28 15:17:35 +03:00
|
|
|
{
|
2015-10-28 15:39:38 +03:00
|
|
|
__sysreg_restore_common_state(ctxt);
|
2017-10-10 23:54:57 +03:00
|
|
|
__sysreg_restore_el2_return_state(ctxt);
|
2015-10-28 15:17:35 +03:00
|
|
|
}
|
2019-01-24 19:32:54 +03:00
|
|
|
NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
|
2015-10-28 15:17:35 +03:00
|
|
|
|
2015-10-19 21:28:29 +03:00
|
|
|
void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
u64 *spsr, *sysreg;
|
|
|
|
|
2017-12-14 00:56:48 +03:00
|
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
2015-10-19 21:28:29 +03:00
|
|
|
return;
|
|
|
|
|
|
|
|
spsr = vcpu->arch.ctxt.gp_regs.spsr;
|
|
|
|
sysreg = vcpu->arch.ctxt.sys_regs;
|
|
|
|
|
|
|
|
spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
|
|
|
|
spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
|
|
|
|
spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
|
|
|
|
spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);
|
|
|
|
|
|
|
|
sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
|
|
|
|
sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);
|
|
|
|
|
2018-05-08 16:47:23 +03:00
|
|
|
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
|
2015-10-19 21:28:29 +03:00
|
|
|
sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
|
|
|
|
}
|
|
|
|
|
|
|
|
void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
u64 *spsr, *sysreg;
|
|
|
|
|
2017-12-14 00:56:48 +03:00
|
|
|
if (!vcpu_el1_is_32bit(vcpu))
|
2015-10-19 21:28:29 +03:00
|
|
|
return;
|
|
|
|
|
|
|
|
spsr = vcpu->arch.ctxt.gp_regs.spsr;
|
|
|
|
sysreg = vcpu->arch.ctxt.sys_regs;
|
|
|
|
|
|
|
|
write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
|
|
|
|
write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
|
|
|
|
write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
|
|
|
|
write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);
|
|
|
|
|
|
|
|
write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
|
|
|
|
write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);
|
|
|
|
|
2018-05-08 16:47:23 +03:00
|
|
|
if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
|
2015-10-19 21:28:29 +03:00
|
|
|
write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
|
|
|
|
}
|
2017-10-08 18:01:56 +03:00
|
|
|
|
2017-10-10 11:21:18 +03:00
|
|
|
/**
|
|
|
|
* kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU
|
|
|
|
*
|
|
|
|
* @vcpu: The VCPU pointer
|
|
|
|
*
|
|
|
|
* Load system registers that do not affect the host's execution, for
|
|
|
|
* example EL1 system registers on a VHE system where the host kernel
|
|
|
|
* runs at EL2. This function is called from KVM's vcpu_load() function
|
|
|
|
* and loading system register state early avoids having to load them on
|
|
|
|
* every entry to the VM.
|
|
|
|
*/
|
|
|
|
void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2016-03-15 21:43:45 +03:00
|
|
|
struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
|
|
|
|
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
|
|
|
|
if (!has_vhe())
|
|
|
|
return;
|
|
|
|
|
|
|
|
__sysreg_save_user_state(host_ctxt);
|
|
|
|
|
2017-12-28 00:12:12 +03:00
|
|
|
/*
|
|
|
|
* Load guest EL1 and user state
|
|
|
|
*
|
|
|
|
* We must restore the 32-bit state before the sysregs, thanks
|
|
|
|
* to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
|
|
|
|
*/
|
|
|
|
__sysreg32_restore_state(vcpu);
|
2016-03-15 21:43:45 +03:00
|
|
|
__sysreg_restore_user_state(guest_ctxt);
|
|
|
|
__sysreg_restore_el1_state(guest_ctxt);
|
|
|
|
|
|
|
|
vcpu->arch.sysregs_loaded_on_cpu = true;
|
2017-08-04 14:47:18 +03:00
|
|
|
|
|
|
|
activate_traps_vhe_load(vcpu);
|
2017-10-10 11:21:18 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU
|
|
|
|
*
|
|
|
|
* @vcpu: The VCPU pointer
|
|
|
|
*
|
|
|
|
* Save guest system registers that do not affect the host's execution, for
|
|
|
|
* example EL1 system registers on a VHE system where the host kernel
|
|
|
|
* runs at EL2. This function is called from KVM's vcpu_put() function
|
|
|
|
* and deferring saving system register state until we're no longer running the
|
|
|
|
* VCPU avoids having to save them on every exit from the VM.
|
|
|
|
*/
|
|
|
|
void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
2016-03-15 21:43:45 +03:00
|
|
|
struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
|
|
|
|
struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
|
|
|
|
|
|
|
|
if (!has_vhe())
|
|
|
|
return;
|
|
|
|
|
2017-08-04 14:47:18 +03:00
|
|
|
deactivate_traps_vhe_put();
|
|
|
|
|
2016-03-15 21:43:45 +03:00
|
|
|
__sysreg_save_el1_state(guest_ctxt);
|
|
|
|
__sysreg_save_user_state(guest_ctxt);
|
2017-12-28 00:12:12 +03:00
|
|
|
__sysreg32_save_state(vcpu);
|
2016-03-15 21:43:45 +03:00
|
|
|
|
|
|
|
/* Restore host user state */
|
|
|
|
__sysreg_restore_user_state(host_ctxt);
|
|
|
|
|
|
|
|
vcpu->arch.sysregs_loaded_on_cpu = false;
|
2017-10-10 11:21:18 +03:00
|
|
|
}
|
2018-08-08 18:10:54 +03:00
|
|
|
|
|
|
|
void __hyp_text __kvm_enable_ssbs(void)
|
|
|
|
{
|
|
|
|
u64 tmp;
|
|
|
|
|
|
|
|
asm volatile(
|
|
|
|
"mrs %0, sctlr_el2\n"
|
|
|
|
"orr %0, %0, %1\n"
|
|
|
|
"msr sctlr_el2, %0"
|
|
|
|
: "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
|
|
|
|
}
|