WSL2-Linux-Kernel/include/linux/compaction.h

260 строки
7.3 KiB
C
Исходник Обычный вид История

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 17:07:57 +03:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_COMPACTION_H
#define _LINUX_COMPACTION_H
/*
* Determines how hard direct compaction should try to succeed.
* Lower value means higher priority, analogically to reclaim priority.
*/
enum compact_priority {
mm, compaction: add the ultimate direct compaction priority During reclaim/compaction loop, it's desirable to get a final answer from unsuccessful compaction so we can either fail the allocation or invoke the OOM killer. However, heuristics such as deferred compaction or pageblock skip bits can cause compaction to skip parts or whole zones and lead to premature OOM's, failures or excessive reclaim/compaction retries. To remedy this, we introduce a new direct compaction priority called COMPACT_PRIO_SYNC_FULL, which instructs direct compaction to: - ignore deferred compaction status for a zone - ignore pageblock skip hints - ignore cached scanner positions and scan the whole zone The new priority should get eventually picked up by should_compact_retry() and this should improve success rates for costly allocations using __GFP_REPEAT, such as hugetlbfs allocations, and reduce some corner-case OOM's for non-costly allocations. Link: http://lkml.kernel.org/r/20160810091226.6709-6-vbabka@suse.cz [vbabka@suse.cz: use the MIN_COMPACT_PRIORITY alias] Link: http://lkml.kernel.org/r/d443b884-87e7-1c93-8684-3a3a35759fb1@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Tested-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: David Rientjes <rientjes@google.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-08 02:57:47 +03:00
COMPACT_PRIO_SYNC_FULL,
MIN_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_FULL,
COMPACT_PRIO_SYNC_LIGHT,
MIN_COMPACT_COSTLY_PRIORITY = COMPACT_PRIO_SYNC_LIGHT,
DEF_COMPACT_PRIORITY = COMPACT_PRIO_SYNC_LIGHT,
COMPACT_PRIO_ASYNC,
INIT_COMPACT_PRIORITY = COMPACT_PRIO_ASYNC
};
/* Return values for compact_zone() and try_to_compact_pages() */
/* When adding new states, please adjust include/trace/events/compaction.h */
enum compact_result {
/* For more detailed tracepoint output - internal to compaction */
COMPACT_NOT_SUITABLE_ZONE,
/*
* compaction didn't start as it was not possible or direct reclaim
* was more suitable
*/
COMPACT_SKIPPED,
/* compaction didn't start as it was deferred due to past failures */
COMPACT_DEFERRED,
/* compaction not active last round */
COMPACT_INACTIVE = COMPACT_DEFERRED,
/* For more detailed tracepoint output - internal to compaction */
COMPACT_NO_SUITABLE_PAGE,
/* compaction should continue to another pageblock */
COMPACT_CONTINUE,
/*
* The full zone was compacted scanned but wasn't successfull to compact
* suitable pages.
*/
COMPACT_COMPLETE,
/*
* direct compaction has scanned part of the zone but wasn't successfull
* to compact suitable pages.
*/
COMPACT_PARTIAL_SKIPPED,
/* compaction terminated prematurely due to lock contentions */
COMPACT_CONTENDED,
/*
* direct compaction terminated after concluding that the allocation
* should now succeed
*/
COMPACT_SUCCESS,
};
struct alloc_context; /* in mm/internal.h */
/*
* Number of free order-0 pages that should be available above given watermark
* to make sure compaction has reasonable chance of not running out of free
* pages that it needs to isolate as migration target during its work.
*/
static inline unsigned long compact_gap(unsigned int order)
{
/*
* Although all the isolations for migration are temporary, compaction
* free scanner may have up to 1 << order pages on its list and then
* try to split an (order - 1) free page. At that point, a gap of
* 1 << order might not be enough, so it's safer to require twice that
* amount. Note that the number of pages on the list is also
* effectively limited by COMPACT_CLUSTER_MAX, as that's the maximum
* that the migrate scanner can have isolated on migrate list, and free
* scanner is only invoked when the number of isolated free pages is
* lower than that. But it's not worth to complicate the formula here
* as a bigger gap for higher orders than strictly necessary can also
* improve chances of compaction success.
*/
return 2UL << order;
}
#ifdef CONFIG_COMPACTION
extern int sysctl_compact_memory;
extern int sysctl_compaction_handler(struct ctl_table *table, int write,
void *buffer, size_t *length, loff_t *ppos);
extern int sysctl_extfrag_threshold;
mm: allow compaction of unevictable pages Currently, pages which are marked as unevictable are protected from compaction, but not from other types of migration. The POSIX real time extension explicitly states that mlock() will prevent a major page fault, but the spirit of this is that mlock() should give a process the ability to control sources of latency, including minor page faults. However, the mlock manpage only explicitly says that a locked page will not be written to swap and this can cause some confusion. The compaction code today does not give a developer who wants to avoid swap but wants to have large contiguous areas available any method to achieve this state. This patch introduces a sysctl for controlling compaction behavior with respect to the unevictable lru. Users who demand no page faults after a page is present can set compact_unevictable_allowed to 0 and users who need the large contiguous areas can enable compaction on locked memory by leaving the default value of 1. To illustrate this problem I wrote a quick test program that mmaps a large number of 1MB files filled with random data. These maps are created locked and read only. Then every other mmap is unmapped and I attempt to allocate huge pages to the static huge page pool. When the compact_unevictable_allowed sysctl is 0, I cannot allocate hugepages after fragmenting memory. When the value is set to 1, allocations succeed. Signed-off-by: Eric B Munson <emunson@akamai.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Christoph Lameter <cl@linux.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Christoph Lameter <cl@linux.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-16 02:13:20 +03:00
extern int sysctl_compact_unevictable_allowed;
extern int fragmentation_index(struct zone *zone, unsigned int order);
extern enum compact_result try_to_compact_pages(gfp_t gfp_mask,
mm, compaction: simplify contended compaction handling Async compaction detects contention either due to failing trylock on zone->lock or lru_lock, or by need_resched(). Since 1f9efdef4f3f ("mm, compaction: khugepaged should not give up due to need_resched()") the code got quite complicated to distinguish these two up to the __alloc_pages_slowpath() level, so different decisions could be taken for khugepaged allocations. After the recent changes, khugepaged allocations don't check for contended compaction anymore, so we again don't need to distinguish lock and sched contention, and simplify the current convoluted code a lot. However, I believe it's also possible to simplify even more and completely remove the check for contended compaction after the initial async compaction for costly orders, which was originally aimed at THP page fault allocations. There are several reasons why this can be done now: - with the new defaults, THP page faults no longer do reclaim/compaction at all, unless the system admin has overridden the default, or application has indicated via madvise that it can benefit from THP's. In both cases, it means that the potential extra latency is expected and worth the benefits. - even if reclaim/compaction proceeds after this patch where it previously wouldn't, the second compaction attempt is still async and will detect the contention and back off, if the contention persists - there are still heuristics like deferred compaction and pageblock skip bits in place that prevent excessive THP page fault latencies Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-29 01:49:30 +03:00
unsigned int order, unsigned int alloc_flags,
mm, compaction: capture a page under direct compaction Compaction is inherently race-prone as a suitable page freed during compaction can be allocated by any parallel task. This patch uses a capture_control structure to isolate a page immediately when it is freed by a direct compactor in the slow path of the page allocator. The intent is to avoid redundant scanning. 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%* Amean fault-both-3 2582.11 ( 0.00%) 2563.68 ( 0.71%) Amean fault-both-5 4500.26 ( 0.00%) 4233.52 ( 5.93%) Amean fault-both-7 5819.53 ( 0.00%) 6333.65 ( -8.83%) Amean fault-both-12 9321.18 ( 0.00%) 9759.38 ( -4.70%) Amean fault-both-18 9782.76 ( 0.00%) 10338.76 ( -5.68%) Amean fault-both-24 15272.81 ( 0.00%) 13379.55 * 12.40%* Amean fault-both-30 15121.34 ( 0.00%) 16158.25 ( -6.86%) Amean fault-both-32 18466.67 ( 0.00%) 18971.21 ( -2.73%) Latency is only moderately affected but the devil is in the details. A closer examination indicates that base page fault latency is reduced but latency of huge pages is increased as it takes creater care to succeed. Part of the "problem" is that allocation success rates are close to 100% even when under pressure and compaction gets harder 5.0.0-rc1 5.0.0-rc1 selective-v3r17 capture-v3r19 Percentage huge-3 96.70 ( 0.00%) 98.23 ( 1.58%) Percentage huge-5 96.99 ( 0.00%) 95.30 ( -1.75%) Percentage huge-7 94.19 ( 0.00%) 97.24 ( 3.24%) Percentage huge-12 94.95 ( 0.00%) 97.35 ( 2.53%) Percentage huge-18 96.74 ( 0.00%) 97.30 ( 0.58%) Percentage huge-24 97.07 ( 0.00%) 97.55 ( 0.50%) Percentage huge-30 95.69 ( 0.00%) 98.50 ( 2.95%) Percentage huge-32 96.70 ( 0.00%) 99.27 ( 2.65%) And scan rates are reduced as expected by 6% for the migration scanner and 29% for the free scanner indicating that there is less redundant work. Compaction migrate scanned 20815362 19573286 Compaction free scanned 16352612 11510663 [mgorman@techsingularity.net: remove redundant check] Link: http://lkml.kernel.org/r/20190201143853.GH9565@techsingularity.net Link: http://lkml.kernel.org/r/20190118175136.31341-23-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dan Carpenter <dan.carpenter@oracle.com> Cc: David Rientjes <rientjes@google.com> Cc: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-06 02:45:41 +03:00
const struct alloc_context *ac, enum compact_priority prio,
struct page **page);
mm: compaction: clear PG_migrate_skip based on compaction and reclaim activity Compaction caches if a pageblock was scanned and no pages were isolated so that the pageblocks can be skipped in the future to reduce scanning. This information is not cleared by the page allocator based on activity due to the impact it would have to the page allocator fast paths. Hence there is a requirement that something clear the cache or pageblocks will be skipped forever. Currently the cache is cleared if there were a number of recent allocation failures and it has not been cleared within the last 5 seconds. Time-based decisions like this are terrible as they have no relationship to VM activity and is basically a big hammer. Unfortunately, accurate heuristics would add cost to some hot paths so this patch implements a rough heuristic. There are two cases where the cache is cleared. 1. If a !kswapd process completes a compaction cycle (migrate and free scanner meet), the zone is marked compact_blockskip_flush. When kswapd goes to sleep, it will clear the cache. This is expected to be the common case where the cache is cleared. It does not really matter if kswapd happens to be asleep or going to sleep when the flag is set as it will be woken on the next allocation request. 2. If there have been multiple failures recently and compaction just finished being deferred then a process will clear the cache and start a full scan. This situation happens if there are multiple high-order allocation requests under heavy memory pressure. The clearing of the PG_migrate_skip bits and other scans is inherently racy but the race is harmless. For allocations that can fail such as THP, they will simply fail. For requests that cannot fail, they will retry the allocation. Tests indicated that scanning rates were roughly similar to when the time-based heuristic was used and the allocation success rates were similar. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 03:32:47 +04:00
extern void reset_isolation_suitable(pg_data_t *pgdat);
extern enum compact_result compaction_suitable(struct zone *zone, int order,
unsigned int alloc_flags, int highest_zoneidx);
extern void defer_compaction(struct zone *zone, int order);
extern bool compaction_deferred(struct zone *zone, int order);
extern void compaction_defer_reset(struct zone *zone, int order,
bool alloc_success);
extern bool compaction_restarting(struct zone *zone, int order);
mm: compaction: clear PG_migrate_skip based on compaction and reclaim activity Compaction caches if a pageblock was scanned and no pages were isolated so that the pageblocks can be skipped in the future to reduce scanning. This information is not cleared by the page allocator based on activity due to the impact it would have to the page allocator fast paths. Hence there is a requirement that something clear the cache or pageblocks will be skipped forever. Currently the cache is cleared if there were a number of recent allocation failures and it has not been cleared within the last 5 seconds. Time-based decisions like this are terrible as they have no relationship to VM activity and is basically a big hammer. Unfortunately, accurate heuristics would add cost to some hot paths so this patch implements a rough heuristic. There are two cases where the cache is cleared. 1. If a !kswapd process completes a compaction cycle (migrate and free scanner meet), the zone is marked compact_blockskip_flush. When kswapd goes to sleep, it will clear the cache. This is expected to be the common case where the cache is cleared. It does not really matter if kswapd happens to be asleep or going to sleep when the flag is set as it will be woken on the next allocation request. 2. If there have been multiple failures recently and compaction just finished being deferred then a process will clear the cache and start a full scan. This situation happens if there are multiple high-order allocation requests under heavy memory pressure. The clearing of the PG_migrate_skip bits and other scans is inherently racy but the race is harmless. For allocations that can fail such as THP, they will simply fail. For requests that cannot fail, they will retry the allocation. Tests indicated that scanning rates were roughly similar to when the time-based heuristic was used and the allocation success rates were similar. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 03:32:47 +04:00
/* Compaction has made some progress and retrying makes sense */
static inline bool compaction_made_progress(enum compact_result result)
{
/*
* Even though this might sound confusing this in fact tells us
* that the compaction successfully isolated and migrated some
* pageblocks.
*/
if (result == COMPACT_SUCCESS)
return true;
return false;
}
/* Compaction has failed and it doesn't make much sense to keep retrying. */
static inline bool compaction_failed(enum compact_result result)
{
/* All zones were scanned completely and still not result. */
if (result == COMPACT_COMPLETE)
return true;
return false;
}
mm, compaction: raise compaction priority after it withdrawns Mike Kravetz reports that "hugetlb allocations could stall for minutes or hours when should_compact_retry() would return true more often then it should. Specifically, this was in the case where compact_result was COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being made." The problem is that the compaction_withdrawn() test in should_compact_retry() includes compaction outcomes that are only possible on low compaction priority, and results in a retry without increasing the priority. This may result in furter reclaim, and more incomplete compaction attempts. With this patch, compaction priority is raised when possible, or should_compact_retry() returns false. The COMPACT_SKIPPED result doesn't really fit together with the other outcomes in compaction_withdrawn(), as that's a result caused by insufficient order-0 pages, not due to low compaction priority. With this patch, it is moved to a new compaction_needs_reclaim() function, and for that outcome we keep the current logic of retrying if it looks like reclaim will be able to help. Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com Reported-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 01:37:32 +03:00
/* Compaction needs reclaim to be performed first, so it can continue. */
static inline bool compaction_needs_reclaim(enum compact_result result)
{
/*
* Compaction backed off due to watermark checks for order-0
* so the regular reclaim has to try harder and reclaim something.
*/
if (result == COMPACT_SKIPPED)
return true;
mm, compaction: raise compaction priority after it withdrawns Mike Kravetz reports that "hugetlb allocations could stall for minutes or hours when should_compact_retry() would return true more often then it should. Specifically, this was in the case where compact_result was COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being made." The problem is that the compaction_withdrawn() test in should_compact_retry() includes compaction outcomes that are only possible on low compaction priority, and results in a retry without increasing the priority. This may result in furter reclaim, and more incomplete compaction attempts. With this patch, compaction priority is raised when possible, or should_compact_retry() returns false. The COMPACT_SKIPPED result doesn't really fit together with the other outcomes in compaction_withdrawn(), as that's a result caused by insufficient order-0 pages, not due to low compaction priority. With this patch, it is moved to a new compaction_needs_reclaim() function, and for that outcome we keep the current logic of retrying if it looks like reclaim will be able to help. Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com Reported-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 01:37:32 +03:00
return false;
}
/*
* Compaction has backed off for some reason after doing some work or none
* at all. It might be throttling or lock contention. Retrying might be still
* worthwhile, but with a higher priority if allowed.
*/
static inline bool compaction_withdrawn(enum compact_result result)
{
/*
* If compaction is deferred for high-order allocations, it is
* because sync compaction recently failed. If this is the case
* and the caller requested a THP allocation, we do not want
* to heavily disrupt the system, so we fail the allocation
* instead of entering direct reclaim.
*/
if (result == COMPACT_DEFERRED)
return true;
/*
* If compaction in async mode encounters contention or blocks higher
* priority task we back off early rather than cause stalls.
*/
if (result == COMPACT_CONTENDED)
return true;
/*
* Page scanners have met but we haven't scanned full zones so this
* is a back off in fact.
*/
if (result == COMPACT_PARTIAL_SKIPPED)
return true;
return false;
}
mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders "mm: consider compaction feedback also for costly allocation" has removed the upper bound for the reclaim/compaction retries based on the number of reclaimed pages for costly orders. While this is desirable the patch did miss a mis interaction between reclaim, compaction and the retry logic. The direct reclaim tries to get zones over min watermark while compaction backs off and returns COMPACT_SKIPPED when all zones are below low watermark + 1<<order gap. If we are getting really close to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a high order request (e.g. hugetlb order-9) while the reclaim is not able to release enough pages to get us over low watermark. The reclaim is still able to make some progress (usually trashing over few remaining pages) so we are not able to break out from the loop. I have seen this happening with the same test described in "mm: consider compaction feedback also for costly allocation" on a swapless system. The original problem got resolved by "vmscan: consider classzone_idx in compaction_ready" but it shows how things might go wrong when we approach the oom event horizont. The reason why compaction requires being over low rather than min watermark is not clear to me. This check was there essentially since 56de7263fcf3 ("mm: compaction: direct compact when a high-order allocation fails"). It is clearly an implementation detail though and we shouldn't pull it into the generic retry logic while we should be able to cope with such eventuality. The only place in should_compact_retry where we retry without any upper bound is for compaction_withdrawn() case. Introduce compaction_zonelist_suitable function which checks the given zonelist and returns true only if there is at least one zone which would would unblock __compaction_suitable if more memory got reclaimed. In this implementation it checks __compaction_suitable with NR_FREE_PAGES plus part of the reclaimable memory as the target for the watermark check. The reclaimable memory is reduced linearly by the allocation order. The idea is that we do not want to reclaim all the remaining memory for a single allocation request just unblock __compaction_suitable which doesn't guarantee we will make a further progress. The new helper is then used if compaction_withdrawn() feedback was provided so we do not retry if there is no outlook for a further progress. !costly requests shouldn't be affected much - e.g. order-2 pages would require to have at least 64kB on the reclaimable LRUs while order-9 would need at least 32M which should be enough to not lock up. [vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable] [akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch] Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Vladimir Davydov <vdavydov@virtuozzo.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-21 02:57:12 +03:00
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
int alloc_flags);
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
extern int kcompactd_run(int nid);
extern void kcompactd_stop(int nid);
extern void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx);
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
#else
mm: compaction: clear PG_migrate_skip based on compaction and reclaim activity Compaction caches if a pageblock was scanned and no pages were isolated so that the pageblocks can be skipped in the future to reduce scanning. This information is not cleared by the page allocator based on activity due to the impact it would have to the page allocator fast paths. Hence there is a requirement that something clear the cache or pageblocks will be skipped forever. Currently the cache is cleared if there were a number of recent allocation failures and it has not been cleared within the last 5 seconds. Time-based decisions like this are terrible as they have no relationship to VM activity and is basically a big hammer. Unfortunately, accurate heuristics would add cost to some hot paths so this patch implements a rough heuristic. There are two cases where the cache is cleared. 1. If a !kswapd process completes a compaction cycle (migrate and free scanner meet), the zone is marked compact_blockskip_flush. When kswapd goes to sleep, it will clear the cache. This is expected to be the common case where the cache is cleared. It does not really matter if kswapd happens to be asleep or going to sleep when the flag is set as it will be woken on the next allocation request. 2. If there have been multiple failures recently and compaction just finished being deferred then a process will clear the cache and start a full scan. This situation happens if there are multiple high-order allocation requests under heavy memory pressure. The clearing of the PG_migrate_skip bits and other scans is inherently racy but the race is harmless. For allocations that can fail such as THP, they will simply fail. For requests that cannot fail, they will retry the allocation. Tests indicated that scanning rates were roughly similar to when the time-based heuristic was used and the allocation success rates were similar. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Richard Davies <richard@arachsys.com> Cc: Shaohua Li <shli@kernel.org> Cc: Avi Kivity <avi@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 03:32:47 +04:00
static inline void reset_isolation_suitable(pg_data_t *pgdat)
{
}
static inline enum compact_result compaction_suitable(struct zone *zone, int order,
int alloc_flags, int highest_zoneidx)
{
return COMPACT_SKIPPED;
}
static inline void defer_compaction(struct zone *zone, int order)
{
}
static inline bool compaction_deferred(struct zone *zone, int order)
{
return true;
}
static inline bool compaction_made_progress(enum compact_result result)
{
return false;
}
static inline bool compaction_failed(enum compact_result result)
{
return false;
}
mm, compaction: raise compaction priority after it withdrawns Mike Kravetz reports that "hugetlb allocations could stall for minutes or hours when should_compact_retry() would return true more often then it should. Specifically, this was in the case where compact_result was COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being made." The problem is that the compaction_withdrawn() test in should_compact_retry() includes compaction outcomes that are only possible on low compaction priority, and results in a retry without increasing the priority. This may result in furter reclaim, and more incomplete compaction attempts. With this patch, compaction priority is raised when possible, or should_compact_retry() returns false. The COMPACT_SKIPPED result doesn't really fit together with the other outcomes in compaction_withdrawn(), as that's a result caused by insufficient order-0 pages, not due to low compaction priority. With this patch, it is moved to a new compaction_needs_reclaim() function, and for that outcome we keep the current logic of retrying if it looks like reclaim will be able to help. Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com Reported-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Tested-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 01:37:32 +03:00
static inline bool compaction_needs_reclaim(enum compact_result result)
{
return false;
}
static inline bool compaction_withdrawn(enum compact_result result)
{
return true;
}
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
static inline int kcompactd_run(int nid)
{
return 0;
}
static inline void kcompactd_stop(int nid)
{
}
static inline void wakeup_kcompactd(pg_data_t *pgdat,
int order, int highest_zoneidx)
mm, compaction: introduce kcompactd Memory compaction can be currently performed in several contexts: - kswapd balancing a zone after a high-order allocation failure - direct compaction to satisfy a high-order allocation, including THP page fault attemps - khugepaged trying to collapse a hugepage - manually from /proc The purpose of compaction is two-fold. The obvious purpose is to satisfy a (pending or future) high-order allocation, and is easy to evaluate. The other purpose is to keep overal memory fragmentation low and help the anti-fragmentation mechanism. The success wrt the latter purpose is more The current situation wrt the purposes has a few drawbacks: - compaction is invoked only when a high-order page or hugepage is not available (or manually). This might be too late for the purposes of keeping memory fragmentation low. - direct compaction increases latency of allocations. Again, it would be better if compaction was performed asynchronously to keep fragmentation low, before the allocation itself comes. - (a special case of the previous) the cost of compaction during THP page faults can easily offset the benefits of THP. - kswapd compaction appears to be complex, fragile and not working in some scenarios. It could also end up compacting for a high-order allocation request when it should be reclaiming memory for a later order-0 request. To improve the situation, we should be able to benefit from an equivalent of kswapd, but for compaction - i.e. a background thread which responds to fragmentation and the need for high-order allocations (including hugepages) somewhat proactively. One possibility is to extend the responsibilities of kswapd, which could however complicate its design too much. It should be better to let kswapd handle reclaim, as order-0 allocations are often more critical than high-order ones. Another possibility is to extend khugepaged, but this kthread is a single instance and tied to THP configs. This patch goes with the option of a new set of per-node kthreads called kcompactd, and lays the foundations, without introducing any new tunables. The lifecycle mimics kswapd kthreads, including the memory hotplug hooks. For compaction, kcompactd uses the standard compaction_suitable() and ompact_finished() criteria and the deferred compaction functionality. Unlike direct compaction, it uses only sync compaction, as there's no allocation latency to minimize. This patch doesn't yet add a call to wakeup_kcompactd. The kswapd compact/reclaim loop for high-order pages will be replaced by waking up kcompactd in the next patch with the description of what's wrong with the old approach. Waking up of the kcompactd threads is also tied to kswapd activity and follows these rules: - we don't want to affect any fastpaths, so wake up kcompactd only from the slowpath, as it's done for kswapd - if kswapd is doing reclaim, it's more important than compaction, so don't invoke kcompactd until kswapd goes to sleep - the target order used for kswapd is passed to kcompactd Future possible future uses for kcompactd include the ability to wake up kcompactd on demand in special situations, such as when hugepages are not available (currently not done due to __GFP_NO_KSWAPD) or when a fragmentation event (i.e. __rmqueue_fallback()) occurs. It's also possible to perform periodic compaction with kcompactd. [arnd@arndb.de: fix build errors with kcompactd] [paul.gortmaker@windriver.com: don't use modular references for non modular code] Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-18 00:18:08 +03:00
{
}
#endif /* CONFIG_COMPACTION */
mm: migrate: support non-lru movable page migration We have allowed migration for only LRU pages until now and it was enough to make high-order pages. But recently, embedded system(e.g., webOS, android) uses lots of non-movable pages(e.g., zram, GPU memory) so we have seen several reports about troubles of small high-order allocation. For fixing the problem, there were several efforts (e,g,. enhance compaction algorithm, SLUB fallback to 0-order page, reserved memory, vmalloc and so on) but if there are lots of non-movable pages in system, their solutions are void in the long run. So, this patch is to support facility to change non-movable pages with movable. For the feature, this patch introduces functions related to migration to address_space_operations as well as some page flags. If a driver want to make own pages movable, it should define three functions which are function pointers of struct address_space_operations. 1. bool (*isolate_page) (struct page *page, isolate_mode_t mode); What VM expects on isolate_page function of driver is to return *true* if driver isolates page successfully. On returing true, VM marks the page as PG_isolated so concurrent isolation in several CPUs skip the page for isolation. If a driver cannot isolate the page, it should return *false*. Once page is successfully isolated, VM uses page.lru fields so driver shouldn't expect to preserve values in that fields. 2. int (*migratepage) (struct address_space *mapping, struct page *newpage, struct page *oldpage, enum migrate_mode); After isolation, VM calls migratepage of driver with isolated page. The function of migratepage is to move content of the old page to new page and set up fields of struct page newpage. Keep in mind that you should indicate to the VM the oldpage is no longer movable via __ClearPageMovable() under page_lock if you migrated the oldpage successfully and returns 0. If driver cannot migrate the page at the moment, driver can return -EAGAIN. On -EAGAIN, VM will retry page migration in a short time because VM interprets -EAGAIN as "temporal migration failure". On returning any error except -EAGAIN, VM will give up the page migration without retrying in this time. Driver shouldn't touch page.lru field VM using in the functions. 3. void (*putback_page)(struct page *); If migration fails on isolated page, VM should return the isolated page to the driver so VM calls driver's putback_page with migration failed page. In this function, driver should put the isolated page back to the own data structure. 4. non-lru movable page flags There are two page flags for supporting non-lru movable page. * PG_movable Driver should use the below function to make page movable under page_lock. void __SetPageMovable(struct page *page, struct address_space *mapping) It needs argument of address_space for registering migration family functions which will be called by VM. Exactly speaking, PG_movable is not a real flag of struct page. Rather than, VM reuses page->mapping's lower bits to represent it. #define PAGE_MAPPING_MOVABLE 0x2 page->mapping = page->mapping | PAGE_MAPPING_MOVABLE; so driver shouldn't access page->mapping directly. Instead, driver should use page_mapping which mask off the low two bits of page->mapping so it can get right struct address_space. For testing of non-lru movable page, VM supports __PageMovable function. However, it doesn't guarantee to identify non-lru movable page because page->mapping field is unified with other variables in struct page. As well, if driver releases the page after isolation by VM, page->mapping doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at __ClearPageMovable). But __PageMovable is cheap to catch whether page is LRU or non-lru movable once the page has been isolated. Because LRU pages never can have PAGE_MAPPING_MOVABLE in page->mapping. It is also good for just peeking to test non-lru movable pages before more expensive checking with lock_page in pfn scanning to select victim. For guaranteeing non-lru movable page, VM provides PageMovable function. Unlike __PageMovable, PageMovable functions validates page->mapping and mapping->a_ops->isolate_page under lock_page. The lock_page prevents sudden destroying of page->mapping. Driver using __SetPageMovable should clear the flag via __ClearMovablePage under page_lock before the releasing the page. * PG_isolated To prevent concurrent isolation among several CPUs, VM marks isolated page as PG_isolated under lock_page. So if a CPU encounters PG_isolated non-lru movable page, it can skip it. Driver doesn't need to manipulate the flag because VM will set/clear it automatically. Keep in mind that if driver sees PG_isolated page, it means the page have been isolated by VM so it shouldn't touch page.lru field. PG_isolated is alias with PG_reclaim flag so driver shouldn't use the flag for own purpose. [opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru] Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: John Einar Reitan <john.reitan@foss.arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-27 01:23:05 +03:00
struct node;
#if defined(CONFIG_COMPACTION) && defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
extern int compaction_register_node(struct node *node);
extern void compaction_unregister_node(struct node *node);
#else
static inline int compaction_register_node(struct node *node)
{
return 0;
}
static inline void compaction_unregister_node(struct node *node)
{
}
#endif /* CONFIG_COMPACTION && CONFIG_SYSFS && CONFIG_NUMA */
#endif /* _LINUX_COMPACTION_H */