cmd64x: fix multiword and remove single-word DMA support

Fix the multiword DMA and drop the single-word DMA support (which nobody will
miss, I think).  In order to do it, a number of changes was necessary:

- rename program_drive_counts() to program_cycle_times(), pass to it cycle's
  total/active times instead of the clock counts, and convert them into the
  active/recovery clocks there instead of cmd64x_tune_pio() -- this causes
  quantize_timing() to also move;

- contrarywise, move all the code handling the address setup timing into
  cmd64x_tune_pio(), so that setting MWDMA mode wouldn't change address setup;

- remove from the speedproc() method the  bogus code pretending to set the DMA
  timings by twiddling bits in the BMIDE status register, handle setting MWDMA
  by just calling program_cycle_times(); while at it, improve the style of that
  whole switch statement;

- stop fiddling with the DMA capable bits in the speedproc() method -- they do
  not enable DMA, and are properly dealt with by the dma_host_{on,off} methods;

- don't set hwif->swdma_mask in the init_hwif() method anymore.

In addition to those changes, do the following:

- in cmd64x_tune_pio(), when writing to ARTTIM23 register preserve the interrupt
  status bit, eliminate local_irq_{save|restore}() around this code as there's
  *no* actual race with the interrupt handler, and move cmdprintk() to a more
  fitting place -- after ide_get_best_pio_mode() call;

- make {arttim|drwtim}_regs arrays single-dimensional, indexed with drive->dn;

- rename {setup|recovery}_counts[] into more fitting {setup|recovery}_values[];

- in  the speedproc() method, get rid of the duplicate reads/writes from/to the
  UDIDETCRx registers and of the extra variable used to store the transfer mode
  value after filtering,  use another method of determining master/slave drive,
  and cleanup useless parens;

- beautify cmdprintk() output here and there.

While at it, remove meaningless comment about the driver being used only on
UltraSPARC and long non-relevant RCS tag. :-)

Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
This commit is contained in:
Sergei Shtylyov 2007-05-05 22:03:49 +02:00 коммит произвёл Bartlomiej Zolnierkiewicz
Родитель 688a87d145
Коммит 60e7a82f1a
1 изменённых файлов: 129 добавлений и 143 удалений

Просмотреть файл

@ -1,10 +1,7 @@
/* $Id: cmd64x.c,v 1.21 2000/01/30 23:23:16 /*
* * linux/drivers/ide/pci/cmd64x.c Version 1.43 Mar 10, 2007
* linux/drivers/ide/pci/cmd64x.c Version 1.42 Feb 8, 2007
* *
* cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines. * cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines.
* Note, this driver is not used at all on other systems because
* there the "BIOS" has done all of the following already.
* Due to massive hardware bugs, UltraDMA is only supported * Due to massive hardware bugs, UltraDMA is only supported
* on the 646U2 and not on the 646U. * on the 646U2 and not on the 646U.
* *
@ -195,116 +192,103 @@ static u8 quantize_timing(int timing, int quant)
} }
/* /*
* This routine writes the prepared setup/active/recovery counts * This routine calculates active/recovery counts and then writes them into
* for a drive into the cmd646 chipset registers to active them. * the chipset registers.
*/ */
static void program_drive_counts (ide_drive_t *drive, int setup_count, int active_count, int recovery_count) static void program_cycle_times (ide_drive_t *drive, int cycle_time, int active_time)
{ {
unsigned long flags; struct pci_dev *dev = HWIF(drive)->pci_dev;
struct pci_dev *dev = HWIF(drive)->pci_dev; int clock_time = 1000 / system_bus_clock();
ide_drive_t *drives = HWIF(drive)->drives; u8 cycle_count, active_count, recovery_count, drwtim;
u8 temp_b; static const u8 recovery_values[] =
static const u8 setup_counts[] = {0x40, 0x40, 0x40, 0x80, 0, 0xc0};
static const u8 recovery_counts[] =
{15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0}; {15, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0};
static const u8 arttim_regs[2][2] = { static const u8 drwtim_regs[4] = {DRWTIM0, DRWTIM1, DRWTIM2, DRWTIM3};
{ ARTTIM0, ARTTIM1 },
{ ARTTIM23, ARTTIM23 }
};
static const u8 drwtim_regs[2][2] = {
{ DRWTIM0, DRWTIM1 },
{ DRWTIM2, DRWTIM3 }
};
int channel = (int) HWIF(drive)->channel;
int slave = (drives != drive); /* Is this really the best way to determine this?? */
cmdprintk("program_drive_count parameters = s(%d),a(%d),r(%d),p(%d)\n", cmdprintk("program_cycle_times parameters: total=%d, active=%d\n",
setup_count, active_count, recovery_count, drive->present); cycle_time, active_time);
/*
* Set up address setup count registers. cycle_count = quantize_timing( cycle_time, clock_time);
* Primary interface has individual count/timing registers for active_count = quantize_timing(active_time, clock_time);
* each drive. Secondary interface has one common set of registers, recovery_count = cycle_count - active_count;
* for address setup so we merge these timings, using the slowest
* value.
*/
if (channel) {
drive->drive_data = setup_count;
setup_count = max(drives[0].drive_data,
drives[1].drive_data);
cmdprintk("Secondary interface, setup_count = %d\n",
setup_count);
}
/* /*
* Convert values to internal chipset representation * In case we've got too long recovery phase, try to lengthen
* the active phase
*/ */
setup_count = (setup_count > 5) ? 0xc0 : (int) setup_counts[setup_count];
active_count &= 0xf; /* Remember, max value is 16 */
recovery_count = (int) recovery_counts[recovery_count];
cmdprintk("Final values = %d,%d,%d\n",
setup_count, active_count, recovery_count);
/*
* Now that everything is ready, program the new timings
*/
local_irq_save(flags);
/*
* Program the address_setup clocks into ARTTIM reg,
* and then the active/recovery counts into the DRWTIM reg
*/
(void) pci_read_config_byte(dev, arttim_regs[channel][slave], &temp_b);
(void) pci_write_config_byte(dev, arttim_regs[channel][slave],
((u8) setup_count) | (temp_b & 0x3f));
(void) pci_write_config_byte(dev, drwtim_regs[channel][slave],
(u8) ((active_count << 4) | recovery_count));
cmdprintk ("Write %x to %x\n",
((u8) setup_count) | (temp_b & 0x3f),
arttim_regs[channel][slave]);
cmdprintk ("Write %x to %x\n",
(u8) ((active_count << 4) | recovery_count),
drwtim_regs[channel][slave]);
local_irq_restore(flags);
}
/*
* This routine selects drive's best PIO mode, calculates setup/active/recovery
* counts, and then writes them into the chipset registers.
*/
static u8 cmd64x_tune_pio (ide_drive_t *drive, u8 mode_wanted)
{
int setup_time, active_time, cycle_time;
u8 cycle_count, setup_count, active_count, recovery_count;
u8 pio_mode;
int clock_time = 1000 / system_bus_clock();
ide_pio_data_t pio;
pio_mode = ide_get_best_pio_mode(drive, mode_wanted, 5, &pio);
cycle_time = pio.cycle_time;
setup_time = ide_pio_timings[pio_mode].setup_time;
active_time = ide_pio_timings[pio_mode].active_time;
setup_count = quantize_timing( setup_time, clock_time);
cycle_count = quantize_timing( cycle_time, clock_time);
active_count = quantize_timing(active_time, clock_time);
recovery_count = cycle_count - active_count;
/* program_drive_counts() takes care of zero recovery cycles */
if (recovery_count > 16) { if (recovery_count > 16) {
active_count += recovery_count - 16; active_count += recovery_count - 16;
recovery_count = 16; recovery_count = 16;
} }
if (active_count > 16) if (active_count > 16) /* shouldn't actually happen... */
active_count = 16; /* maximum allowed by cmd64x */ active_count = 16;
program_drive_counts (drive, setup_count, active_count, recovery_count); cmdprintk("Final counts: total=%d, active=%d, recovery=%d\n",
cycle_count, active_count, recovery_count);
cmdprintk("%s: PIO mode wanted %d, selected %d (%dns)%s, " /*
"clocks=%d/%d/%d\n", * Convert values to internal chipset representation
drive->name, mode_wanted, pio_mode, cycle_time, */
pio.overridden ? " (overriding vendor mode)" : "", recovery_count = recovery_values[recovery_count];
setup_count, active_count, recovery_count); active_count &= 0x0f;
/* Program the active/recovery counts into the DRWTIM register */
drwtim = (active_count << 4) | recovery_count;
(void) pci_write_config_byte(dev, drwtim_regs[drive->dn], drwtim);
cmdprintk("Write 0x%02x to reg 0x%x\n", drwtim, drwtim_regs[drive->dn]);
}
/*
* This routine selects drive's best PIO mode and writes into the chipset
* registers setup/active/recovery timings.
*/
static u8 cmd64x_tune_pio (ide_drive_t *drive, u8 mode_wanted)
{
ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev;
ide_pio_data_t pio;
u8 pio_mode, setup_count, arttim = 0;
static const u8 setup_values[] = {0x40, 0x40, 0x40, 0x80, 0, 0xc0};
static const u8 arttim_regs[4] = {ARTTIM0, ARTTIM1, ARTTIM23, ARTTIM23};
pio_mode = ide_get_best_pio_mode(drive, mode_wanted, 5, &pio);
cmdprintk("%s: PIO mode wanted %d, selected %d (%d ns)%s\n",
drive->name, mode_wanted, pio_mode, pio.cycle_time,
pio.overridden ? " (overriding vendor mode)" : "");
program_cycle_times(drive, pio.cycle_time,
ide_pio_timings[pio_mode].active_time);
setup_count = quantize_timing(ide_pio_timings[pio_mode].setup_time,
1000 / system_bus_clock());
/*
* The primary channel has individual address setup timing registers
* for each drive and the hardware selects the slowest timing itself.
* The secondary channel has one common register and we have to select
* the slowest address setup timing ourselves.
*/
if (hwif->channel) {
ide_drive_t *drives = hwif->drives;
drive->drive_data = setup_count;
setup_count = max(drives[0].drive_data, drives[1].drive_data);
}
if (setup_count > 5) /* shouldn't actually happen... */
setup_count = 5;
cmdprintk("Final address setup count: %d\n", setup_count);
/*
* Program the address setup clocks into the ARTTIM registers.
* Avoid clearing the secondary channel's interrupt bit.
*/
(void) pci_read_config_byte (dev, arttim_regs[drive->dn], &arttim);
if (hwif->channel)
arttim &= ~ARTTIM23_INTR_CH1;
arttim &= ~0xc0;
arttim |= setup_values[setup_count];
(void) pci_write_config_byte(dev, arttim_regs[drive->dn], arttim);
cmdprintk("Write 0x%02x to reg 0x%x\n", arttim, arttim_regs[drive->dn]);
return pio_mode; return pio_mode;
} }
@ -376,61 +360,64 @@ static u8 cmd64x_ratemask (ide_drive_t *drive)
return mode; return mode;
} }
static int cmd64x_tune_chipset (ide_drive_t *drive, u8 xferspeed) static int cmd64x_tune_chipset (ide_drive_t *drive, u8 speed)
{ {
ide_hwif_t *hwif = HWIF(drive); ide_hwif_t *hwif = HWIF(drive);
struct pci_dev *dev = hwif->pci_dev; struct pci_dev *dev = hwif->pci_dev;
u8 unit = drive->dn & 0x01;
u8 regU = 0, pciU = hwif->channel ? UDIDETCR1 : UDIDETCR0;
u8 unit = (drive->select.b.unit & 0x01); speed = ide_rate_filter(cmd64x_ratemask(drive), speed);
u8 regU = 0, pciU = (hwif->channel) ? UDIDETCR1 : UDIDETCR0;
u8 regD = 0, pciD = (hwif->channel) ? BMIDESR1 : BMIDESR0;
u8 speed = ide_rate_filter(cmd64x_ratemask(drive), xferspeed);
if (speed >= XFER_SW_DMA_0) { if (speed >= XFER_SW_DMA_0) {
(void) pci_read_config_byte(dev, pciD, &regD);
(void) pci_read_config_byte(dev, pciU, &regU); (void) pci_read_config_byte(dev, pciU, &regU);
regD &= ~(unit ? 0x40 : 0x20);
regU &= ~(unit ? 0xCA : 0x35); regU &= ~(unit ? 0xCA : 0x35);
(void) pci_write_config_byte(dev, pciD, regD);
(void) pci_write_config_byte(dev, pciU, regU);
(void) pci_read_config_byte(dev, pciD, &regD);
(void) pci_read_config_byte(dev, pciU, &regU);
} }
switch(speed) { switch(speed) {
case XFER_UDMA_5: regU |= (unit ? 0x0A : 0x05); break; case XFER_UDMA_5:
case XFER_UDMA_4: regU |= (unit ? 0x4A : 0x15); break; regU |= unit ? 0x0A : 0x05;
case XFER_UDMA_3: regU |= (unit ? 0x8A : 0x25); break; break;
case XFER_UDMA_2: regU |= (unit ? 0x42 : 0x11); break; case XFER_UDMA_4:
case XFER_UDMA_1: regU |= (unit ? 0x82 : 0x21); break; regU |= unit ? 0x4A : 0x15;
case XFER_UDMA_0: regU |= (unit ? 0xC2 : 0x31); break; break;
case XFER_MW_DMA_2: regD |= (unit ? 0x40 : 0x10); break; case XFER_UDMA_3:
case XFER_MW_DMA_1: regD |= (unit ? 0x80 : 0x20); break; regU |= unit ? 0x8A : 0x25;
case XFER_MW_DMA_0: regD |= (unit ? 0xC0 : 0x30); break; break;
case XFER_SW_DMA_2: regD |= (unit ? 0x40 : 0x10); break; case XFER_UDMA_2:
case XFER_SW_DMA_1: regD |= (unit ? 0x80 : 0x20); break; regU |= unit ? 0x42 : 0x11;
case XFER_SW_DMA_0: regD |= (unit ? 0xC0 : 0x30); break; break;
case XFER_PIO_5: case XFER_UDMA_1:
case XFER_PIO_4: regU |= unit ? 0x82 : 0x21;
case XFER_PIO_3: break;
case XFER_PIO_2: case XFER_UDMA_0:
case XFER_PIO_1: regU |= unit ? 0xC2 : 0x31;
case XFER_PIO_0: break;
(void) cmd64x_tune_pio(drive, speed - XFER_PIO_0); case XFER_MW_DMA_2:
break; program_cycle_times(drive, 120, 70);
break;
default: case XFER_MW_DMA_1:
return 1; program_cycle_times(drive, 150, 80);
break;
case XFER_MW_DMA_0:
program_cycle_times(drive, 480, 215);
break;
case XFER_PIO_5:
case XFER_PIO_4:
case XFER_PIO_3:
case XFER_PIO_2:
case XFER_PIO_1:
case XFER_PIO_0:
(void) cmd64x_tune_pio(drive, speed - XFER_PIO_0);
break;
default:
return 1;
} }
if (speed >= XFER_SW_DMA_0) { if (speed >= XFER_SW_DMA_0)
(void) pci_write_config_byte(dev, pciU, regU); (void) pci_write_config_byte(dev, pciU, regU);
regD |= (unit ? 0x40 : 0x20);
(void) pci_write_config_byte(dev, pciD, regD);
}
return (ide_config_drive_speed(drive, speed)); return ide_config_drive_speed(drive, speed);
} }
static int config_chipset_for_dma (ide_drive_t *drive) static int config_chipset_for_dma (ide_drive_t *drive)
@ -665,7 +652,6 @@ static void __devinit init_hwif_cmd64x(ide_hwif_t *hwif)
hwif->ultra_mask = 0x3f; hwif->ultra_mask = 0x3f;
hwif->mwdma_mask = 0x07; hwif->mwdma_mask = 0x07;
hwif->swdma_mask = 0x07;
if (dev->device == PCI_DEVICE_ID_CMD_643) if (dev->device == PCI_DEVICE_ID_CMD_643)
hwif->ultra_mask = 0x80; hwif->ultra_mask = 0x80;