Merge cpufreq updates for 5.17-rc1:

 - Add new P-state driver for AMD processors (Huang Rui).

 - Fix initialization of min and max frequency QoS requests in the
   cpufreq core (Rafael Wysocki).

 - Fix EPP handling on Alder Lake in intel_pstate (Srinivas Pandruvada).

 - Make intel_pstate update cpuinfo.max_freq when notified of HWP
   capabilities changes and drop a redundant function call from that
   driver (Rafael Wysocki).

 - Improve IRQ support in the Qcom cpufreq driver (Ard Biesheuvel,
   Stephen Boyd, Vladimir Zapolskiy).

 - Fix double devm_remap() in the Mediatek cpufreq driver (Hector Yuan).

 - Introduce thermal pressure helpers for cpufreq CPU cooling (Lukasz
   Luba).

 - Make cpufreq use default_groups in kobj_type (Greg Kroah-Hartman).

* pm-cpufreq: (32 commits)
  x86, sched: Fix undefined reference to init_freq_invariance_cppc() build error
  cpufreq: amd-pstate: Fix Kconfig dependencies for AMD P-State
  cpufreq: amd-pstate: Fix struct amd_cpudata kernel-doc comment
  MAINTAINERS: Add AMD P-State driver maintainer entry
  Documentation: amd-pstate: Add AMD P-State driver introduction
  cpufreq: amd-pstate: Add AMD P-State performance attributes
  cpufreq: amd-pstate: Add AMD P-State frequencies attributes
  cpufreq: amd-pstate: Add boost mode support for AMD P-State
  cpufreq: amd-pstate: Add trace for AMD P-State module
  cpufreq: amd-pstate: Introduce the support for the processors with shared memory solution
  cpufreq: amd-pstate: Add fast switch function for AMD P-State
  cpufreq: amd-pstate: Introduce a new AMD P-State driver to support future processors
  ACPI: CPPC: Add CPPC enable register function
  ACPI: CPPC: Check present CPUs for determining _CPC is valid
  ACPI: CPPC: Implement support for SystemIO registers
  x86/msr: Add AMD CPPC MSR definitions
  x86/cpufeatures: Add AMD Collaborative Processor Performance Control feature flag
  cpufreq: use default_groups in kobj_type
  cpufreq: mediatek-hw: Fix double devm_remap in hotplug case
  cpufreq: intel_pstate: Update cpuinfo.max_freq on HWP_CAP changes
  ...
This commit is contained in:
Rafael J. Wysocki 2022-01-10 17:54:45 +01:00
Родитель 4ecc933b7d 6c4ab1b86d
Коммит 5561f25beb
27 изменённых файлов: 1445 добавлений и 93 удалений

Просмотреть файл

@ -4,6 +4,8 @@
Collaborative Processor Performance Control (CPPC)
==================================================
.. _cppc_sysfs:
CPPC
====

Просмотреть файл

@ -0,0 +1,382 @@
.. SPDX-License-Identifier: GPL-2.0
.. include:: <isonum.txt>
===============================================
``amd-pstate`` CPU Performance Scaling Driver
===============================================
:Copyright: |copy| 2021 Advanced Micro Devices, Inc.
:Author: Huang Rui <ray.huang@amd.com>
Introduction
===================
``amd-pstate`` is the AMD CPU performance scaling driver that introduces a
new CPU frequency control mechanism on modern AMD APU and CPU series in
Linux kernel. The new mechanism is based on Collaborative Processor
Performance Control (CPPC) which provides finer grain frequency management
than legacy ACPI hardware P-States. Current AMD CPU/APU platforms are using
the ACPI P-states driver to manage CPU frequency and clocks with switching
only in 3 P-states. CPPC replaces the ACPI P-states controls, allows a
flexible, low-latency interface for the Linux kernel to directly
communicate the performance hints to hardware.
``amd-pstate`` leverages the Linux kernel governors such as ``schedutil``,
``ondemand``, etc. to manage the performance hints which are provided by
CPPC hardware functionality that internally follows the hardware
specification (for details refer to AMD64 Architecture Programmer's Manual
Volume 2: System Programming [1]_). Currently ``amd-pstate`` supports basic
frequency control function according to kernel governors on some of the
Zen2 and Zen3 processors, and we will implement more AMD specific functions
in future after we verify them on the hardware and SBIOS.
AMD CPPC Overview
=======================
Collaborative Processor Performance Control (CPPC) interface enumerates a
continuous, abstract, and unit-less performance value in a scale that is
not tied to a specific performance state / frequency. This is an ACPI
standard [2]_ which software can specify application performance goals and
hints as a relative target to the infrastructure limits. AMD processors
provides the low latency register model (MSR) instead of AML code
interpreter for performance adjustments. ``amd-pstate`` will initialize a
``struct cpufreq_driver`` instance ``amd_pstate_driver`` with the callbacks
to manage each performance update behavior. ::
Highest Perf ------>+-----------------------+ +-----------------------+
| | | |
| | | |
| | Max Perf ---->| |
| | | |
| | | |
Nominal Perf ------>+-----------------------+ +-----------------------+
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | Desired Perf ---->| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
Lowest non- | | | |
linear perf ------>+-----------------------+ +-----------------------+
| | | |
| | Lowest perf ---->| |
| | | |
Lowest perf ------>+-----------------------+ +-----------------------+
| | | |
| | | |
| | | |
0 ------>+-----------------------+ +-----------------------+
AMD P-States Performance Scale
.. _perf_cap:
AMD CPPC Performance Capability
--------------------------------
Highest Performance (RO)
.........................
It is the absolute maximum performance an individual processor may reach,
assuming ideal conditions. This performance level may not be sustainable
for long durations and may only be achievable if other platform components
are in a specific state; for example, it may require other processors be in
an idle state. This would be equivalent to the highest frequencies
supported by the processor.
Nominal (Guaranteed) Performance (RO)
......................................
It is the maximum sustained performance level of the processor, assuming
ideal operating conditions. In absence of an external constraint (power,
thermal, etc.) this is the performance level the processor is expected to
be able to maintain continuously. All cores/processors are expected to be
able to sustain their nominal performance state simultaneously.
Lowest non-linear Performance (RO)
...................................
It is the lowest performance level at which nonlinear power savings are
achieved, for example, due to the combined effects of voltage and frequency
scaling. Above this threshold, lower performance levels should be generally
more energy efficient than higher performance levels. This register
effectively conveys the most efficient performance level to ``amd-pstate``.
Lowest Performance (RO)
........................
It is the absolute lowest performance level of the processor. Selecting a
performance level lower than the lowest nonlinear performance level may
cause an efficiency penalty but should reduce the instantaneous power
consumption of the processor.
AMD CPPC Performance Control
------------------------------
``amd-pstate`` passes performance goals through these registers. The
register drives the behavior of the desired performance target.
Minimum requested performance (RW)
...................................
``amd-pstate`` specifies the minimum allowed performance level.
Maximum requested performance (RW)
...................................
``amd-pstate`` specifies a limit the maximum performance that is expected
to be supplied by the hardware.
Desired performance target (RW)
...................................
``amd-pstate`` specifies a desired target in the CPPC performance scale as
a relative number. This can be expressed as percentage of nominal
performance (infrastructure max). Below the nominal sustained performance
level, desired performance expresses the average performance level of the
processor subject to hardware. Above the nominal performance level,
processor must provide at least nominal performance requested and go higher
if current operating conditions allow.
Energy Performance Preference (EPP) (RW)
.........................................
Provides a hint to the hardware if software wants to bias toward performance
(0x0) or energy efficiency (0xff).
Key Governors Support
=======================
``amd-pstate`` can be used with all the (generic) scaling governors listed
by the ``scaling_available_governors`` policy attribute in ``sysfs``. Then,
it is responsible for the configuration of policy objects corresponding to
CPUs and provides the ``CPUFreq`` core (and the scaling governors attached
to the policy objects) with accurate information on the maximum and minimum
operating frequencies supported by the hardware. Users can check the
``scaling_cur_freq`` information comes from the ``CPUFreq`` core.
``amd-pstate`` mainly supports ``schedutil`` and ``ondemand`` for dynamic
frequency control. It is to fine tune the processor configuration on
``amd-pstate`` to the ``schedutil`` with CPU CFS scheduler. ``amd-pstate``
registers adjust_perf callback to implement the CPPC similar performance
update behavior. It is initialized by ``sugov_start`` and then populate the
CPU's update_util_data pointer to assign ``sugov_update_single_perf`` as
the utilization update callback function in CPU scheduler. CPU scheduler
will call ``cpufreq_update_util`` and assign the target performance
according to the ``struct sugov_cpu`` that utilization update belongs to.
Then ``amd-pstate`` updates the desired performance according to the CPU
scheduler assigned.
Processor Support
=======================
The ``amd-pstate`` initialization will fail if the _CPC in ACPI SBIOS is
not existed at the detected processor, and it uses ``acpi_cpc_valid`` to
check the _CPC existence. All Zen based processors support legacy ACPI
hardware P-States function, so while the ``amd-pstate`` fails to be
initialized, the kernel will fall back to initialize ``acpi-cpufreq``
driver.
There are two types of hardware implementations for ``amd-pstate``: one is
`Full MSR Support <perf_cap_>`_ and another is `Shared Memory Support
<perf_cap_>`_. It can use :c:macro:`X86_FEATURE_CPPC` feature flag (for
details refer to Processor Programming Reference (PPR) for AMD Family
19h Model 51h, Revision A1 Processors [3]_) to indicate the different
types. ``amd-pstate`` is to register different ``static_call`` instances
for different hardware implementations.
Currently, some of Zen2 and Zen3 processors support ``amd-pstate``. In the
future, it will be supported on more and more AMD processors.
Full MSR Support
-----------------
Some new Zen3 processors such as Cezanne provide the MSR registers directly
while the :c:macro:`X86_FEATURE_CPPC` CPU feature flag is set.
``amd-pstate`` can handle the MSR register to implement the fast switch
function in ``CPUFreq`` that can shrink latency of frequency control on the
interrupt context. The functions with ``pstate_xxx`` prefix represent the
operations of MSR registers.
Shared Memory Support
----------------------
If :c:macro:`X86_FEATURE_CPPC` CPU feature flag is not set, that means the
processor supports shared memory solution. In this case, ``amd-pstate``
uses the ``cppc_acpi`` helper methods to implement the callback functions
that defined on ``static_call``. The functions with ``cppc_xxx`` prefix
represent the operations of acpi cppc helpers for shared memory solution.
AMD P-States and ACPI hardware P-States always can be supported in one
processor. But AMD P-States has the higher priority and if it is enabled
with :c:macro:`MSR_AMD_CPPC_ENABLE` or ``cppc_set_enable``, it will respond
to the request from AMD P-States.
User Space Interface in ``sysfs``
==================================
``amd-pstate`` exposes several global attributes (files) in ``sysfs`` to
control its functionality at the system level. They located in the
``/sys/devices/system/cpu/cpufreq/policyX/`` directory and affect all CPUs. ::
root@hr-test1:/home/ray# ls /sys/devices/system/cpu/cpufreq/policy0/*amd*
/sys/devices/system/cpu/cpufreq/policy0/amd_pstate_highest_perf
/sys/devices/system/cpu/cpufreq/policy0/amd_pstate_lowest_nonlinear_freq
/sys/devices/system/cpu/cpufreq/policy0/amd_pstate_max_freq
``amd_pstate_highest_perf / amd_pstate_max_freq``
Maximum CPPC performance and CPU frequency that the driver is allowed to
set in percent of the maximum supported CPPC performance level (the highest
performance supported in `AMD CPPC Performance Capability <perf_cap_>`_).
In some of ASICs, the highest CPPC performance is not the one in the _CPC
table, so we need to expose it to sysfs. If boost is not active but
supported, this maximum frequency will be larger than the one in
``cpuinfo``.
This attribute is read-only.
``amd_pstate_lowest_nonlinear_freq``
The lowest non-linear CPPC CPU frequency that the driver is allowed to set
in percent of the maximum supported CPPC performance level (Please see the
lowest non-linear performance in `AMD CPPC Performance Capability
<perf_cap_>`_).
This attribute is read-only.
For other performance and frequency values, we can read them back from
``/sys/devices/system/cpu/cpuX/acpi_cppc/``, see :ref:`cppc_sysfs`.
``amd-pstate`` vs ``acpi-cpufreq``
======================================
On majority of AMD platforms supported by ``acpi-cpufreq``, the ACPI tables
provided by the platform firmware used for CPU performance scaling, but
only provides 3 P-states on AMD processors.
However, on modern AMD APU and CPU series, it provides the collaborative
processor performance control according to ACPI protocol and customize this
for AMD platforms. That is fine-grain and continuous frequency range
instead of the legacy hardware P-states. ``amd-pstate`` is the kernel
module which supports the new AMD P-States mechanism on most of future AMD
platforms. The AMD P-States mechanism will be the more performance and energy
efficiency frequency management method on AMD processors.
Kernel Module Options for ``amd-pstate``
=========================================
``shared_mem``
Use a module param (shared_mem) to enable related processors manually with
**amd_pstate.shared_mem=1**.
Due to the performance issue on the processors with `Shared Memory Support
<perf_cap_>`_, so we disable it for the moment and will enable this by default
once we address performance issue on this solution.
The way to check whether current processor is `Full MSR Support <perf_cap_>`_
or `Shared Memory Support <perf_cap_>`_ : ::
ray@hr-test1:~$ lscpu | grep cppc
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
If CPU Flags have cppc, then this processor supports `Full MSR Support
<perf_cap_>`_. Otherwise it supports `Shared Memory Support <perf_cap_>`_.
``cpupower`` tool support for ``amd-pstate``
===============================================
``amd-pstate`` is supported on ``cpupower`` tool that can be used to dump the frequency
information. And it is in progress to support more and more operations for new
``amd-pstate`` module with this tool. ::
root@hr-test1:/home/ray# cpupower frequency-info
analyzing CPU 0:
driver: amd-pstate
CPUs which run at the same hardware frequency: 0
CPUs which need to have their frequency coordinated by software: 0
maximum transition latency: 131 us
hardware limits: 400 MHz - 4.68 GHz
available cpufreq governors: ondemand conservative powersave userspace performance schedutil
current policy: frequency should be within 400 MHz and 4.68 GHz.
The governor "schedutil" may decide which speed to use
within this range.
current CPU frequency: Unable to call hardware
current CPU frequency: 4.02 GHz (asserted by call to kernel)
boost state support:
Supported: yes
Active: yes
AMD PSTATE Highest Performance: 166. Maximum Frequency: 4.68 GHz.
AMD PSTATE Nominal Performance: 117. Nominal Frequency: 3.30 GHz.
AMD PSTATE Lowest Non-linear Performance: 39. Lowest Non-linear Frequency: 1.10 GHz.
AMD PSTATE Lowest Performance: 15. Lowest Frequency: 400 MHz.
Diagnostics and Tuning
=======================
Trace Events
--------------
There are two static trace events that can be used for ``amd-pstate``
diagnostics. One of them is the cpu_frequency trace event generally used
by ``CPUFreq``, and the other one is the ``amd_pstate_perf`` trace event
specific to ``amd-pstate``. The following sequence of shell commands can
be used to enable them and see their output (if the kernel is generally
configured to support event tracing). ::
root@hr-test1:/home/ray# cd /sys/kernel/tracing/
root@hr-test1:/sys/kernel/tracing# echo 1 > events/amd_cpu/enable
root@hr-test1:/sys/kernel/tracing# cat trace
# tracer: nop
#
# entries-in-buffer/entries-written: 47827/42233061 #P:2
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
<idle>-0 [015] dN... 4995.979886: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=15 changed=false fast_switch=true
<idle>-0 [007] d.h.. 4995.979893: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=7 changed=false fast_switch=true
cat-2161 [000] d.... 4995.980841: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=0 changed=false fast_switch=true
sshd-2125 [004] d.s.. 4995.980968: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=4 changed=false fast_switch=true
<idle>-0 [007] d.s.. 4995.980968: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=7 changed=false fast_switch=true
<idle>-0 [003] d.s.. 4995.980971: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=3 changed=false fast_switch=true
<idle>-0 [011] d.s.. 4995.980996: amd_pstate_perf: amd_min_perf=85 amd_des_perf=85 amd_max_perf=166 cpu_id=11 changed=false fast_switch=true
The cpu_frequency trace event will be triggered either by the ``schedutil`` scaling
governor (for the policies it is attached to), or by the ``CPUFreq`` core (for the
policies with other scaling governors).
Reference
===========
.. [1] AMD64 Architecture Programmer's Manual Volume 2: System Programming,
https://www.amd.com/system/files/TechDocs/24593.pdf
.. [2] Advanced Configuration and Power Interface Specification,
https://uefi.org/sites/default/files/resources/ACPI_Spec_6_4_Jan22.pdf
.. [3] Processor Programming Reference (PPR) for AMD Family 19h Model 51h, Revision A1 Processors
https://www.amd.com/system/files/TechDocs/56569-A1-PUB.zip

Просмотреть файл

@ -11,6 +11,7 @@ Working-State Power Management
intel_idle
cpufreq
intel_pstate
amd-pstate
cpufreq_drivers
intel_epb
intel-speed-select

Просмотреть файл

@ -993,6 +993,13 @@ S: Supported
T: git https://gitlab.freedesktop.org/agd5f/linux.git
F: drivers/gpu/drm/amd/pm/
AMD PSTATE DRIVER
M: Huang Rui <ray.huang@amd.com>
L: linux-pm@vger.kernel.org
S: Supported
F: Documentation/admin-guide/pm/amd-pstate.rst
F: drivers/cpufreq/amd-pstate*
AMD PTDMA DRIVER
M: Sanjay R Mehta <sanju.mehta@amd.com>
L: dmaengine@vger.kernel.org

Просмотреть файл

@ -23,7 +23,7 @@
/* Replace task scheduler's default thermal pressure API */
#define arch_scale_thermal_pressure topology_get_thermal_pressure
#define arch_set_thermal_pressure topology_set_thermal_pressure
#define arch_update_thermal_pressure topology_update_thermal_pressure
#else

Просмотреть файл

@ -32,7 +32,7 @@ void update_freq_counters_refs(void);
/* Replace task scheduler's default thermal pressure API */
#define arch_scale_thermal_pressure topology_get_thermal_pressure
#define arch_set_thermal_pressure topology_set_thermal_pressure
#define arch_update_thermal_pressure topology_update_thermal_pressure
#include <asm-generic/topology.h>

Просмотреть файл

@ -315,6 +315,7 @@
#define X86_FEATURE_AMD_SSBD (13*32+24) /* "" Speculative Store Bypass Disable */
#define X86_FEATURE_VIRT_SSBD (13*32+25) /* Virtualized Speculative Store Bypass Disable */
#define X86_FEATURE_AMD_SSB_NO (13*32+26) /* "" Speculative Store Bypass is fixed in hardware. */
#define X86_FEATURE_CPPC (13*32+27) /* Collaborative Processor Performance Control */
/* Thermal and Power Management Leaf, CPUID level 0x00000006 (EAX), word 14 */
#define X86_FEATURE_DTHERM (14*32+ 0) /* Digital Thermal Sensor */

Просмотреть файл

@ -486,6 +486,23 @@
#define MSR_AMD64_VIRT_SPEC_CTRL 0xc001011f
/* AMD Collaborative Processor Performance Control MSRs */
#define MSR_AMD_CPPC_CAP1 0xc00102b0
#define MSR_AMD_CPPC_ENABLE 0xc00102b1
#define MSR_AMD_CPPC_CAP2 0xc00102b2
#define MSR_AMD_CPPC_REQ 0xc00102b3
#define MSR_AMD_CPPC_STATUS 0xc00102b4
#define AMD_CPPC_LOWEST_PERF(x) (((x) >> 0) & 0xff)
#define AMD_CPPC_LOWNONLIN_PERF(x) (((x) >> 8) & 0xff)
#define AMD_CPPC_NOMINAL_PERF(x) (((x) >> 16) & 0xff)
#define AMD_CPPC_HIGHEST_PERF(x) (((x) >> 24) & 0xff)
#define AMD_CPPC_MAX_PERF(x) (((x) & 0xff) << 0)
#define AMD_CPPC_MIN_PERF(x) (((x) & 0xff) << 8)
#define AMD_CPPC_DES_PERF(x) (((x) & 0xff) << 16)
#define AMD_CPPC_ENERGY_PERF_PREF(x) (((x) & 0xff) << 24)
/* Fam 17h MSRs */
#define MSR_F17H_IRPERF 0xc00000e9

Просмотреть файл

@ -221,7 +221,7 @@ static inline void arch_set_max_freq_ratio(bool turbo_disabled)
}
#endif
#ifdef CONFIG_ACPI_CPPC_LIB
#if defined(CONFIG_ACPI_CPPC_LIB) && defined(CONFIG_SMP)
void init_freq_invariance_cppc(void);
#define init_freq_invariance_cppc init_freq_invariance_cppc
#endif

Просмотреть файл

@ -118,6 +118,8 @@ static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
*/
#define NUM_RETRIES 500ULL
#define OVER_16BTS_MASK ~0xFFFFULL
#define define_one_cppc_ro(_name) \
static struct kobj_attribute _name = \
__ATTR(_name, 0444, show_##_name, NULL)
@ -411,7 +413,7 @@ bool acpi_cpc_valid(void)
struct cpc_desc *cpc_ptr;
int cpu;
for_each_possible_cpu(cpu) {
for_each_present_cpu(cpu) {
cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
if (!cpc_ptr)
return false;
@ -746,9 +748,26 @@ int acpi_cppc_processor_probe(struct acpi_processor *pr)
goto out_free;
cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
}
} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
if (gas_t->access_width < 1 || gas_t->access_width > 3) {
/*
* 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
* SystemIO doesn't implement 64-bit
* registers.
*/
pr_debug("Invalid access width %d for SystemIO register\n",
gas_t->access_width);
goto out_free;
}
if (gas_t->address & OVER_16BTS_MASK) {
/* SystemIO registers use 16-bit integer addresses */
pr_debug("Invalid IO port %llu for SystemIO register\n",
gas_t->address);
goto out_free;
}
} else {
if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
/* Support only PCC ,SYS MEM and FFH type regs */
/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
pr_debug("Unsupported register type: %d\n", gas_t->space_id);
goto out_free;
}
@ -923,7 +942,21 @@ static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
}
*val = 0;
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
u32 width = 8 << (reg->access_width - 1);
acpi_status status;
status = acpi_os_read_port((acpi_io_address)reg->address,
(u32 *)val, width);
if (ACPI_FAILURE(status)) {
pr_debug("Error: Failed to read SystemIO port %llx\n",
reg->address);
return -EFAULT;
}
return 0;
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
vaddr = reg_res->sys_mem_vaddr;
@ -962,7 +995,20 @@ static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_reg *reg = &reg_res->cpc_entry.reg;
if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
u32 width = 8 << (reg->access_width - 1);
acpi_status status;
status = acpi_os_write_port((acpi_io_address)reg->address,
(u32)val, width);
if (ACPI_FAILURE(status)) {
pr_debug("Error: Failed to write SystemIO port %llx\n",
reg->address);
return -EFAULT;
}
return 0;
} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
vaddr = reg_res->sys_mem_vaddr;
@ -1229,6 +1275,51 @@ out_err:
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
/**
* cppc_set_enable - Set to enable CPPC on the processor by writing the
* Continuous Performance Control package EnableRegister field.
* @cpu: CPU for which to enable CPPC register.
* @enable: 0 - disable, 1 - enable CPPC feature on the processor.
*
* Return: 0 for success, -ERRNO or -EIO otherwise.
*/
int cppc_set_enable(int cpu, bool enable)
{
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_register_resource *enable_reg;
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret = -EINVAL;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -EINVAL;
}
enable_reg = &cpc_desc->cpc_regs[ENABLE];
if (CPC_IN_PCC(enable_reg)) {
if (pcc_ss_id < 0)
return -EIO;
ret = cpc_write(cpu, enable_reg, enable);
if (ret)
return ret;
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
/* after writing CPC, transfer the ownership of PCC to platfrom */
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
up_write(&pcc_ss_data->pcc_lock);
return ret;
}
return cpc_write(cpu, enable_reg, enable);
}
EXPORT_SYMBOL_GPL(cppc_set_enable);
/**
* cppc_set_perf - Set a CPU's performance controls.
* @cpu: CPU for which to set performance controls.

Просмотреть файл

@ -22,6 +22,7 @@
static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
static struct cpumask scale_freq_counters_mask;
static bool scale_freq_invariant;
static DEFINE_PER_CPU(u32, freq_factor) = 1;
static bool supports_scale_freq_counters(const struct cpumask *cpus)
{
@ -155,15 +156,49 @@ void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
DEFINE_PER_CPU(unsigned long, thermal_pressure);
void topology_set_thermal_pressure(const struct cpumask *cpus,
unsigned long th_pressure)
/**
* topology_update_thermal_pressure() - Update thermal pressure for CPUs
* @cpus : The related CPUs for which capacity has been reduced
* @capped_freq : The maximum allowed frequency that CPUs can run at
*
* Update the value of thermal pressure for all @cpus in the mask. The
* cpumask should include all (online+offline) affected CPUs, to avoid
* operating on stale data when hot-plug is used for some CPUs. The
* @capped_freq reflects the currently allowed max CPUs frequency due to
* thermal capping. It might be also a boost frequency value, which is bigger
* than the internal 'freq_factor' max frequency. In such case the pressure
* value should simply be removed, since this is an indication that there is
* no thermal throttling. The @capped_freq must be provided in kHz.
*/
void topology_update_thermal_pressure(const struct cpumask *cpus,
unsigned long capped_freq)
{
unsigned long max_capacity, capacity, th_pressure;
u32 max_freq;
int cpu;
cpu = cpumask_first(cpus);
max_capacity = arch_scale_cpu_capacity(cpu);
max_freq = per_cpu(freq_factor, cpu);
/* Convert to MHz scale which is used in 'freq_factor' */
capped_freq /= 1000;
/*
* Handle properly the boost frequencies, which should simply clean
* the thermal pressure value.
*/
if (max_freq <= capped_freq)
capacity = max_capacity;
else
capacity = mult_frac(max_capacity, capped_freq, max_freq);
th_pressure = max_capacity - capacity;
for_each_cpu(cpu, cpus)
WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
}
EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
static ssize_t cpu_capacity_show(struct device *dev,
struct device_attribute *attr,
@ -217,7 +252,6 @@ static void update_topology_flags_workfn(struct work_struct *work)
update_topology = 0;
}
static DEFINE_PER_CPU(u32, freq_factor) = 1;
static u32 *raw_capacity;
static int free_raw_capacity(void)

Просмотреть файл

@ -34,6 +34,23 @@ config X86_PCC_CPUFREQ
If in doubt, say N.
config X86_AMD_PSTATE
tristate "AMD Processor P-State driver"
depends on X86 && ACPI
select ACPI_PROCESSOR
select ACPI_CPPC_LIB if X86_64
select CPU_FREQ_GOV_SCHEDUTIL if SMP
help
This driver adds a CPUFreq driver which utilizes a fine grain
processor performance frequency control range instead of legacy
performance levels. _CPC needs to be present in the ACPI tables
of the system.
For details, take a look at:
<file:Documentation/admin-guide/pm/amd-pstate.rst>.
If in doubt, say N.
config X86_ACPI_CPUFREQ
tristate "ACPI Processor P-States driver"
depends on ACPI_PROCESSOR

Просмотреть файл

@ -17,6 +17,10 @@ obj-$(CONFIG_CPU_FREQ_GOV_ATTR_SET) += cpufreq_governor_attr_set.o
obj-$(CONFIG_CPUFREQ_DT) += cpufreq-dt.o
obj-$(CONFIG_CPUFREQ_DT_PLATDEV) += cpufreq-dt-platdev.o
# Traces
CFLAGS_amd-pstate-trace.o := -I$(src)
amd_pstate-y := amd-pstate.o amd-pstate-trace.o
##################################################################################
# x86 drivers.
# Link order matters. K8 is preferred to ACPI because of firmware bugs in early
@ -25,6 +29,7 @@ obj-$(CONFIG_CPUFREQ_DT_PLATDEV) += cpufreq-dt-platdev.o
# speedstep-* is preferred over p4-clockmod.
obj-$(CONFIG_X86_ACPI_CPUFREQ) += acpi-cpufreq.o
obj-$(CONFIG_X86_AMD_PSTATE) += amd_pstate.o
obj-$(CONFIG_X86_POWERNOW_K8) += powernow-k8.o
obj-$(CONFIG_X86_PCC_CPUFREQ) += pcc-cpufreq.o
obj-$(CONFIG_X86_POWERNOW_K6) += powernow-k6.o

Просмотреть файл

@ -0,0 +1,2 @@
#define CREATE_TRACE_POINTS
#include "amd-pstate-trace.h"

Просмотреть файл

@ -0,0 +1,77 @@
/* SPDX-License-Identifier: GPL-2.0 */
/*
* amd-pstate-trace.h - AMD Processor P-state Frequency Driver Tracer
*
* Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Author: Huang Rui <ray.huang@amd.com>
*/
#if !defined(_AMD_PSTATE_TRACE_H) || defined(TRACE_HEADER_MULTI_READ)
#define _AMD_PSTATE_TRACE_H
#include <linux/cpufreq.h>
#include <linux/tracepoint.h>
#include <linux/trace_events.h>
#undef TRACE_SYSTEM
#define TRACE_SYSTEM amd_cpu
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE amd-pstate-trace
#define TPS(x) tracepoint_string(x)
TRACE_EVENT(amd_pstate_perf,
TP_PROTO(unsigned long min_perf,
unsigned long target_perf,
unsigned long capacity,
unsigned int cpu_id,
bool changed,
bool fast_switch
),
TP_ARGS(min_perf,
target_perf,
capacity,
cpu_id,
changed,
fast_switch
),
TP_STRUCT__entry(
__field(unsigned long, min_perf)
__field(unsigned long, target_perf)
__field(unsigned long, capacity)
__field(unsigned int, cpu_id)
__field(bool, changed)
__field(bool, fast_switch)
),
TP_fast_assign(
__entry->min_perf = min_perf;
__entry->target_perf = target_perf;
__entry->capacity = capacity;
__entry->cpu_id = cpu_id;
__entry->changed = changed;
__entry->fast_switch = fast_switch;
),
TP_printk("amd_min_perf=%lu amd_des_perf=%lu amd_max_perf=%lu cpu_id=%u changed=%s fast_switch=%s",
(unsigned long)__entry->min_perf,
(unsigned long)__entry->target_perf,
(unsigned long)__entry->capacity,
(unsigned int)__entry->cpu_id,
(__entry->changed) ? "true" : "false",
(__entry->fast_switch) ? "true" : "false"
)
);
#endif /* _AMD_PSTATE_TRACE_H */
/* This part must be outside protection */
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#include <trace/define_trace.h>

Просмотреть файл

@ -0,0 +1,645 @@
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* amd-pstate.c - AMD Processor P-state Frequency Driver
*
* Copyright (C) 2021 Advanced Micro Devices, Inc. All Rights Reserved.
*
* Author: Huang Rui <ray.huang@amd.com>
*
* AMD P-State introduces a new CPU performance scaling design for AMD
* processors using the ACPI Collaborative Performance and Power Control (CPPC)
* feature which works with the AMD SMU firmware providing a finer grained
* frequency control range. It is to replace the legacy ACPI P-States control,
* allows a flexible, low-latency interface for the Linux kernel to directly
* communicate the performance hints to hardware.
*
* AMD P-State is supported on recent AMD Zen base CPU series include some of
* Zen2 and Zen3 processors. _CPC needs to be present in the ACPI tables of AMD
* P-State supported system. And there are two types of hardware implementations
* for AMD P-State: 1) Full MSR Solution and 2) Shared Memory Solution.
* X86_FEATURE_CPPC CPU feature flag is used to distinguish the different types.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/sched.h>
#include <linux/cpufreq.h>
#include <linux/compiler.h>
#include <linux/dmi.h>
#include <linux/slab.h>
#include <linux/acpi.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/uaccess.h>
#include <linux/static_call.h>
#include <acpi/processor.h>
#include <acpi/cppc_acpi.h>
#include <asm/msr.h>
#include <asm/processor.h>
#include <asm/cpufeature.h>
#include <asm/cpu_device_id.h>
#include "amd-pstate-trace.h"
#define AMD_PSTATE_TRANSITION_LATENCY 0x20000
#define AMD_PSTATE_TRANSITION_DELAY 500
/*
* TODO: We need more time to fine tune processors with shared memory solution
* with community together.
*
* There are some performance drops on the CPU benchmarks which reports from
* Suse. We are co-working with them to fine tune the shared memory solution. So
* we disable it by default to go acpi-cpufreq on these processors and add a
* module parameter to be able to enable it manually for debugging.
*/
static bool shared_mem = false;
module_param(shared_mem, bool, 0444);
MODULE_PARM_DESC(shared_mem,
"enable amd-pstate on processors with shared memory solution (false = disabled (default), true = enabled)");
static struct cpufreq_driver amd_pstate_driver;
/**
* struct amd_cpudata - private CPU data for AMD P-State
* @cpu: CPU number
* @req: constraint request to apply
* @cppc_req_cached: cached performance request hints
* @highest_perf: the maximum performance an individual processor may reach,
* assuming ideal conditions
* @nominal_perf: the maximum sustained performance level of the processor,
* assuming ideal operating conditions
* @lowest_nonlinear_perf: the lowest performance level at which nonlinear power
* savings are achieved
* @lowest_perf: the absolute lowest performance level of the processor
* @max_freq: the frequency that mapped to highest_perf
* @min_freq: the frequency that mapped to lowest_perf
* @nominal_freq: the frequency that mapped to nominal_perf
* @lowest_nonlinear_freq: the frequency that mapped to lowest_nonlinear_perf
* @boost_supported: check whether the Processor or SBIOS supports boost mode
*
* The amd_cpudata is key private data for each CPU thread in AMD P-State, and
* represents all the attributes and goals that AMD P-State requests at runtime.
*/
struct amd_cpudata {
int cpu;
struct freq_qos_request req[2];
u64 cppc_req_cached;
u32 highest_perf;
u32 nominal_perf;
u32 lowest_nonlinear_perf;
u32 lowest_perf;
u32 max_freq;
u32 min_freq;
u32 nominal_freq;
u32 lowest_nonlinear_freq;
bool boost_supported;
};
static inline int pstate_enable(bool enable)
{
return wrmsrl_safe(MSR_AMD_CPPC_ENABLE, enable);
}
static int cppc_enable(bool enable)
{
int cpu, ret = 0;
for_each_present_cpu(cpu) {
ret = cppc_set_enable(cpu, enable);
if (ret)
return ret;
}
return ret;
}
DEFINE_STATIC_CALL(amd_pstate_enable, pstate_enable);
static inline int amd_pstate_enable(bool enable)
{
return static_call(amd_pstate_enable)(enable);
}
static int pstate_init_perf(struct amd_cpudata *cpudata)
{
u64 cap1;
int ret = rdmsrl_safe_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1,
&cap1);
if (ret)
return ret;
/*
* TODO: Introduce AMD specific power feature.
*
* CPPC entry doesn't indicate the highest performance in some ASICs.
*/
WRITE_ONCE(cpudata->highest_perf, amd_get_highest_perf());
WRITE_ONCE(cpudata->nominal_perf, AMD_CPPC_NOMINAL_PERF(cap1));
WRITE_ONCE(cpudata->lowest_nonlinear_perf, AMD_CPPC_LOWNONLIN_PERF(cap1));
WRITE_ONCE(cpudata->lowest_perf, AMD_CPPC_LOWEST_PERF(cap1));
return 0;
}
static int cppc_init_perf(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
WRITE_ONCE(cpudata->highest_perf, amd_get_highest_perf());
WRITE_ONCE(cpudata->nominal_perf, cppc_perf.nominal_perf);
WRITE_ONCE(cpudata->lowest_nonlinear_perf,
cppc_perf.lowest_nonlinear_perf);
WRITE_ONCE(cpudata->lowest_perf, cppc_perf.lowest_perf);
return 0;
}
DEFINE_STATIC_CALL(amd_pstate_init_perf, pstate_init_perf);
static inline int amd_pstate_init_perf(struct amd_cpudata *cpudata)
{
return static_call(amd_pstate_init_perf)(cpudata);
}
static void pstate_update_perf(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch)
{
if (fast_switch)
wrmsrl(MSR_AMD_CPPC_REQ, READ_ONCE(cpudata->cppc_req_cached));
else
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
READ_ONCE(cpudata->cppc_req_cached));
}
static void cppc_update_perf(struct amd_cpudata *cpudata,
u32 min_perf, u32 des_perf,
u32 max_perf, bool fast_switch)
{
struct cppc_perf_ctrls perf_ctrls;
perf_ctrls.max_perf = max_perf;
perf_ctrls.min_perf = min_perf;
perf_ctrls.desired_perf = des_perf;
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
DEFINE_STATIC_CALL(amd_pstate_update_perf, pstate_update_perf);
static inline void amd_pstate_update_perf(struct amd_cpudata *cpudata,
u32 min_perf, u32 des_perf,
u32 max_perf, bool fast_switch)
{
static_call(amd_pstate_update_perf)(cpudata, min_perf, des_perf,
max_perf, fast_switch);
}
static void amd_pstate_update(struct amd_cpudata *cpudata, u32 min_perf,
u32 des_perf, u32 max_perf, bool fast_switch)
{
u64 prev = READ_ONCE(cpudata->cppc_req_cached);
u64 value = prev;
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
value &= ~AMD_CPPC_DES_PERF(~0L);
value |= AMD_CPPC_DES_PERF(des_perf);
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(max_perf);
trace_amd_pstate_perf(min_perf, des_perf, max_perf,
cpudata->cpu, (value != prev), fast_switch);
if (value == prev)
return;
WRITE_ONCE(cpudata->cppc_req_cached, value);
amd_pstate_update_perf(cpudata, min_perf, des_perf,
max_perf, fast_switch);
}
static int amd_pstate_verify(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_cpu_limits(policy);
return 0;
}
static int amd_pstate_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
struct cpufreq_freqs freqs;
struct amd_cpudata *cpudata = policy->driver_data;
unsigned long max_perf, min_perf, des_perf, cap_perf;
if (!cpudata->max_freq)
return -ENODEV;
cap_perf = READ_ONCE(cpudata->highest_perf);
min_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
max_perf = cap_perf;
freqs.old = policy->cur;
freqs.new = target_freq;
des_perf = DIV_ROUND_CLOSEST(target_freq * cap_perf,
cpudata->max_freq);
cpufreq_freq_transition_begin(policy, &freqs);
amd_pstate_update(cpudata, min_perf, des_perf,
max_perf, false);
cpufreq_freq_transition_end(policy, &freqs, false);
return 0;
}
static void amd_pstate_adjust_perf(unsigned int cpu,
unsigned long _min_perf,
unsigned long target_perf,
unsigned long capacity)
{
unsigned long max_perf, min_perf, des_perf,
cap_perf, lowest_nonlinear_perf;
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
struct amd_cpudata *cpudata = policy->driver_data;
cap_perf = READ_ONCE(cpudata->highest_perf);
lowest_nonlinear_perf = READ_ONCE(cpudata->lowest_nonlinear_perf);
des_perf = cap_perf;
if (target_perf < capacity)
des_perf = DIV_ROUND_UP(cap_perf * target_perf, capacity);
min_perf = READ_ONCE(cpudata->highest_perf);
if (_min_perf < capacity)
min_perf = DIV_ROUND_UP(cap_perf * _min_perf, capacity);
if (min_perf < lowest_nonlinear_perf)
min_perf = lowest_nonlinear_perf;
max_perf = cap_perf;
if (max_perf < min_perf)
max_perf = min_perf;
des_perf = clamp_t(unsigned long, des_perf, min_perf, max_perf);
amd_pstate_update(cpudata, min_perf, des_perf, max_perf, true);
}
static int amd_get_min_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
/* Switch to khz */
return cppc_perf.lowest_freq * 1000;
}
static int amd_get_max_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
u32 max_perf, max_freq, nominal_freq, nominal_perf;
u64 boost_ratio;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
nominal_freq = cppc_perf.nominal_freq;
nominal_perf = READ_ONCE(cpudata->nominal_perf);
max_perf = READ_ONCE(cpudata->highest_perf);
boost_ratio = div_u64(max_perf << SCHED_CAPACITY_SHIFT,
nominal_perf);
max_freq = nominal_freq * boost_ratio >> SCHED_CAPACITY_SHIFT;
/* Switch to khz */
return max_freq * 1000;
}
static int amd_get_nominal_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
/* Switch to khz */
return cppc_perf.nominal_freq * 1000;
}
static int amd_get_lowest_nonlinear_freq(struct amd_cpudata *cpudata)
{
struct cppc_perf_caps cppc_perf;
u32 lowest_nonlinear_freq, lowest_nonlinear_perf,
nominal_freq, nominal_perf;
u64 lowest_nonlinear_ratio;
int ret = cppc_get_perf_caps(cpudata->cpu, &cppc_perf);
if (ret)
return ret;
nominal_freq = cppc_perf.nominal_freq;
nominal_perf = READ_ONCE(cpudata->nominal_perf);
lowest_nonlinear_perf = cppc_perf.lowest_nonlinear_perf;
lowest_nonlinear_ratio = div_u64(lowest_nonlinear_perf << SCHED_CAPACITY_SHIFT,
nominal_perf);
lowest_nonlinear_freq = nominal_freq * lowest_nonlinear_ratio >> SCHED_CAPACITY_SHIFT;
/* Switch to khz */
return lowest_nonlinear_freq * 1000;
}
static int amd_pstate_set_boost(struct cpufreq_policy *policy, int state)
{
struct amd_cpudata *cpudata = policy->driver_data;
int ret;
if (!cpudata->boost_supported) {
pr_err("Boost mode is not supported by this processor or SBIOS\n");
return -EINVAL;
}
if (state)
policy->cpuinfo.max_freq = cpudata->max_freq;
else
policy->cpuinfo.max_freq = cpudata->nominal_freq;
policy->max = policy->cpuinfo.max_freq;
ret = freq_qos_update_request(&cpudata->req[1],
policy->cpuinfo.max_freq);
if (ret < 0)
return ret;
return 0;
}
static void amd_pstate_boost_init(struct amd_cpudata *cpudata)
{
u32 highest_perf, nominal_perf;
highest_perf = READ_ONCE(cpudata->highest_perf);
nominal_perf = READ_ONCE(cpudata->nominal_perf);
if (highest_perf <= nominal_perf)
return;
cpudata->boost_supported = true;
amd_pstate_driver.boost_enabled = true;
}
static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
{
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
struct device *dev;
struct amd_cpudata *cpudata;
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
if (!cpudata)
return -ENOMEM;
cpudata->cpu = policy->cpu;
ret = amd_pstate_init_perf(cpudata);
if (ret)
goto free_cpudata1;
min_freq = amd_get_min_freq(cpudata);
max_freq = amd_get_max_freq(cpudata);
nominal_freq = amd_get_nominal_freq(cpudata);
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
min_freq, max_freq);
ret = -EINVAL;
goto free_cpudata1;
}
policy->cpuinfo.transition_latency = AMD_PSTATE_TRANSITION_LATENCY;
policy->transition_delay_us = AMD_PSTATE_TRANSITION_DELAY;
policy->min = min_freq;
policy->max = max_freq;
policy->cpuinfo.min_freq = min_freq;
policy->cpuinfo.max_freq = max_freq;
/* It will be updated by governor */
policy->cur = policy->cpuinfo.min_freq;
if (boot_cpu_has(X86_FEATURE_CPPC))
policy->fast_switch_possible = true;
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[0],
FREQ_QOS_MIN, policy->cpuinfo.min_freq);
if (ret < 0) {
dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
goto free_cpudata1;
}
ret = freq_qos_add_request(&policy->constraints, &cpudata->req[1],
FREQ_QOS_MAX, policy->cpuinfo.max_freq);
if (ret < 0) {
dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
goto free_cpudata2;
}
/* Initial processor data capability frequencies */
cpudata->max_freq = max_freq;
cpudata->min_freq = min_freq;
cpudata->nominal_freq = nominal_freq;
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
policy->driver_data = cpudata;
amd_pstate_boost_init(cpudata);
return 0;
free_cpudata2:
freq_qos_remove_request(&cpudata->req[0]);
free_cpudata1:
kfree(cpudata);
return ret;
}
static int amd_pstate_cpu_exit(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata;
cpudata = policy->driver_data;
freq_qos_remove_request(&cpudata->req[1]);
freq_qos_remove_request(&cpudata->req[0]);
kfree(cpudata);
return 0;
}
/* Sysfs attributes */
/*
* This frequency is to indicate the maximum hardware frequency.
* If boost is not active but supported, the frequency will be larger than the
* one in cpuinfo.
*/
static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
char *buf)
{
int max_freq;
struct amd_cpudata *cpudata;
cpudata = policy->driver_data;
max_freq = amd_get_max_freq(cpudata);
if (max_freq < 0)
return max_freq;
return sprintf(&buf[0], "%u\n", max_freq);
}
static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
char *buf)
{
int freq;
struct amd_cpudata *cpudata;
cpudata = policy->driver_data;
freq = amd_get_lowest_nonlinear_freq(cpudata);
if (freq < 0)
return freq;
return sprintf(&buf[0], "%u\n", freq);
}
/*
* In some of ASICs, the highest_perf is not the one in the _CPC table, so we
* need to expose it to sysfs.
*/
static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
char *buf)
{
u32 perf;
struct amd_cpudata *cpudata = policy->driver_data;
perf = READ_ONCE(cpudata->highest_perf);
return sprintf(&buf[0], "%u\n", perf);
}
cpufreq_freq_attr_ro(amd_pstate_max_freq);
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);
cpufreq_freq_attr_ro(amd_pstate_highest_perf);
static struct freq_attr *amd_pstate_attr[] = {
&amd_pstate_max_freq,
&amd_pstate_lowest_nonlinear_freq,
&amd_pstate_highest_perf,
NULL,
};
static struct cpufreq_driver amd_pstate_driver = {
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
.verify = amd_pstate_verify,
.target = amd_pstate_target,
.init = amd_pstate_cpu_init,
.exit = amd_pstate_cpu_exit,
.set_boost = amd_pstate_set_boost,
.name = "amd-pstate",
.attr = amd_pstate_attr,
};
static int __init amd_pstate_init(void)
{
int ret;
if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
return -ENODEV;
if (!acpi_cpc_valid()) {
pr_debug("the _CPC object is not present in SBIOS\n");
return -ENODEV;
}
/* don't keep reloading if cpufreq_driver exists */
if (cpufreq_get_current_driver())
return -EEXIST;
/* capability check */
if (boot_cpu_has(X86_FEATURE_CPPC)) {
pr_debug("AMD CPPC MSR based functionality is supported\n");
amd_pstate_driver.adjust_perf = amd_pstate_adjust_perf;
} else if (shared_mem) {
static_call_update(amd_pstate_enable, cppc_enable);
static_call_update(amd_pstate_init_perf, cppc_init_perf);
static_call_update(amd_pstate_update_perf, cppc_update_perf);
} else {
pr_info("This processor supports shared memory solution, you can enable it with amd_pstate.shared_mem=1\n");
return -ENODEV;
}
/* enable amd pstate feature */
ret = amd_pstate_enable(true);
if (ret) {
pr_err("failed to enable amd-pstate with return %d\n", ret);
return ret;
}
ret = cpufreq_register_driver(&amd_pstate_driver);
if (ret)
pr_err("failed to register amd_pstate_driver with return %d\n",
ret);
return ret;
}
static void __exit amd_pstate_exit(void)
{
cpufreq_unregister_driver(&amd_pstate_driver);
amd_pstate_enable(false);
}
module_init(amd_pstate_init);
module_exit(amd_pstate_exit);
MODULE_AUTHOR("Huang Rui <ray.huang@amd.com>");
MODULE_DESCRIPTION("AMD Processor P-state Frequency Driver");
MODULE_LICENSE("GPL");

Просмотреть файл

@ -924,7 +924,7 @@ cpufreq_freq_attr_rw(scaling_max_freq);
cpufreq_freq_attr_rw(scaling_governor);
cpufreq_freq_attr_rw(scaling_setspeed);
static struct attribute *default_attrs[] = {
static struct attribute *cpufreq_attrs[] = {
&cpuinfo_min_freq.attr,
&cpuinfo_max_freq.attr,
&cpuinfo_transition_latency.attr,
@ -938,6 +938,7 @@ static struct attribute *default_attrs[] = {
&scaling_setspeed.attr,
NULL
};
ATTRIBUTE_GROUPS(cpufreq);
#define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
#define to_attr(a) container_of(a, struct freq_attr, attr)
@ -1000,7 +1001,7 @@ static const struct sysfs_ops sysfs_ops = {
static struct kobj_type ktype_cpufreq = {
.sysfs_ops = &sysfs_ops,
.default_attrs = default_attrs,
.default_groups = cpufreq_groups,
.release = cpufreq_sysfs_release,
};
@ -1403,7 +1404,7 @@ static int cpufreq_online(unsigned int cpu)
ret = freq_qos_add_request(&policy->constraints,
policy->min_freq_req, FREQ_QOS_MIN,
policy->min);
FREQ_QOS_MIN_DEFAULT_VALUE);
if (ret < 0) {
/*
* So we don't call freq_qos_remove_request() for an
@ -1423,7 +1424,7 @@ static int cpufreq_online(unsigned int cpu)
ret = freq_qos_add_request(&policy->constraints,
policy->max_freq_req, FREQ_QOS_MAX,
policy->max);
FREQ_QOS_MAX_DEFAULT_VALUE);
if (ret < 0) {
policy->max_freq_req = NULL;
goto out_destroy_policy;

Просмотреть файл

@ -257,7 +257,7 @@ gov_attr_rw(ignore_nice_load);
gov_attr_rw(down_threshold);
gov_attr_rw(freq_step);
static struct attribute *cs_attributes[] = {
static struct attribute *cs_attrs[] = {
&sampling_rate.attr,
&sampling_down_factor.attr,
&up_threshold.attr,
@ -266,6 +266,7 @@ static struct attribute *cs_attributes[] = {
&freq_step.attr,
NULL
};
ATTRIBUTE_GROUPS(cs);
/************************** sysfs end ************************/
@ -315,7 +316,7 @@ static void cs_start(struct cpufreq_policy *policy)
static struct dbs_governor cs_governor = {
.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("conservative"),
.kobj_type = { .default_attrs = cs_attributes },
.kobj_type = { .default_groups = cs_groups },
.gov_dbs_update = cs_dbs_update,
.alloc = cs_alloc,
.free = cs_free,

Просмотреть файл

@ -328,7 +328,7 @@ gov_attr_rw(sampling_down_factor);
gov_attr_rw(ignore_nice_load);
gov_attr_rw(powersave_bias);
static struct attribute *od_attributes[] = {
static struct attribute *od_attrs[] = {
&sampling_rate.attr,
&up_threshold.attr,
&sampling_down_factor.attr,
@ -337,6 +337,7 @@ static struct attribute *od_attributes[] = {
&io_is_busy.attr,
NULL
};
ATTRIBUTE_GROUPS(od);
/************************** sysfs end ************************/
@ -401,7 +402,7 @@ static struct od_ops od_ops = {
static struct dbs_governor od_dbs_gov = {
.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
.kobj_type = { .default_attrs = od_attributes },
.kobj_type = { .default_groups = od_groups },
.gov_dbs_update = od_dbs_update,
.alloc = od_alloc,
.free = od_free,

Просмотреть файл

@ -664,19 +664,29 @@ static int intel_pstate_set_epb(int cpu, s16 pref)
* 3 balance_power
* 4 power
*/
enum energy_perf_value_index {
EPP_INDEX_DEFAULT = 0,
EPP_INDEX_PERFORMANCE,
EPP_INDEX_BALANCE_PERFORMANCE,
EPP_INDEX_BALANCE_POWERSAVE,
EPP_INDEX_POWERSAVE,
};
static const char * const energy_perf_strings[] = {
"default",
"performance",
"balance_performance",
"balance_power",
"power",
[EPP_INDEX_DEFAULT] = "default",
[EPP_INDEX_PERFORMANCE] = "performance",
[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
[EPP_INDEX_POWERSAVE] = "power",
NULL
};
static const unsigned int epp_values[] = {
HWP_EPP_PERFORMANCE,
HWP_EPP_BALANCE_PERFORMANCE,
HWP_EPP_BALANCE_POWERSAVE,
HWP_EPP_POWERSAVE
static unsigned int epp_values[] = {
[EPP_INDEX_DEFAULT] = 0, /* Unused index */
[EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
[EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
[EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
[EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
};
static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
@ -690,14 +700,14 @@ static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw
return epp;
if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
if (epp == HWP_EPP_PERFORMANCE)
return 1;
if (epp == HWP_EPP_BALANCE_PERFORMANCE)
return 2;
if (epp == HWP_EPP_BALANCE_POWERSAVE)
return 3;
if (epp == HWP_EPP_POWERSAVE)
return 4;
if (epp == epp_values[EPP_INDEX_PERFORMANCE])
return EPP_INDEX_PERFORMANCE;
if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
return EPP_INDEX_BALANCE_PERFORMANCE;
if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
return EPP_INDEX_BALANCE_POWERSAVE;
if (epp == epp_values[EPP_INDEX_POWERSAVE])
return EPP_INDEX_POWERSAVE;
*raw_epp = epp;
return 0;
} else if (boot_cpu_has(X86_FEATURE_EPB)) {
@ -757,7 +767,7 @@ static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
if (use_raw)
epp = raw_epp;
else if (epp == -EINVAL)
epp = epp_values[pref_index - 1];
epp = epp_values[pref_index];
/*
* To avoid confusion, refuse to set EPP to any values different
@ -843,7 +853,7 @@ static ssize_t store_energy_performance_preference(
* upfront.
*/
if (!raw)
epp = ret ? epp_values[ret - 1] : cpu->epp_default;
epp = ret ? epp_values[ret] : cpu->epp_default;
if (cpu->epp_cached != epp) {
int err;
@ -1124,19 +1134,22 @@ static void intel_pstate_update_policies(void)
cpufreq_update_policy(cpu);
}
static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
struct cpufreq_policy *policy)
{
policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
refresh_frequency_limits(policy);
}
static void intel_pstate_update_max_freq(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
struct cpudata *cpudata;
if (!policy)
return;
cpudata = all_cpu_data[cpu];
policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
refresh_frequency_limits(policy);
__intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
cpufreq_cpu_release(policy);
}
@ -1584,8 +1597,15 @@ static void intel_pstate_notify_work(struct work_struct *work)
{
struct cpudata *cpudata =
container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
if (policy) {
intel_pstate_get_hwp_cap(cpudata);
__intel_pstate_update_max_freq(cpudata, policy);
cpufreq_cpu_release(policy);
}
cpufreq_update_policy(cpudata->cpu);
wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
}
@ -1679,10 +1699,18 @@ static void intel_pstate_hwp_enable(struct cpudata *cpudata)
wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
if (cpudata->epp_default == -EINVAL)
cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
intel_pstate_enable_hwp_interrupt(cpudata);
if (cpudata->epp_default >= 0)
return;
if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE) {
cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
} else {
cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
intel_pstate_set_epp(cpudata, cpudata->epp_default);
}
}
static int atom_get_min_pstate(void)
@ -2486,18 +2514,14 @@ static void intel_pstate_update_perf_limits(struct cpudata *cpu,
* HWP needs some special consideration, because HWP_REQUEST uses
* abstract values to represent performance rather than pure ratios.
*/
if (hwp_active) {
intel_pstate_get_hwp_cap(cpu);
if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
int scaling = cpu->pstate.scaling;
int freq;
if (cpu->pstate.scaling != perf_ctl_scaling) {
int scaling = cpu->pstate.scaling;
int freq;
freq = max_policy_perf * perf_ctl_scaling;
max_policy_perf = DIV_ROUND_UP(freq, scaling);
freq = min_policy_perf * perf_ctl_scaling;
min_policy_perf = DIV_ROUND_UP(freq, scaling);
}
freq = max_policy_perf * perf_ctl_scaling;
max_policy_perf = DIV_ROUND_UP(freq, scaling);
freq = min_policy_perf * perf_ctl_scaling;
min_policy_perf = DIV_ROUND_UP(freq, scaling);
}
pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
@ -3349,6 +3373,16 @@ static bool intel_pstate_hwp_is_enabled(void)
return !!(value & 0x1);
}
static const struct x86_cpu_id intel_epp_balance_perf[] = {
/*
* Set EPP value as 102, this is the max suggested EPP
* which can result in one core turbo frequency for
* AlderLake Mobile CPUs.
*/
X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
{}
};
static int __init intel_pstate_init(void)
{
static struct cpudata **_all_cpu_data;
@ -3438,6 +3472,13 @@ hwp_cpu_matched:
intel_pstate_sysfs_expose_params();
if (hwp_active) {
const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
if (id)
epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
}
mutex_lock(&intel_pstate_driver_lock);
rc = intel_pstate_register_driver(default_driver);
mutex_unlock(&intel_pstate_driver_lock);

Просмотреть файл

@ -36,6 +36,8 @@ enum {
struct mtk_cpufreq_data {
struct cpufreq_frequency_table *table;
void __iomem *reg_bases[REG_ARRAY_SIZE];
struct resource *res;
void __iomem *base;
int nr_opp;
};
@ -156,6 +158,7 @@ static int mtk_cpu_resources_init(struct platform_device *pdev,
{
struct mtk_cpufreq_data *data;
struct device *dev = &pdev->dev;
struct resource *res;
void __iomem *base;
int ret, i;
int index;
@ -170,9 +173,26 @@ static int mtk_cpu_resources_init(struct platform_device *pdev,
if (index < 0)
return index;
base = devm_platform_ioremap_resource(pdev, index);
if (IS_ERR(base))
return PTR_ERR(base);
res = platform_get_resource(pdev, IORESOURCE_MEM, index);
if (!res) {
dev_err(dev, "failed to get mem resource %d\n", index);
return -ENODEV;
}
if (!request_mem_region(res->start, resource_size(res), res->name)) {
dev_err(dev, "failed to request resource %pR\n", res);
return -EBUSY;
}
base = ioremap(res->start, resource_size(res));
if (!base) {
dev_err(dev, "failed to map resource %pR\n", res);
ret = -ENOMEM;
goto release_region;
}
data->base = base;
data->res = res;
for (i = REG_FREQ_LUT_TABLE; i < REG_ARRAY_SIZE; i++)
data->reg_bases[i] = base + offsets[i];
@ -187,6 +207,9 @@ static int mtk_cpu_resources_init(struct platform_device *pdev,
policy->driver_data = data;
return 0;
release_region:
release_mem_region(res->start, resource_size(res));
return ret;
}
static int mtk_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
@ -233,9 +256,13 @@ static int mtk_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
static int mtk_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
{
struct mtk_cpufreq_data *data = policy->driver_data;
struct resource *res = data->res;
void __iomem *base = data->base;
/* HW should be in paused state now */
writel_relaxed(0x0, data->reg_bases[REG_FREQ_ENABLE]);
iounmap(base);
release_mem_region(res->start, resource_size(res));
return 0;
}

Просмотреть файл

@ -46,6 +46,7 @@ struct qcom_cpufreq_data {
*/
struct mutex throttle_lock;
int throttle_irq;
char irq_name[15];
bool cancel_throttle;
struct delayed_work throttle_work;
struct cpufreq_policy *policy;
@ -275,10 +276,10 @@ static unsigned int qcom_lmh_get_throttle_freq(struct qcom_cpufreq_data *data)
static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
{
unsigned long max_capacity, capacity, freq_hz, throttled_freq;
struct cpufreq_policy *policy = data->policy;
int cpu = cpumask_first(policy->cpus);
struct device *dev = get_cpu_device(cpu);
unsigned long freq_hz, throttled_freq;
struct dev_pm_opp *opp;
unsigned int freq;
@ -295,16 +296,8 @@ static void qcom_lmh_dcvs_notify(struct qcom_cpufreq_data *data)
throttled_freq = freq_hz / HZ_PER_KHZ;
/* Update thermal pressure */
max_capacity = arch_scale_cpu_capacity(cpu);
capacity = mult_frac(max_capacity, throttled_freq, policy->cpuinfo.max_freq);
/* Don't pass boost capacity to scheduler */
if (capacity > max_capacity)
capacity = max_capacity;
arch_set_thermal_pressure(policy->cpus, max_capacity - capacity);
/* Update thermal pressure (the boost frequencies are accepted) */
arch_update_thermal_pressure(policy->related_cpus, throttled_freq);
/*
* In the unlikely case policy is unregistered do not enable
@ -342,9 +335,9 @@ static irqreturn_t qcom_lmh_dcvs_handle_irq(int irq, void *data)
/* Disable interrupt and enable polling */
disable_irq_nosync(c_data->throttle_irq);
qcom_lmh_dcvs_notify(c_data);
schedule_delayed_work(&c_data->throttle_work, 0);
return 0;
return IRQ_HANDLED;
}
static const struct qcom_cpufreq_soc_data qcom_soc_data = {
@ -375,16 +368,17 @@ static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
{
struct qcom_cpufreq_data *data = policy->driver_data;
struct platform_device *pdev = cpufreq_get_driver_data();
char irq_name[15];
int ret;
/*
* Look for LMh interrupt. If no interrupt line is specified /
* if there is an error, allow cpufreq to be enabled as usual.
*/
data->throttle_irq = platform_get_irq(pdev, index);
if (data->throttle_irq <= 0)
return data->throttle_irq == -EPROBE_DEFER ? -EPROBE_DEFER : 0;
data->throttle_irq = platform_get_irq_optional(pdev, index);
if (data->throttle_irq == -ENXIO)
return 0;
if (data->throttle_irq < 0)
return data->throttle_irq;
data->cancel_throttle = false;
data->policy = policy;
@ -392,14 +386,19 @@ static int qcom_cpufreq_hw_lmh_init(struct cpufreq_policy *policy, int index)
mutex_init(&data->throttle_lock);
INIT_DEFERRABLE_WORK(&data->throttle_work, qcom_lmh_dcvs_poll);
snprintf(irq_name, sizeof(irq_name), "dcvsh-irq-%u", policy->cpu);
snprintf(data->irq_name, sizeof(data->irq_name), "dcvsh-irq-%u", policy->cpu);
ret = request_threaded_irq(data->throttle_irq, NULL, qcom_lmh_dcvs_handle_irq,
IRQF_ONESHOT, irq_name, data);
IRQF_ONESHOT, data->irq_name, data);
if (ret) {
dev_err(&pdev->dev, "Error registering %s: %d\n", irq_name, ret);
dev_err(&pdev->dev, "Error registering %s: %d\n", data->irq_name, ret);
return 0;
}
ret = irq_set_affinity_hint(data->throttle_irq, policy->cpus);
if (ret)
dev_err(&pdev->dev, "Failed to set CPU affinity of %s[%d]\n",
data->irq_name, data->throttle_irq);
return 0;
}

Просмотреть файл

@ -462,7 +462,6 @@ static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
struct cpumask *cpus;
unsigned int frequency;
unsigned long max_capacity, capacity;
int ret;
/* Request state should be less than max_level */
@ -479,10 +478,7 @@ static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
if (ret >= 0) {
cpufreq_cdev->cpufreq_state = state;
cpus = cpufreq_cdev->policy->related_cpus;
max_capacity = arch_scale_cpu_capacity(cpumask_first(cpus));
capacity = frequency * max_capacity;
capacity /= cpufreq_cdev->policy->cpuinfo.max_freq;
arch_set_thermal_pressure(cpus, max_capacity - capacity);
arch_update_thermal_pressure(cpus, frequency);
ret = 0;
}

Просмотреть файл

@ -138,6 +138,7 @@ extern int cppc_get_desired_perf(int cpunum, u64 *desired_perf);
extern int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf);
extern int cppc_get_perf_ctrs(int cpu, struct cppc_perf_fb_ctrs *perf_fb_ctrs);
extern int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls);
extern int cppc_set_enable(int cpu, bool enable);
extern int cppc_get_perf_caps(int cpu, struct cppc_perf_caps *caps);
extern bool acpi_cpc_valid(void);
extern int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data);
@ -162,6 +163,10 @@ static inline int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
{
return -ENOTSUPP;
}
static inline int cppc_set_enable(int cpu, bool enable)
{
return -ENOTSUPP;
}
static inline int cppc_get_perf_caps(int cpu, struct cppc_perf_caps *caps)
{
return -ENOTSUPP;

Просмотреть файл

@ -56,8 +56,8 @@ static inline unsigned long topology_get_thermal_pressure(int cpu)
return per_cpu(thermal_pressure, cpu);
}
void topology_set_thermal_pressure(const struct cpumask *cpus,
unsigned long th_pressure);
void topology_update_thermal_pressure(const struct cpumask *cpus,
unsigned long capped_freq);
struct cpu_topology {
int thread_id;

Просмотреть файл

@ -266,10 +266,10 @@ unsigned long arch_scale_thermal_pressure(int cpu)
}
#endif
#ifndef arch_set_thermal_pressure
#ifndef arch_update_thermal_pressure
static __always_inline
void arch_set_thermal_pressure(const struct cpumask *cpus,
unsigned long th_pressure)
void arch_update_thermal_pressure(const struct cpumask *cpus,
unsigned long capped_frequency)
{ }
#endif

Просмотреть файл

@ -550,7 +550,7 @@ config SCHED_THERMAL_PRESSURE
i.e. put less load on throttled CPUs than on non/less throttled ones.
This requires the architecture to implement
arch_set_thermal_pressure() and arch_scale_thermal_pressure().
arch_update_thermal_pressure() and arch_scale_thermal_pressure().
config BSD_PROCESS_ACCT
bool "BSD Process Accounting"