WSL2-Linux-Kernel/mm/readahead.c

484 строки
13 KiB
C
Исходник Обычный вид История

/*
* mm/readahead.c - address_space-level file readahead.
*
* Copyright (C) 2002, Linus Torvalds
*
* 09Apr2002 akpm@zip.com.au
* Initial version.
*/
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/pagevec.h>
#include <linux/pagemap.h>
void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
}
EXPORT_SYMBOL(default_unplug_io_fn);
struct backing_dev_info default_backing_dev_info = {
.ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
.state = 0,
.capabilities = BDI_CAP_MAP_COPY,
.unplug_io_fn = default_unplug_io_fn,
};
EXPORT_SYMBOL_GPL(default_backing_dev_info);
/*
* Initialise a struct file's readahead state. Assumes that the caller has
* memset *ra to zero.
*/
void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
ra->ra_pages = mapping->backing_dev_info->ra_pages;
ra->prev_pos = -1;
}
EXPORT_SYMBOL_GPL(file_ra_state_init);
#define list_to_page(head) (list_entry((head)->prev, struct page, lru))
/**
* read_cache_pages - populate an address space with some pages & start reads against them
* @mapping: the address_space
* @pages: The address of a list_head which contains the target pages. These
* pages have their ->index populated and are otherwise uninitialised.
* @filler: callback routine for filling a single page.
* @data: private data for the callback routine.
*
* Hides the details of the LRU cache etc from the filesystems.
*/
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
int (*filler)(void *, struct page *), void *data)
{
struct page *page;
int ret = 0;
while (!list_empty(pages)) {
page = list_to_page(pages);
list_del(&page->lru);
if (add_to_page_cache_lru(page, mapping,
page->index, GFP_KERNEL)) {
page_cache_release(page);
continue;
}
page_cache_release(page);
ret = filler(data, page);
if (unlikely(ret)) {
put_pages_list(pages);
break;
}
task_io_account_read(PAGE_CACHE_SIZE);
}
return ret;
}
EXPORT_SYMBOL(read_cache_pages);
static int read_pages(struct address_space *mapping, struct file *filp,
struct list_head *pages, unsigned nr_pages)
{
unsigned page_idx;
int ret;
if (mapping->a_ops->readpages) {
ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
/* Clean up the remaining pages */
put_pages_list(pages);
goto out;
}
for (page_idx = 0; page_idx < nr_pages; page_idx++) {
struct page *page = list_to_page(pages);
list_del(&page->lru);
if (!add_to_page_cache_lru(page, mapping,
page->index, GFP_KERNEL)) {
mapping->a_ops->readpage(filp, page);
}
page_cache_release(page);
}
ret = 0;
out:
return ret;
}
/*
* do_page_cache_readahead actually reads a chunk of disk. It allocates all
* the pages first, then submits them all for I/O. This avoids the very bad
* behaviour which would occur if page allocations are causing VM writeback.
* We really don't want to intermingle reads and writes like that.
*
* Returns the number of pages requested, or the maximum amount of I/O allowed.
*
* do_page_cache_readahead() returns -1 if it encountered request queue
* congestion.
*/
static int
__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
pgoff_t offset, unsigned long nr_to_read,
unsigned long lookahead_size)
{
struct inode *inode = mapping->host;
struct page *page;
unsigned long end_index; /* The last page we want to read */
LIST_HEAD(page_pool);
int page_idx;
int ret = 0;
loff_t isize = i_size_read(inode);
if (isize == 0)
goto out;
end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
/*
* Preallocate as many pages as we will need.
*/
for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
pgoff_t page_offset = offset + page_idx;
if (page_offset > end_index)
break;
rcu_read_lock();
page = radix_tree_lookup(&mapping->page_tree, page_offset);
rcu_read_unlock();
if (page)
continue;
page = page_cache_alloc_cold(mapping);
if (!page)
break;
page->index = page_offset;
list_add(&page->lru, &page_pool);
if (page_idx == nr_to_read - lookahead_size)
SetPageReadahead(page);
ret++;
}
/*
* Now start the IO. We ignore I/O errors - if the page is not
* uptodate then the caller will launch readpage again, and
* will then handle the error.
*/
if (ret)
read_pages(mapping, filp, &page_pool, ret);
BUG_ON(!list_empty(&page_pool));
out:
return ret;
}
/*
* Chunk the readahead into 2 megabyte units, so that we don't pin too much
* memory at once.
*/
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
pgoff_t offset, unsigned long nr_to_read)
{
int ret = 0;
if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
return -EINVAL;
while (nr_to_read) {
int err;
unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
if (this_chunk > nr_to_read)
this_chunk = nr_to_read;
err = __do_page_cache_readahead(mapping, filp,
offset, this_chunk, 0);
if (err < 0) {
ret = err;
break;
}
ret += err;
offset += this_chunk;
nr_to_read -= this_chunk;
}
return ret;
}
/*
* This version skips the IO if the queue is read-congested, and will tell the
* block layer to abandon the readahead if request allocation would block.
*
* force_page_cache_readahead() will ignore queue congestion and will block on
* request queues.
*/
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
pgoff_t offset, unsigned long nr_to_read)
{
if (bdi_read_congested(mapping->backing_dev_info))
return -1;
return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
}
/*
* Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
* sensible upper limit.
*/
unsigned long max_sane_readahead(unsigned long nr)
{
return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
}
static int __init readahead_init(void)
{
int err;
err = bdi_init(&default_backing_dev_info);
if (!err)
bdi_register(&default_backing_dev_info, NULL, "default");
return err;
}
subsys_initcall(readahead_init);
/*
* Submit IO for the read-ahead request in file_ra_state.
*/
static unsigned long ra_submit(struct file_ra_state *ra,
struct address_space *mapping, struct file *filp)
{
int actual;
actual = __do_page_cache_readahead(mapping, filp,
ra->start, ra->size, ra->async_size);
return actual;
}
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
/*
* Set the initial window size, round to next power of 2 and square
* for small size, x 4 for medium, and x 2 for large
* for 128k (32 page) max ra
* 1-8 page = 32k initial, > 8 page = 128k initial
*/
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
{
unsigned long newsize = roundup_pow_of_two(size);
if (newsize <= max / 32)
newsize = newsize * 4;
else if (newsize <= max / 4)
newsize = newsize * 2;
else
newsize = max;
return newsize;
}
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
/*
* Get the previous window size, ramp it up, and
* return it as the new window size.
*/
static unsigned long get_next_ra_size(struct file_ra_state *ra,
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
unsigned long max)
{
unsigned long cur = ra->size;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
unsigned long newsize;
if (cur < max / 16)
newsize = 4 * cur;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
else
newsize = 2 * cur;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
return min(newsize, max);
}
/*
* On-demand readahead design.
*
* The fields in struct file_ra_state represent the most-recently-executed
* readahead attempt:
*
* |<----- async_size ---------|
* |------------------- size -------------------->|
* |==================#===========================|
* ^start ^page marked with PG_readahead
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
*
* To overlap application thinking time and disk I/O time, we do
* `readahead pipelining': Do not wait until the application consumed all
* readahead pages and stalled on the missing page at readahead_index;
* Instead, submit an asynchronous readahead I/O as soon as there are
* only async_size pages left in the readahead window. Normally async_size
* will be equal to size, for maximum pipelining.
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
*
* In interleaved sequential reads, concurrent streams on the same fd can
* be invalidating each other's readahead state. So we flag the new readahead
* page at (start+size-async_size) with PG_readahead, and use it as readahead
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
* indicator. The flag won't be set on already cached pages, to avoid the
* readahead-for-nothing fuss, saving pointless page cache lookups.
*
* prev_pos tracks the last visited byte in the _previous_ read request.
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
* It should be maintained by the caller, and will be used for detecting
* small random reads. Note that the readahead algorithm checks loosely
* for sequential patterns. Hence interleaved reads might be served as
* sequential ones.
*
* There is a special-case: if the first page which the application tries to
* read happens to be the first page of the file, it is assumed that a linear
* read is about to happen and the window is immediately set to the initial size
* based on I/O request size and the max_readahead.
*
* The code ramps up the readahead size aggressively at first, but slow down as
* it approaches max_readhead.
*/
/*
* A minimal readahead algorithm for trivial sequential/random reads.
*/
static unsigned long
ondemand_readahead(struct address_space *mapping,
struct file_ra_state *ra, struct file *filp,
bool hit_readahead_marker, pgoff_t offset,
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
unsigned long req_size)
{
int max = ra->ra_pages; /* max readahead pages */
pgoff_t prev_offset;
int sequential;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
/*
* It's the expected callback offset, assume sequential access.
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
* Ramp up sizes, and push forward the readahead window.
*/
if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
offset == (ra->start + ra->size))) {
ra->start += ra->size;
ra->size = get_next_ra_size(ra, max);
ra->async_size = ra->size;
goto readit;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
}
prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
sequential = offset - prev_offset <= 1UL || req_size > max;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
/*
* Standalone, small read.
* Read as is, and do not pollute the readahead state.
*/
if (!hit_readahead_marker && !sequential) {
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
return __do_page_cache_readahead(mapping, filp,
offset, req_size, 0);
}
readahead: basic support of interleaved reads This is a simplified version of the pagecache context based readahead. It handles the case of multiple threads reading on the same fd and invalidating each others' readahead state. It does the trick by scanning the pagecache and recovering the current read stream's readahead status. The algorithm works in a opportunistic way, in that it does not try to detect interleaved reads _actively_, which requires a probe into the page cache (which means a little more overhead for random reads). It only tries to handle a previously started sequential readahead whose state was overwritten by another concurrent stream, and it can do this job pretty well. Negative and positive examples(or what you can expect from it): 1) it cannot detect and serve perfect request-by-request interleaved reads right: time stream 1 stream 2 0 1 1 1001 2 2 3 1002 4 3 5 1003 6 4 7 1004 8 5 9 1005 Here no single readahead will be carried out. 2) However, if it's two concurrent reads by two threads, the chance of the initial sequential readahead be started is huge. Once the first sequential readahead is started for a stream, this patch will ensure that the readahead window continues to rampup and won't be disturbed by other streams. time stream 1 stream 2 0 1 1 2 2 1001 3 3 4 1002 5 1003 6 4 7 5 8 1004 9 6 10 1005 11 7 12 1006 13 1007 Here stream 1 will start a readahead at page 2, and stream 2 will start its first readahead at page 1003. From then on the two streams will be served right. Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 12:24:34 +04:00
/*
* Hit a marked page without valid readahead state.
* E.g. interleaved reads.
* Query the pagecache for async_size, which normally equals to
* readahead size. Ramp it up and use it as the new readahead size.
*/
if (hit_readahead_marker) {
pgoff_t start;
rcu_read_lock();
start = radix_tree_next_hole(&mapping->page_tree, offset,max+1);
rcu_read_unlock();
readahead: basic support of interleaved reads This is a simplified version of the pagecache context based readahead. It handles the case of multiple threads reading on the same fd and invalidating each others' readahead state. It does the trick by scanning the pagecache and recovering the current read stream's readahead status. The algorithm works in a opportunistic way, in that it does not try to detect interleaved reads _actively_, which requires a probe into the page cache (which means a little more overhead for random reads). It only tries to handle a previously started sequential readahead whose state was overwritten by another concurrent stream, and it can do this job pretty well. Negative and positive examples(or what you can expect from it): 1) it cannot detect and serve perfect request-by-request interleaved reads right: time stream 1 stream 2 0 1 1 1001 2 2 3 1002 4 3 5 1003 6 4 7 1004 8 5 9 1005 Here no single readahead will be carried out. 2) However, if it's two concurrent reads by two threads, the chance of the initial sequential readahead be started is huge. Once the first sequential readahead is started for a stream, this patch will ensure that the readahead window continues to rampup and won't be disturbed by other streams. time stream 1 stream 2 0 1 1 2 2 1001 3 3 4 1002 5 1003 6 4 7 5 8 1004 9 6 10 1005 11 7 12 1006 13 1007 Here stream 1 will start a readahead at page 2, and stream 2 will start its first readahead at page 1003. From then on the two streams will be served right. Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-10-16 12:24:34 +04:00
if (!start || start - offset > max)
return 0;
ra->start = start;
ra->size = start - offset; /* old async_size */
ra->size = get_next_ra_size(ra, max);
ra->async_size = ra->size;
goto readit;
}
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
/*
* It may be one of
* - first read on start of file
* - sequential cache miss
* - oversize random read
* Start readahead for it.
*/
ra->start = offset;
ra->size = get_init_ra_size(req_size, max);
ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
readit:
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
return ra_submit(ra, mapping, filp);
}
/**
* page_cache_sync_readahead - generic file readahead
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
* @mapping: address_space which holds the pagecache and I/O vectors
* @ra: file_ra_state which holds the readahead state
* @filp: passed on to ->readpage() and ->readpages()
* @offset: start offset into @mapping, in pagecache page-sized units
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
* @req_size: hint: total size of the read which the caller is performing in
* pagecache pages
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
*
* page_cache_sync_readahead() should be called when a cache miss happened:
* it will submit the read. The readahead logic may decide to piggyback more
* pages onto the read request if access patterns suggest it will improve
* performance.
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
*/
void page_cache_sync_readahead(struct address_space *mapping,
struct file_ra_state *ra, struct file *filp,
pgoff_t offset, unsigned long req_size)
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
{
/* no read-ahead */
if (!ra->ra_pages)
return;
/* do read-ahead */
ondemand_readahead(mapping, ra, filp, false, offset, req_size);
}
EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
/**
* page_cache_async_readahead - file readahead for marked pages
* @mapping: address_space which holds the pagecache and I/O vectors
* @ra: file_ra_state which holds the readahead state
* @filp: passed on to ->readpage() and ->readpages()
* @page: the page at @offset which has the PG_readahead flag set
* @offset: start offset into @mapping, in pagecache page-sized units
* @req_size: hint: total size of the read which the caller is performing in
* pagecache pages
*
* page_cache_async_ondemand() should be called when a page is used which
* has the PG_readahead flag; this is a marker to suggest that the application
* has used up enough of the readahead window that we should start pulling in
* more pages.
*/
void
page_cache_async_readahead(struct address_space *mapping,
struct file_ra_state *ra, struct file *filp,
struct page *page, pgoff_t offset,
unsigned long req_size)
{
/* no read-ahead */
if (!ra->ra_pages)
return;
/*
* Same bit is used for PG_readahead and PG_reclaim.
*/
if (PageWriteback(page))
return;
ClearPageReadahead(page);
/*
* Defer asynchronous read-ahead on IO congestion.
*/
if (bdi_read_congested(mapping->backing_dev_info))
return;
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
/* do read-ahead */
ondemand_readahead(mapping, ra, filp, true, offset, req_size);
readahead: on-demand readahead logic This is a minimal readahead algorithm that aims to replace the current one. It is more flexible and reliable, while maintaining almost the same behavior and performance. Also it is full integrated with adaptive readahead. It is designed to be called on demand: - on a missing page, to do synchronous readahead - on a lookahead page, to do asynchronous readahead In this way it eliminated the awkward workarounds for cache hit/miss, readahead thrashing, retried read, and unaligned read. It also adopts the data structure introduced by adaptive readahead, parameterizes readahead pipelining with `lookahead_index', and reduces the current/ahead windows to one single window. HEURISTICS The logic deals with four cases: - sequential-next found a consistent readahead window, so push it forward - random standalone small read, so read as is - sequential-first create a new readahead window for a sequential/oversize request - lookahead-clueless hit a lookahead page not associated with the readahead window, so create a new readahead window and ramp it up In each case, three parameters are determined: - readahead index: where the next readahead begins - readahead size: how much to readahead - lookahead size: when to do the next readahead (for pipelining) BEHAVIORS The old behaviors are maximally preserved for trivial sequential/random reads. Notable changes are: - It no longer imposes strict sequential checks. It might help some interleaved cases, and clustered random reads. It does introduce risks of a random lookahead hit triggering an unexpected readahead. But in general it is more likely to do good than to do evil. - Interleaved reads are supported in a minimal way. Their chances of being detected and proper handled are still low. - Readahead thrashings are better handled. The current readahead leads to tiny average I/O sizes, because it never turn back for the thrashed pages. They have to be fault in by do_generic_mapping_read() one by one. Whereas the on-demand readahead will redo readahead for them. OVERHEADS The new code reduced the overheads of - excessively calling the readahead routine on small sized reads (the current readahead code insists on seeing all requests) - doing a lot of pointless page-cache lookups for small cached files (the current readahead only turns itself off after 256 cache hits, unfortunately most files are < 1MB, so never see that chance) That accounts for speedup of - 0.3% on 1-page sequential reads on sparse file - 1.2% on 1-page cache hot sequential reads - 3.2% on 256-page cache hot sequential reads - 1.3% on cache hot `tar /lib` However, it does introduce one extra page-cache lookup per cache miss, which impacts random reads slightly. That's 1% overheads for 1-page random reads on sparse file. PERFORMANCE The basic benchmark setup is - 2.6.20 kernel with on-demand readahead - 1MB max readahead size - 2.9GHz Intel Core 2 CPU - 2GB memory - 160G/8M Hitachi SATA II 7200 RPM disk The benchmarks show that - it maintains the same performance for trivial sequential/random reads - sysbench/OLTP performance on MySQL gains up to 8% - performance on readahead thrashing gains up to 3 times iozone throughput (KB/s): roughly the same ========================================== iozone -c -t1 -s 4096m -r 64k 2.6.20 on-demand gain first run " Initial write " 61437.27 64521.53 +5.0% " Rewrite " 47893.02 48335.20 +0.9% " Read " 62111.84 62141.49 +0.0% " Re-read " 62242.66 62193.17 -0.1% " Reverse Read " 50031.46 49989.79 -0.1% " Stride read " 8657.61 8652.81 -0.1% " Random read " 13914.28 13898.23 -0.1% " Mixed workload " 19069.27 19033.32 -0.2% " Random write " 14849.80 14104.38 -5.0% " Pwrite " 62955.30 65701.57 +4.4% " Pread " 62209.99 62256.26 +0.1% second run " Initial write " 60810.31 66258.69 +9.0% " Rewrite " 49373.89 57833.66 +17.1% " Read " 62059.39 62251.28 +0.3% " Re-read " 62264.32 62256.82 -0.0% " Reverse Read " 49970.96 50565.72 +1.2% " Stride read " 8654.81 8638.45 -0.2% " Random read " 13901.44 13949.91 +0.3% " Mixed workload " 19041.32 19092.04 +0.3% " Random write " 14019.99 14161.72 +1.0% " Pwrite " 64121.67 68224.17 +6.4% " Pread " 62225.08 62274.28 +0.1% In summary, writes are unstable, reads are pretty close on average: access pattern 2.6.20 on-demand gain Read 62085.61 62196.38 +0.2% Re-read 62253.49 62224.99 -0.0% Reverse Read 50001.21 50277.75 +0.6% Stride read 8656.21 8645.63 -0.1% Random read 13907.86 13924.07 +0.1% Mixed workload 19055.29 19062.68 +0.0% Pread 62217.53 62265.27 +0.1% aio-stress: roughly the same ============================ aio-stress -l -s4096 -r128 -t1 -o1 knoppix511-dvd-cn.iso aio-stress -l -s4096 -r128 -t1 -o3 knoppix511-dvd-cn.iso 2.6.20 on-demand delta sequential 92.57s 92.54s -0.0% random 311.87s 312.15s +0.1% sysbench fileio: roughly the same ================================= sysbench --test=fileio --file-io-mode=async --file-test-mode=rndrw \ --file-total-size=4G --file-block-size=64K \ --num-threads=001 --max-requests=10000 --max-time=900 run threads 2.6.20 on-demand delta first run 1 59.1974s 59.2262s +0.0% 2 58.0575s 58.2269s +0.3% 4 48.0545s 47.1164s -2.0% 8 41.0684s 41.2229s +0.4% 16 35.8817s 36.4448s +1.6% 32 32.6614s 32.8240s +0.5% 64 23.7601s 24.1481s +1.6% 128 24.3719s 23.8225s -2.3% 256 23.2366s 22.0488s -5.1% second run 1 59.6720s 59.5671s -0.2% 8 41.5158s 41.9541s +1.1% 64 25.0200s 23.9634s -4.2% 256 22.5491s 20.9486s -7.1% Note that the numbers are not very stable because of the writes. The overall performance is close when we sum all seconds up: sum all up 495.046s 491.514s -0.7% sysbench oltp (trans/sec): up to 8% gain ======================================== sysbench --test=oltp --oltp-table-size=10000000 --oltp-read-only \ --mysql-socket=/var/run/mysqld/mysqld.sock \ --mysql-user=root --mysql-password=readahead \ --num-threads=064 --max-requests=10000 --max-time=900 run 10000-transactions run threads 2.6.20 on-demand gain 1 62.81 64.56 +2.8% 2 67.97 70.93 +4.4% 4 81.81 85.87 +5.0% 8 94.60 97.89 +3.5% 16 99.07 104.68 +5.7% 32 95.93 104.28 +8.7% 64 96.48 103.68 +7.5% 5000-transactions run 1 48.21 48.65 +0.9% 8 68.60 70.19 +2.3% 64 70.57 74.72 +5.9% 2000-transactions run 1 37.57 38.04 +1.3% 2 38.43 38.99 +1.5% 4 45.39 46.45 +2.3% 8 51.64 52.36 +1.4% 16 54.39 55.18 +1.5% 32 52.13 54.49 +4.5% 64 54.13 54.61 +0.9% That's interesting results. Some investigations show that - MySQL is accessing the db file non-uniformly: some parts are more hot than others - It is mostly doing 4-page random reads, and sometimes doing two reads in a row, the latter one triggers a 16-page readahead. - The on-demand readahead leaves many lookahead pages (flagged PG_readahead) there. Many of them will be hit, and trigger more readahead pages. Which might save more seeks. - Naturally, the readahead windows tend to lie in hot areas, and the lookahead pages in hot areas is more likely to be hit. - The more overall read density, the more possible gain. That also explains the adaptive readahead tricks for clustered random reads. readahead thrashing: 3 times better =================================== We boot kernel with "mem=128m single", and start a 100KB/s stream on every second, until reaching 200 streams. max throughput min avg I/O size 2.6.20: 5MB/s 16KB on-demand: 15MB/s 140KB Signed-off-by: Fengguang Wu <wfg@mail.ustc.edu.cn> Cc: Steven Pratt <slpratt@austin.ibm.com> Cc: Ram Pai <linuxram@us.ibm.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-07-19 12:48:01 +04:00
}
EXPORT_SYMBOL_GPL(page_cache_async_readahead);