Граф коммитов

476 Коммитов

Автор SHA1 Сообщение Дата
Peter Zijlstra ae4df9d6c9 sched/topology: Rename sched_group_cpus()
There's a discrepancy in naming between the sched_domain and
sched_group cpumask accessor. Since we're doing changes, fix it.

  $ git grep sched_group_cpus | wc -l
  28
  $ git grep sched_domain_span | wc -l
  38

Suggests changing sched_group_cpus() into sched_group_span():

  for i  in `git grep -l sched_group_cpus`
  do
    sed -ie 's/sched_group_cpus/sched_group_span/g' $i
  done

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-15 10:15:34 +02:00
Peter Zijlstra e5c14b1fb8 sched/topology: Rename sched_group_mask()
Since sched_group_mask() is now an independent cpumask (it no longer
masks sched_group_cpus()), rename the thing.

Suggested-by: Lauro Ramos Venancio <lvenanci@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-15 10:15:33 +02:00
Peter Zijlstra 005f874dd2 sched/topology: Add sched_group_capacity debugging
Add sgc::id to easier spot domain construction issues.

Take the opportunity to slightly rework the group printing, because
adding more "(id: %d)" strings makes the entire thing very hard to
read. Also the individual groups are very hard to separate, so add
explicit visual grouping, which allows replacing all the "(%s: %d)"
format things with shorter "%s=%d" variants.

Then fix up some inconsistencies in surrounding prints for domains.

The end result looks like:

  [] CPU0 attaching sched-domain(s):
  []  domain-0: span=0,4 level=DIE
  []   groups: 0:{ span=0 }, 4:{ span=4 }
  []   domain-1: span=0-1,3-5,7 level=NUMA
  []    groups: 0:{ span=0,4 mask=0,4 cap=2048 }, 1:{ span=1,5 mask=1,5 cap=2048 }, 3:{ span=3,7 mask=3,7 cap=2048 }
  []    domain-2: span=0-7 level=NUMA
  []     groups: 0:{ span=0-1,3-5,7 mask=0,4 cap=6144 }, 2:{ span=1-3,5-7 mask=2,6 cap=6144 }

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-15 10:15:30 +02:00
Peter Zijlstra 8d5dc5126b sched/topology: Small cleanup
Move the allocation of topology specific cpumasks into the topology
code.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-15 10:15:29 +02:00
Steven Rostedt (VMware) 8663effb24 sched/core: Call __schedule() from do_idle() without enabling preemption
I finally got around to creating trampolines for dynamically allocated
ftrace_ops with using synchronize_rcu_tasks(). For users of the ftrace
function hook callbacks, like perf, that allocate the ftrace_ops
descriptor via kmalloc() and friends, ftrace was not able to optimize
the functions being traced to use a trampoline because they would also
need to be allocated dynamically. The problem is that they cannot be
freed when CONFIG_PREEMPT is set, as there's no way to tell if a task
was preempted on the trampoline. That was before Paul McKenney
implemented synchronize_rcu_tasks() that would make sure all tasks
(except idle) have scheduled out or have entered user space.

While testing this, I triggered this bug:

 BUG: unable to handle kernel paging request at ffffffffa0230077
 ...
 RIP: 0010:0xffffffffa0230077
 ...
 Call Trace:
  schedule+0x5/0xe0
  schedule_preempt_disabled+0x18/0x30
  do_idle+0x172/0x220

What happened was that the idle task was preempted on the trampoline.
As synchronize_rcu_tasks() ignores the idle thread, there's nothing
that lets ftrace know that the idle task was preempted on a trampoline.

The idle task shouldn't need to ever enable preemption. The idle task
is simply a loop that calls schedule or places the cpu into idle mode.
In fact, having preemption enabled is inefficient, because it can
happen when idle is just about to call schedule anyway, which would
cause schedule to be called twice. Once for when the interrupt came in
and was returning back to normal context, and then again in the normal
path that the idle loop is running in, which would be pointless, as it
had already scheduled.

The only reason schedule_preempt_disable() enables preemption is to be
able to call sched_submit_work(), which requires preemption enabled. As
this is a nop when the task is in the RUNNING state, and idle is always
in the running state, there's no reason that idle needs to enable
preemption. But that means it cannot use schedule_preempt_disable() as
other callers of that function require calling sched_submit_work().

Adding a new function local to kernel/sched/ that allows idle to call
the scheduler without enabling preemption, fixes the
synchronize_rcu_tasks() issue, as well as removes the pointless spurious
schedule calls caused by interrupts happening in the brief window where
preemption is enabled just before it calls schedule.

Reviewed: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20170414084809.3dacde2a@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-15 10:09:12 +02:00
Linus Torvalds 3527d3e951 Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - another round of rq-clock handling debugging, robustization and
     fixes

   - PELT accounting improvements

   - CPU hotplug related ->cpus_allowed affinity handling fixes all
     around the tree

   - ... plus misc fixes, cleanups and updates"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
  sched/x86: Update reschedule warning text
  crypto: N2 - Replace racy task affinity logic
  cpufreq/sparc-us2e: Replace racy task affinity logic
  cpufreq/sparc-us3: Replace racy task affinity logic
  cpufreq/sh: Replace racy task affinity logic
  cpufreq/ia64: Replace racy task affinity logic
  ACPI/processor: Replace racy task affinity logic
  ACPI/processor: Fix error handling in __acpi_processor_start()
  sparc/sysfs: Replace racy task affinity logic
  powerpc/smp: Replace open coded task affinity logic
  ia64/sn/hwperf: Replace racy task affinity logic
  ia64/salinfo: Replace racy task affinity logic
  workqueue: Provide work_on_cpu_safe()
  ia64/topology: Remove cpus_allowed manipulation
  sched/fair: Move the PELT constants into a generated header
  sched/fair: Increase PELT accuracy for small tasks
  sched/fair: Fix comments
  sched/Documentation: Add 'sched-pelt' tool
  sched/fair: Fix corner case in __accumulate_sum()
  sched/core: Remove 'task' parameter and rename tsk_restore_flags() to current_restore_flags()
  ...
2017-05-01 19:12:53 -07:00
Frederic Weisbecker 25e2d8c1b9 sched/cputime: Fix ksoftirqd cputime accounting regression
irq_time_read() returns the irqtime minus the ksoftirqd time. This
is necessary because irq_time_read() is used to substract the IRQ time
from the sum_exec_runtime of a task. If we were to include the softirq
time of ksoftirqd, this task would substract its own CPU time everytime
it updates ksoftirqd->sum_exec_runtime which would therefore never
progress.

But this behaviour got broken by:

  a499a5a14d ("sched/cputime: Increment kcpustat directly on irqtime account")

... which now includes ksoftirqd softirq time in the time returned by
irq_time_read().

This has resulted in wrong ksoftirqd cputime reported to userspace
through /proc/stat and thus "top" not showing ksoftirqd when it should
after intense networking load.

ksoftirqd->stime happens to be correct but it gets scaled down by
sum_exec_runtime through task_cputime_adjusted().

To fix this, just account the strict IRQ time in a separate counter and
use it to report the IRQ time.

Reported-and-tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1493129448-5356-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-27 09:08:26 +02:00
Peter Zijlstra 0a67d1ee30 sched/core: Add {EN,DE}QUEUE_NOCLOCK flags
Currently {en,de}queue_task() do an unconditional update_rq_clock().
However since we want to avoid duplicate updates, so that each
rq->lock section appears atomic in time, we need to be able to skip
these clock updates.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-16 09:46:23 +01:00
Peter Zijlstra 8a8c69c327 sched/core: Add rq->lock wrappers
The missing update_rq_clock() check can work with partial rq->lock
wrappery, since a missing wrapper can cause the warning to not be
emitted when it should have, but cannot cause the warning to trigger
when it should not have.

The duplicate update_rq_clock() check however can cause false warnings
to trigger. Therefore add more comprehensive rq->lock wrappery.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-16 09:46:22 +01:00
Ingo Molnar 1777e46355 sched/headers: Prepare to move _init() prototypes from <linux/sched.h> to <linux/sched/init.h>
But first introduce a trivial header and update usage sites.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:40 +01:00
Ingo Molnar 32ef5517c2 sched/headers: Prepare to move cputime functionality from <linux/sched.h> into <linux/sched/cputime.h>
Introduce a trivial, mostly empty <linux/sched/cputime.h> header
to prepare for the moving of cputime functionality out of sched.h.

Update all code that relies on these facilities.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:39 +01:00
Ingo Molnar dfc3401a33 sched/headers: Prepare to move the 'root_task_group' declaration to <linux/sched/autogroup.h>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:36 +01:00
Ingo Molnar 68db0cf106 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task_stack.h>
We are going to split <linux/sched/task_stack.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/task_stack.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:36 +01:00
Ingo Molnar 299300258d sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task.h>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:35 +01:00
Ingo Molnar ef8bd77f33 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/hotplug.h>
We are going to split <linux/sched/hotplug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/hotplug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:35 +01:00
Ingo Molnar b17b01533b sched/headers: Prepare for new header dependencies before moving code to <linux/sched/debug.h>
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/debug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:34 +01:00
Ingo Molnar 370c91355c sched/headers: Prepare for new header dependencies before moving code to <linux/sched/nohz.h>
We are going to split <linux/sched/nohz.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/nohz.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:34 +01:00
Ingo Molnar 03441a3482 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/stat.h>
We are going to split <linux/sched/stat.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/stat.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:34 +01:00
Ingo Molnar 7fce777cd4 sched/headers: Prepare header dependency changes, move the <asm/paravirt.h> include to kernel/sched/sched.h
Recent header reorganizations unearthed this hidden dependency:

  kernel/sched/core.c:199:25: error: 'paravirt_steal_rq_enabled' undeclared (first use in this function)
  kernel/sched/core.c:200:11: error: implicit declaration of function 'paravirt_steal_clock' [-Werror=implicit-function-declaration]

So move the asm/paravirt.h include from kernel/sched/cpuclock.c to kernel/sched/sched.h.

( NOTE: We do this change before doing the changes that introduce the build failure,
        so the series remains fully bisectable. )

Reported-by: kbuild test robot <fengguang.wu@intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:31 +01:00
Ingo Molnar 6a3827d750 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/numa_balancing.h>
We are going to split <linux/sched/numa_balancing.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/numa_balancing.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:30 +01:00
Ingo Molnar 55687da166 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/cpufreq.h>
We are going to split <linux/sched/cpufreq.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/cpufreq.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:30 +01:00
Ingo Molnar 3f07c01441 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/signal.h>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:29 +01:00
Ingo Molnar 6e84f31522 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

The APIs that are going to be moved first are:

   mm_alloc()
   __mmdrop()
   mmdrop()
   mmdrop_async_fn()
   mmdrop_async()
   mmget_not_zero()
   mmput()
   mmput_async()
   get_task_mm()
   mm_access()
   mm_release()

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:28 +01:00
Ingo Molnar e601757102 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/clock.h>
We are going to split <linux/sched/clock.h> out of <linux/sched.h>, which
will have to be picked up from other headers and .c files.

Create a trivial placeholder <linux/sched/clock.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:27 +01:00
Ingo Molnar 84f001e157 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/wake_q.h>
We are going to split <linux/sched/wake_q.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/wake_q.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:26 +01:00
Ingo Molnar 105ab3d8ce sched/headers: Prepare for new header dependencies before moving code to <linux/sched/topology.h>
We are going to split <linux/sched/topology.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/topology.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:26 +01:00
Ingo Molnar 1051408f7e sched/autogroup: Rename auto_group.[ch] to autogroup.[ch]
The names are all 'autogroup', not 'auto_group' - so rename
the kernel/sched/auto_group.[ch] to match the existing
nomenclature.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-08 09:01:11 +01:00
Ingo Molnar f2cb13609d sched/topology: Split out scheduler topology code from core.c into topology.c
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-07 10:58:12 +01:00
Frederic Weisbecker a499a5a14d sched/cputime: Increment kcpustat directly on irqtime account
The irqtime is accounted is nsecs and stored in
cpu_irq_time.hardirq_time and cpu_irq_time.softirq_time. Once the
accumulated amount reaches a new jiffy, this one gets accounted to the
kcpustat.

This was necessary when kcpustat was stored in cputime_t, which could at
worst have jiffies granularity. But now kcpustat is stored in nsecs
so this whole discretization game with temporary irqtime storage has
become unnecessary.

We can now directly account the irqtime to the kcpustat.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1485832191-26889-17-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-01 09:13:53 +01:00
Matt Fleming cb42c9a3eb sched/core: Add debugging code to catch missing update_rq_clock() calls
There's no diagnostic checks for figuring out when we've accidentally
missed update_rq_clock() calls. Let's add some by piggybacking on the
rq_*pin_lock() wrappers.

The idea behind the diagnostic checks is that upon pining rq lock the
rq clock should be updated, via update_rq_clock(), before anybody
reads the clock with rq_clock() or rq_clock_task().

The exception to this rule is when updates have explicitly been
disabled with the rq_clock_skip_update() optimisation.

There are some functions that only unpin the rq lock in order to grab
some other lock and avoid deadlock. In that case we don't need to
update the clock again and the previous diagnostic state can be
carried over in rq_repin_lock() by saving the state in the rq_flags
context.

Since this patch adds a new clock update flag and some already exist
in rq::clock_skip_update, that field has now been renamed. An attempt
has been made to keep the flag manipulation code small and fast since
it's used in the heart of the __schedule() fast path.

For the !CONFIG_SCHED_DEBUG case the only object code change (other
than addresses) is the following change to reset RQCF_ACT_SKIP inside
of __schedule(),

  -       c7 83 38 09 00 00 00    movl   $0x0,0x938(%rbx)
  -       00 00 00
  +       83 a3 38 09 00 00 fc    andl   $0xfffffffc,0x938(%rbx)

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/20160921133813.31976-8-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14 11:29:35 +01:00
Matt Fleming d8ac897137 sched/core: Add wrappers for lockdep_(un)pin_lock()
In preparation for adding diagnostic checks to catch missing calls to
update_rq_clock(), provide wrappers for (re)pinning and unpinning
rq->lock.

Because the pending diagnostic checks allow state to be maintained in
rq_flags across pin contexts, swap the 'struct pin_cookie' arguments
for 'struct rq_flags *'.

Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luca Abeni <luca.abeni@unitn.it>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/20160921133813.31976-5-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-01-14 11:29:30 +01:00
Tim Chen afe06efdf0 sched: Extend scheduler's asym packing
We generalize the scheduler's asym packing to provide an ordering
of the cpu beyond just the cpu number.  This allows the use of the
ASYM_PACKING scheduler machinery to move loads to preferred CPU in a
sched domain. The preference is defined with the cpu priority
given by arch_asym_cpu_priority(cpu).

We also record the most preferred cpu in a sched group when
we build the cpu's capacity for fast lookup of preferred cpu
during load balancing.

Co-developed-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-pm@vger.kernel.org
Cc: jolsa@redhat.com
Cc: rjw@rjwysocki.net
Cc: linux-acpi@vger.kernel.org
Cc: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: bp@suse.de
Link: http://lkml.kernel.org/r/0e73ae12737dfaafa46c07066cc7c5d3f1675e46.1479844244.git.tim.c.chen@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-24 14:09:46 +01:00
Vincent Guittot 09a43ace1f sched/fair: Propagate load during synchronous attach/detach
When a task moves from/to a cfs_rq, we set a flag which is then used to
propagate the change at parent level (sched_entity and cfs_rq) during
next update. If the cfs_rq is throttled, the flag will stay pending until
the cfs_rq is unthrottled.

For propagating the utilization, we copy the utilization of group cfs_rq to
the sched_entity.

For propagating the load, we have to take into account the load of the
whole task group in order to evaluate the load of the sched_entity.
Similarly to what was done before the rewrite of PELT, we add a correction
factor in case the task group's load is greater than its share so it will
contribute the same load of a task of equal weight.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: kernellwp@gmail.com
Cc: pjt@google.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1478598827-32372-5-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-16 10:29:10 +01:00
Vincent Guittot 9c2791f936 sched/fair: Fix hierarchical order in rq->leaf_cfs_rq_list
Fix the insertion of cfs_rq in rq->leaf_cfs_rq_list to ensure that a
child will always be called before its parent.

The hierarchical order in shares update list has been introduced by
commit:

  67e86250f8 ("sched: Introduce hierarchal order on shares update list")

With the current implementation a child can be still put after its
parent.

Lets take the example of:

       root
        \
         b
         /\
         c d*
           |
           e*

with root -> b -> c already enqueued but not d -> e so the
leaf_cfs_rq_list looks like: head -> c -> b -> root -> tail

The branch d -> e will be added the first time that they are enqueued,
starting with e then d.

When e is added, its parents is not already on the list so e is put at
the tail : head -> c -> b -> root -> e -> tail

Then, d is added at the head because its parent is already on the
list: head -> d -> c -> b -> root -> e -> tail

e is not placed at the right position and will be called the last
whereas it should be called at the beginning.

Because it follows the bottom-up enqueue sequence, we are sure that we
will finished to add either a cfs_rq without parent or a cfs_rq with a
parent that is already on the list. We can use this event to detect
when we have finished to add a new branch. For the others, whose
parents are not already added, we have to ensure that they will be
added after their children that have just been inserted the steps
before, and after any potential parents that are already in the list.
The easiest way is to put the cfs_rq just after the last inserted one
and to keep track of it untl the branch is fully added.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Morten.Rasmussen@arm.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: kernellwp@gmail.com
Cc: pjt@google.com
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1478598827-32372-3-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-16 10:29:08 +01:00
Morten Rasmussen bf475ce0a3 sched/fair: Add per-CPU min capacity to sched_group_capacity
struct sched_group_capacity currently represents the compute capacity
sum of all CPUs in the sched_group.

Unless it is divided by the group_weight to get the average capacity
per CPU, it hides differences in CPU capacity for mixed capacity systems
(e.g. high RT/IRQ utilization or ARM big.LITTLE).

But even the average may not be sufficient if the group covers CPUs of
different capacities.

Instead, by extending struct sched_group_capacity to indicate min per-CPU
capacity in the group a suitable group for a given task utilization can
more easily be found such that CPUs with reduced capacity can be avoided
for tasks with high utilization (not implemented by this patch).

Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1476452472-24740-4-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-16 10:29:06 +01:00
Linus Torvalds 1a4a2bc460 Merge branch 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull low-level x86 updates from Ingo Molnar:
 "In this cycle this topic tree has become one of those 'super topics'
  that accumulated a lot of changes:

   - Add CONFIG_VMAP_STACK=y support to the core kernel and enable it on
     x86 - preceded by an array of changes. v4.8 saw preparatory changes
     in this area already - this is the rest of the work. Includes the
     thread stack caching performance optimization. (Andy Lutomirski)

   - switch_to() cleanups and all around enhancements. (Brian Gerst)

   - A large number of dumpstack infrastructure enhancements and an
     unwinder abstraction. The secret long term plan is safe(r) live
     patching plus maybe another attempt at debuginfo based unwinding -
     but all these current bits are standalone enhancements in a frame
     pointer based debug environment as well. (Josh Poimboeuf)

   - More __ro_after_init and const annotations. (Kees Cook)

   - Enable KASLR for the vmemmap memory region. (Thomas Garnier)"

[ The virtually mapped stack changes are pretty fundamental, and not
  x86-specific per se, even if they are only used on x86 right now. ]

* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
  x86/asm: Get rid of __read_cr4_safe()
  thread_info: Use unsigned long for flags
  x86/alternatives: Add stack frame dependency to alternative_call_2()
  x86/dumpstack: Fix show_stack() task pointer regression
  x86/dumpstack: Remove dump_trace() and related callbacks
  x86/dumpstack: Convert show_trace_log_lvl() to use the new unwinder
  oprofile/x86: Convert x86_backtrace() to use the new unwinder
  x86/stacktrace: Convert save_stack_trace_*() to use the new unwinder
  perf/x86: Convert perf_callchain_kernel() to use the new unwinder
  x86/unwind: Add new unwind interface and implementations
  x86/dumpstack: Remove NULL task pointer convention
  fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y
  sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK
  lib/syscall: Pin the task stack in collect_syscall()
  x86/process: Pin the target stack in get_wchan()
  x86/dumpstack: Pin the target stack when dumping it
  kthread: Pin the stack via try_get_task_stack()/put_task_stack() in to_live_kthread() function
  sched/core: Add try_get_task_stack() and put_task_stack()
  x86/entry/64: Fix a minor comment rebase error
  iommu/amd: Don't put completion-wait semaphore on stack
  ...
2016-10-03 16:13:28 -07:00
Linus Torvalds af79ad2b1f Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler changes from Ingo Molnar:
 "The main changes are:

   - irqtime accounting cleanups and enhancements. (Frederic Weisbecker)

   - schedstat debugging enhancements, make it more broadly runtime
     available. (Josh Poimboeuf)

   - More work on asymmetric topology/capacity scheduling. (Morten
     Rasmussen)

   - sched/wait fixes and cleanups. (Oleg Nesterov)

   - PELT (per entity load tracking) improvements. (Peter Zijlstra)

   - Rewrite and enhance select_idle_siblings(). (Peter Zijlstra)

   - sched/numa enhancements/fixes (Rik van Riel)

   - sched/cputime scalability improvements (Stanislaw Gruszka)

   - Load calculation arithmetics fixes. (Dietmar Eggemann)

   - sched/deadline enhancements (Tommaso Cucinotta)

   - Fix utilization accounting when switching to the SCHED_NORMAL
     policy. (Vincent Guittot)

   - ... plus misc cleanups and enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
  sched/irqtime: Consolidate irqtime flushing code
  sched/irqtime: Consolidate accounting synchronization with u64_stats API
  u64_stats: Introduce IRQs disabled helpers
  sched/irqtime: Remove needless IRQs disablement on kcpustat update
  sched/irqtime: No need for preempt-safe accessors
  sched/fair: Fix min_vruntime tracking
  sched/debug: Add SCHED_WARN_ON()
  sched/core: Fix set_user_nice()
  sched/fair: Introduce set_curr_task() helper
  sched/core, ia64: Rename set_curr_task()
  sched/core: Fix incorrect utilization accounting when switching to fair class
  sched/core: Optimize SCHED_SMT
  sched/core: Rewrite and improve select_idle_siblings()
  sched/core: Replace sd_busy/nr_busy_cpus with sched_domain_shared
  sched/core: Introduce 'struct sched_domain_shared'
  sched/core: Restructure destroy_sched_domain()
  sched/core: Remove unused @cpu argument from destroy_sched_domain*()
  sched/wait: Introduce init_wait_entry()
  sched/wait: Avoid abort_exclusive_wait() in __wait_on_bit_lock()
  sched/wait: Avoid abort_exclusive_wait() in ___wait_event()
  ...
2016-10-03 13:39:00 -07:00
Frederic Weisbecker 19d23dbfeb sched/irqtime: Consolidate accounting synchronization with u64_stats API
The irqtime accounting currently implement its own ad hoc implementation
of u64_stats API. Lets rather consolidate it with the appropriate
library.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wanpeng Li <wanpeng.li@hotmail.com>
Link: http://lkml.kernel.org/r/1474849761-12678-5-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 11:46:40 +02:00
Peter Zijlstra 9148a3a10e sched/debug: Add SCHED_WARN_ON()
Provide SCHED_WARN_ON as wrapper for WARN_ON_ONCE() to avoid
CONFIG_SCHED_DEBUG wrappery.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 11:03:29 +02:00
Peter Zijlstra b2bf6c314e sched/fair: Introduce set_curr_task() helper
Now that the ia64 only set_curr_task() symbol is gone, provide a
helper just like put_prev_task().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 11:03:28 +02:00
Peter Zijlstra 1b568f0aab sched/core: Optimize SCHED_SMT
Avoid pointless SCHED_SMT code when running on !SMT hardware.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 11:03:26 +02:00
Peter Zijlstra 10e2f1acd0 sched/core: Rewrite and improve select_idle_siblings()
select_idle_siblings() is a known pain point for a number of
workloads; it either does too much or not enough and sometimes just
does plain wrong.

This rewrite attempts to address a number of issues (but sadly not
all).

The current code does an unconditional sched_domain iteration; with
the intent of finding an idle core (on SMT hardware). The problems
which this patch tries to address are:

 - its pointless to look for idle cores if the machine is real busy;
   at which point you're just wasting cycles.

 - it's behaviour is inconsistent between SMT and !SMT hardware in
   that !SMT hardware ends up doing a scan for any idle CPU in the LLC
   domain, while SMT hardware does a scan for idle cores and if that
   fails, falls back to a scan for idle threads on the 'target' core.

The new code replaces the sched_domain scan with 3 explicit scans:

 1) search for an idle core in the LLC
 2) search for an idle CPU in the LLC
 3) search for an idle thread in the 'target' core

where 1 and 3 are conditional on SMT support and 1 and 2 have runtime
heuristics to skip the step.

Step 1) is conditional on sd_llc_shared->has_idle_cores; when a cpu
goes idle and sd_llc_shared->has_idle_cores is false, we scan all SMT
siblings of the CPU going idle. Similarly, we clear
sd_llc_shared->has_idle_cores when we fail to find an idle core.

Step 2) tracks the average cost of the scan and compares this to the
average idle time guestimate for the CPU doing the wakeup. There is a
significant fudge factor involved to deal with the variability of the
averages. Esp. hackbench was sensitive to this.

Step 3) is unconditional; we assume (also per step 1) that scanning
all SMT siblings in a core is 'cheap'.

With this; SMT systems gain step 2, which cures a few benchmarks --
notably one from Facebook.

One 'feature' of the sched_domain iteration, which we preserve in the
new code, is that it would start scanning from the 'target' CPU,
instead of scanning the cpumask in cpu id order. This avoids multiple
CPUs in the LLC scanning for idle to gang up and find the same CPU
quite as much. The down side is that tasks can end up hopping across
the LLC for no apparent reason.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 11:03:09 +02:00
Peter Zijlstra 0e369d7575 sched/core: Replace sd_busy/nr_busy_cpus with sched_domain_shared
Move the nr_busy_cpus thing from its hacky sd->parent->groups->sgc
location into the much more natural sched_domain_shared location.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-30 10:54:07 +02:00
Andy Lutomirski c65eacbe29 sched/core: Allow putting thread_info into task_struct
If an arch opts in by setting CONFIG_THREAD_INFO_IN_TASK_STRUCT,
then thread_info is defined as a single 'u32 flags' and is the first
entry of task_struct.  thread_info::task is removed (it serves no
purpose if thread_info is embedded in task_struct), and
thread_info::cpu gets its own slot in task_struct.

This is heavily based on a patch written by Linus.

Originally-from: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a0898196f0476195ca02713691a5037a14f2aac5.1473801993.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-15 08:25:13 +02:00
Dietmar Eggemann cd92bfd3b8 sched/core: Store maximum per-CPU capacity in root domain
To be able to compare the capacity of the target CPU with the highest
available CPU capacity, store the maximum per-CPU capacity in the root
domain.

The max per-CPU capacity should be 1024 for all systems except SMT,
where the capacity is currently based on smt_gain and the number of
hardware threads and is <1024. If SMT can be brought to work with a
per-thread capacity of 1024, this patch can be dropped and replaced by a
hard-coded max capacity of 1024 (=SCHED_CAPACITY_SCALE).

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: freedom.tan@mediatek.com
Cc: keita.kobayashi.ym@renesas.com
Cc: mgalbraith@suse.de
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/26c69258-9947-f830-a53e-0c54e7750646@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-18 11:26:55 +02:00
Rik van Riel 1fc770d589 sched: Remove struct rq::nohz_stamp
The nohz_stamp member of struct rq has been unused since 2010,
when this commit removed the code that referenced it:

  396e894d28 ("sched: Revert nohz_ratelimit() for now")

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160815121410.5ea1c98f@annuminas.surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-18 10:55:39 +02:00
Rafael J. Wysocki 12bde33dbb cpufreq / sched: Pass runqueue pointer to cpufreq_update_util()
All of the callers of cpufreq_update_util() pass rq_clock(rq) to it
as the time argument and some of them check whether or not cpu_of(rq)
is equal to smp_processor_id() before calling it, so rework it to
take a runqueue pointer as the argument and move the rq_clock(rq)
evaluation into it.

Additionally, provide a wrapper checking cpu_of(rq) against
smp_processor_id() for the cpufreq_update_util() callers that
need it.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-08-16 22:16:03 +02:00
Rafael J. Wysocki 58919e83c8 cpufreq / sched: Pass flags to cpufreq_update_util()
It is useful to know the reason why cpufreq_update_util() has just
been called and that can be passed as flags to cpufreq_update_util()
and to the ->func() callback in struct update_util_data.  However,
doing that in addition to passing the util and max arguments they
already take would be clumsy, so avoid it.

Instead, use the observation that the schedutil governor is part
of the scheduler proper, so it can access scheduler data directly.
This allows the util and max arguments of cpufreq_update_util()
and the ->func() callback in struct update_util_data to be replaced
with a flags one, but schedutil has to be modified to follow.

Thus make the schedutil governor obtain the CFS utilization
information from the scheduler and use the "RT" and "DL" flags
instead of the special utilization value of ULONG_MAX to track
updates from the RT and DL sched classes.  Make it non-modular
too to avoid having to export scheduler variables to modules at
large.

Next, update all of the other users of cpufreq_update_util()
and the ->func() callback in struct update_util_data accordingly.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-08-16 22:14:55 +02:00
Linus Torvalds cca08cd66c Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:

 - introduce and use task_rcu_dereference()/try_get_task_struct() to fix
   and generalize task_struct handling (Oleg Nesterov)

 - do various per entity load tracking (PELT) fixes and optimizations
   (Peter Zijlstra)

 - cputime virt-steal time accounting enhancements/fixes (Wanpeng Li)

 - introduce consolidated cputime output file cpuacct.usage_all and
   related refactorings (Zhao Lei)

 - ... plus misc fixes and enhancements

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/core: Panic on scheduling while atomic bugs if kernel.panic_on_warn is set
  sched/cpuacct: Introduce cpuacct.usage_all to show all CPU stats together
  sched/cpuacct: Use loop to consolidate code in cpuacct_stats_show()
  sched/cpuacct: Merge cpuacct_usage_index and cpuacct_stat_index enums
  sched/fair: Rework throttle_count sync
  sched/core: Fix sched_getaffinity() return value kerneldoc comment
  sched/fair: Reorder cgroup creation code
  sched/fair: Apply more PELT fixes
  sched/fair: Fix PELT integrity for new tasks
  sched/cgroup: Fix cpu_cgroup_fork() handling
  sched/fair: Fix PELT integrity for new groups
  sched/fair: Fix and optimize the fork() path
  sched/cputime: Add steal time support to full dynticks CPU time accounting
  sched/cputime: Fix prev steal time accouting during CPU hotplug
  KVM: Fix steal clock warp during guest CPU hotplug
  sched/debug: Always show 'nr_migrations'
  sched/fair: Use task_rcu_dereference()
  sched/api: Introduce task_rcu_dereference() and try_get_task_struct()
  sched/idle: Optimize the generic idle loop
  sched/fair: Fix the wrong throttled clock time for cfs_rq_clock_task()
2016-07-25 13:59:34 -07:00
Linus Torvalds c86ad14d30 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 "The locking tree was busier in this cycle than the usual pattern - a
  couple of major projects happened to coincide.

  The main changes are:

   - implement the atomic_fetch_{add,sub,and,or,xor}() API natively
     across all SMP architectures (Peter Zijlstra)

   - add atomic_fetch_{inc/dec}() as well, using the generic primitives
     (Davidlohr Bueso)

   - optimize various aspects of rwsems (Jason Low, Davidlohr Bueso,
     Waiman Long)

   - optimize smp_cond_load_acquire() on arm64 and implement LSE based
     atomic{,64}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
     on arm64 (Will Deacon)

   - introduce smp_acquire__after_ctrl_dep() and fix various barrier
     mis-uses and bugs (Peter Zijlstra)

   - after discovering ancient spin_unlock_wait() barrier bugs in its
     implementation and usage, strengthen its semantics and update/fix
     usage sites (Peter Zijlstra)

   - optimize mutex_trylock() fastpath (Peter Zijlstra)

   - ... misc fixes and cleanups"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (67 commits)
  locking/atomic: Introduce inc/dec variants for the atomic_fetch_$op() API
  locking/barriers, arch/arm64: Implement LDXR+WFE based smp_cond_load_acquire()
  locking/static_keys: Fix non static symbol Sparse warning
  locking/qspinlock: Use __this_cpu_dec() instead of full-blown this_cpu_dec()
  locking/atomic, arch/tile: Fix tilepro build
  locking/atomic, arch/m68k: Remove comment
  locking/atomic, arch/arc: Fix build
  locking/Documentation: Clarify limited control-dependency scope
  locking/atomic, arch/rwsem: Employ atomic_long_fetch_add()
  locking/atomic, arch/qrwlock: Employ atomic_fetch_add_acquire()
  locking/atomic, arch/mips: Convert to _relaxed atomics
  locking/atomic, arch/alpha: Convert to _relaxed atomics
  locking/atomic: Remove the deprecated atomic_{set,clear}_mask() functions
  locking/atomic: Remove linux/atomic.h:atomic_fetch_or()
  locking/atomic: Implement atomic{,64,_long}_fetch_{add,sub,and,andnot,or,xor}{,_relaxed,_acquire,_release}()
  locking/atomic: Fix atomic64_relaxed() bits
  locking/atomic, arch/xtensa: Implement atomic_fetch_{add,sub,and,or,xor}()
  locking/atomic, arch/x86: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
  locking/atomic, arch/tile: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
  locking/atomic, arch/sparc: Implement atomic{,64}_fetch_{add,sub,and,or,xor}()
  ...
2016-07-25 12:41:29 -07:00
Thomas Gleixner d60585c576 sched/core: Correct off by one bug in load migration calculation
The move of calc_load_migrate() from CPU_DEAD to CPU_DYING did not take into
account that the function is now called from a thread running on the outgoing
CPU. As a result a cpu unplug leakes a load of 1 into the global load
accounting mechanism.

Fix it by adjusting for the currently running thread which calls
calc_load_migrate().

Reported-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com>
Cc: rt@linutronix.de
Cc: shreyas@linux.vnet.ibm.com
Fixes: e9cd8fa4fcfd: ("sched/migration: Move calc_load_migrate() into CPU_DYING")
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1607121744350.4083@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-07-13 14:58:20 +02:00
Peter Zijlstra 55e16d30bd sched/fair: Rework throttle_count sync
Since we already take rq->lock when creating a cgroup, use it to also
sync the throttle_count and avoid the extra state and enqueue path
branch.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
[ Fixed build warning. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-27 12:53:19 +02:00
Peter Zijlstra 8663e24d56 sched/fair: Reorder cgroup creation code
A future patch needs rq->lock held _after_ we link the task_group into
the hierarchy. In order to avoid taking every rq->lock twice, reorder
things a little and create online_fair_sched_group() to be called
after we link the task_group.

All this code is still ran from css_alloc() so css_online() isn't in
fact used for this.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-27 12:17:55 +02:00
Vincent Guittot ea86cb4b76 sched/cgroup: Fix cpu_cgroup_fork() handling
A new fair task is detached and attached from/to task_group with:

  cgroup_post_fork()
    ss->fork(child) := cpu_cgroup_fork()
      sched_move_task()
        task_move_group_fair()

Which is wrong, because at this point in fork() the task isn't fully
initialized and it cannot 'move' to another group, because its not
attached to any group as yet.

In fact, cpu_cgroup_fork() needs a small part of sched_move_task() so we
can just call this small part directly instead sched_move_task(). And
the task doesn't really migrate because it is not yet attached so we
need the following sequence:

  do_fork()
    sched_fork()
      __set_task_cpu()

    cgroup_post_fork()
      set_task_rq() # set task group and runqueue

    wake_up_new_task()
      select_task_rq() can select a new cpu
      __set_task_cpu
      post_init_entity_util_avg
        attach_task_cfs_rq()
      activate_task
        enqueue_task

This patch makes that happen.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
[ Added TASK_SET_GROUP to set depth properly. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-27 12:17:52 +02:00
Ingo Molnar 630741fb60 Merge branch 'sched/urgent' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-27 11:35:02 +02:00
Konstantin Khlebnikov 094f469172 sched/fair: Initialize throttle_count for new task-groups lazily
Cgroup created inside throttled group must inherit current throttle_count.
Broken throttle_count allows to nominate throttled entries as a next buddy,
later this leads to null pointer dereference in pick_next_task_fair().

This patch initialize cfs_rq->throttle_count at first enqueue: laziness
allows to skip locking all rq at group creation. Lazy approach also allows
to skip full sub-tree scan at throttling hierarchy (not in this patch).

Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Link: http://lkml.kernel.org/r/146608182119.21870.8439834428248129633.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-24 08:26:44 +02:00
Peter Zijlstra 1f03e8d291 locking/barriers: Replace smp_cond_acquire() with smp_cond_load_acquire()
This new form allows using hardware assisted waiting.

Some hardware (ARM64 and x86) allow monitoring an address for changes,
so by providing a pointer we can use this to replace the cpu_relax()
with hardware optimized methods in the future.

Requested-by: Will Deacon <will.deacon@arm.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-14 11:54:27 +02:00
Wanpeng Li 3d89e5478b sched/cputime: Fix prev steal time accouting during CPU hotplug
Commit:

  e9532e69b8 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")

... set rq->prev_* to 0 after a CPU hotplug comes back, in order to
fix the case where (after CPU hotplug) steal time is smaller than
rq->prev_steal_time.

However, this should never happen. Steal time was only smaller because of the
KVM-specific bug fixed by the previous patch.  Worse, the previous patch
triggers a bug on CPU hot-unplug/plug operation: because
rq->prev_steal_time is cleared, all of the CPU's past steal time will be
accounted again on hot-plug.

Since the root cause has been fixed, we can just revert commit e9532e69b8.

Signed-off-by: Wanpeng Li <wanpeng.li@hotmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 'commit e9532e69b8 ("sched/cputime: Fix steal time accounting vs. CPU hotplug")'
Link: http://lkml.kernel.org/r/1465813966-3116-3-git-send-email-wanpeng.li@hotmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-06-14 11:13:15 +02:00
Linus Torvalds d57d394319 Power management material for v4.7-rc1
- New cpufreq "schedutil" governor (making decisions based on CPU
    utilization information provided by the scheduler and capable of
    switching CPU frequencies right away if the underlying driver
    supports that) and support for fast frequency switching in the
    acpi-cpufreq driver (Rafael Wysocki).
 
  - Consolidation of CPU frequency management on ARM platforms allowing
    them to get rid of some platform-specific boilerplate code if they
    are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao,
    Marc Gonzalez).
 
  - Support for ACPI _PPC and CPU frequency limits in the intel_pstate
    driver (Srinivas Pandruvada).
 
  - Fixes and cleanups in the cpufreq core and generic governor code
    (Rafael Wysocki, Sai Gurrappadi).
 
  - intel_pstate driver optimizations and cleanups (Rafael Wysocki,
    Philippe Longepe, Chen Yu, Joe Perches).
 
  - cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri
    Bhat).
 
  - cpufreq qoriq driver fixes and cleanups (Jia Hongtao).
 
  - ACPI cpufreq driver cleanups (Viresh Kumar).
 
  - Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang,
    Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla).
 
  - Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann).
 
  - Fixes and cleanups in the OPP (Operating Performance Points)
    framework, mostly related to OPP sharing, and reorganization of
    OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla).
 
  - New "passive" governor for devfreq (for SoC subsystems that will
    rely on someone else for the management of their power resources)
    and consolidation of devfreq support for Exynos platforms, coding
    style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham).
 
  - PM core fixes and cleanups, mostly to make it work better with the
    generic power domains (genpd) framework, and updates for that
    framework (Ulf Hansson, Thierry Reding, Colin Ian King).
 
  - Intel Broxton support for the intel_idle driver (Len Brown).
 
  - cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach).
 
  - ARM cpuidle cleanups (Jisheng Zhang).
 
  - Intel Kabylake support for the RAPL power capping driver (Jacob Pan).
 
  - AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko
    Stuebner).
 
  - Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King,
    Mattia Dongili, Thomas Renninger).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJXOjLgAAoJEILEb/54YlRxfn0P/RbSPpNlUNBIE8DFrdD9jRdJ
 TIpZ7uiHi9tU1ZF17UBbb/SwuWfYVnVmiorZGRfFOtGaoqh0HFZ/nplDz99rK0ku
 vW2OnbojMQEUMU3IcUT1y4BsSl0H23f7ZOKrdprALeWxDQmbgnYjrE6vkX6hRtld
 A8eeZvIEJ5CzV8S+9aOOOpojW2yXk5dYGdZ7gpQdoM0n7zVLyPnNucJoha3BYmOG
 FwKEIe05RpIhfLfGT0CXIRcOzwAZ6ZWKgOrXUrx/AadPbvu/TP9zkI0djYI8ukyv
 z2oiO/GExoeGVuUzvy8vY5SiH4NQvViftFzMZepcsmjxmVglohMPRL8VLjZIBckk
 DDcqH9e0OQI20jjYT1vIf5+JWBvLxuQfGtyzI0S+sE/elB1zI/3O8p+8N2CuF5n+
 my2dawIewnHI/0AdSpJ+K7DVrfwPHAX19axtPX3dJSLh2OuHCPNlAtbxRGAriBfH
 Zv9NETxlrch69o2AD4K54DErWV1FsYLznzK5Zms6MC2Ispbb+oiYpacTlZblznvb
 H5U2SSNlA5Niir3vVJ01nKRtzxlWoi67CQxbYrGhlaR0nTTxf9HqWgcSiTZrn7Pv
 hs+LA2aUfMf3JGjStdORS7S8biQSid5vypfkglpWLZBKHNC9BqqZd9gSM+jF3FVh
 ps4mMM4UXY4hnoFDkMBI
 =WM89
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "The majority of changes go into the cpufreq subsystem this time.

  To me, quite obviously, the biggest ticket item is the new "schedutil"
  governor.  Interestingly enough, it's the first new cpufreq governor
  since the beginning of the git era (except for some out-of-the-tree
  ones).

  There are two main differences between it and the existing governors.
  First, it uses the information provided by the scheduler directly for
  making its decisions, so it doesn't have to track anything by itself.
  Second, it can invoke drivers (supporting that feature) to adjust CPU
  performance right away without having to spawn work items to be
  executed in process context or similar.  Currently, the acpi-cpufreq
  driver is the only one supporting that mode of operation, but then it
  is used on a large number of systems.

  The "schedutil" governor as included here is very simple and mostly
  regarded as a foundation for future work on the integration of the
  scheduler with CPU power management (in fact, there is work in
  progress on top of it already).  Nevertheless it works and the
  preliminary results obtained with it are encouraging.

  There also is some consolidation of CPU frequency management for ARM
  platforms that can add their machine IDs the the new stub dt-platdev
  driver now and that will take care of creating the requisite platform
  device for cpufreq-dt, so it is not necessary to do that in platform
  code any more.  Several ARM platforms are switched over to using this
  generic mechanism.

  In addition to that, the intel_pstate driver is now going to respect
  CPU frequency limits set by the platform firmware (or a BMC) and
  provided via the ACPI _PPC object.

  The devfreq subsystem is getting a new "passive" governor for SoCs
  subsystems that will depend on somebody else to manage their voltage
  rails and its support for Samsung Exynos SoCs is consolidated.

  The rest is support for new hardware (Intel Broxton support in
  intel_idle for one example), bug fixes, optimizations and cleanups in
  a number of places.

  Specifics:

   - New cpufreq "schedutil" governor (making decisions based on CPU
     utilization information provided by the scheduler and capable of
     switching CPU frequencies right away if the underlying driver
     supports that) and support for fast frequency switching in the
     acpi-cpufreq driver (Rafael Wysocki)

   - Consolidation of CPU frequency management on ARM platforms allowing
     them to get rid of some platform-specific boilerplate code if they
     are going to use the cpufreq-dt driver (Viresh Kumar, Finley Xiao,
     Marc Gonzalez)

   - Support for ACPI _PPC and CPU frequency limits in the intel_pstate
     driver (Srinivas Pandruvada)

   - Fixes and cleanups in the cpufreq core and generic governor code
     (Rafael Wysocki, Sai Gurrappadi)

   - intel_pstate driver optimizations and cleanups (Rafael Wysocki,
     Philippe Longepe, Chen Yu, Joe Perches)

   - cpufreq powernv driver fixes and cleanups (Akshay Adiga, Shilpasri
     Bhat)

   - cpufreq qoriq driver fixes and cleanups (Jia Hongtao)

   - ACPI cpufreq driver cleanups (Viresh Kumar)

   - Assorted cpufreq driver updates (Ashwin Chaugule, Geliang Tang,
     Javier Martinez Canillas, Paul Gortmaker, Sudeep Holla)

   - Assorted cpufreq fixes and cleanups (Joe Perches, Arnd Bergmann)

   - Fixes and cleanups in the OPP (Operating Performance Points)
     framework, mostly related to OPP sharing, and reorganization of
     OF-dependent code in it (Viresh Kumar, Arnd Bergmann, Sudeep Holla)

   - New "passive" governor for devfreq (for SoC subsystems that will
     rely on someone else for the management of their power resources)
     and consolidation of devfreq support for Exynos platforms, coding
     style and typo fixes for devfreq (Chanwoo Choi, MyungJoo Ham)

   - PM core fixes and cleanups, mostly to make it work better with the
     generic power domains (genpd) framework, and updates for that
     framework (Ulf Hansson, Thierry Reding, Colin Ian King)

   - Intel Broxton support for the intel_idle driver (Len Brown)

   - cpuidle core optimization and fix (Daniel Lezcano, Dave Gerlach)

   - ARM cpuidle cleanups (Jisheng Zhang)

   - Intel Kabylake support for the RAPL power capping driver (Jacob
     Pan)

   - AVS (Adaptive Voltage Switching) rockchip-io driver update (Heiko
     Stuebner)

   - Updates for the cpupower tool (Arjun Sreedharan, Colin Ian King,
     Mattia Dongili, Thomas Renninger)"

* tag 'pm-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (112 commits)
  intel_pstate: Clean up get_target_pstate_use_performance()
  intel_pstate: Use sample.core_avg_perf in get_avg_pstate()
  intel_pstate: Clarify average performance computation
  intel_pstate: Avoid unnecessary synchronize_sched() during initialization
  cpufreq: schedutil: Make default depend on CONFIG_SMP
  cpufreq: powernv: del_timer_sync when global and local pstate are equal
  cpufreq: powernv: Move smp_call_function_any() out of irq safe block
  intel_pstate: Clean up intel_pstate_get()
  cpufreq: schedutil: Make it depend on CONFIG_SMP
  cpufreq: governor: Fix handling of special cases in dbs_update()
  PM / OPP: Move CONFIG_OF dependent code in a separate file
  cpufreq: intel_pstate: Ignore _PPC processing under HWP
  cpufreq: arm_big_little: use generic OPP functions for {init, free}_opp_table
  PM / OPP: add non-OF versions of dev_pm_opp_{cpumask_, }remove_table
  cpufreq: tango: Use generic platdev driver
  PM / OPP: pass cpumask by reference
  cpufreq: Fix GOV_LIMITS handling for the userspace governor
  cpupower: fix potential memory leak
  PM / devfreq: style/typo fixes
  PM / devfreq: exynos: Add the detailed correlation for Exynos5422 bus
  ..
2016-05-16 19:17:22 -07:00
Peter Zijlstra 59efa0bac9 sched/core: Kill sched_class::task_waking to clean up the migration logic
With sched_class::task_waking being called only when we do
set_task_cpu(), we can make sched_class::migrate_task_rq() do the work
and eliminate sched_class::task_waking entirely.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Hunter <ahh@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Pavan Kondeti <pkondeti@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: byungchul.park@lge.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:55:31 +02:00
Ingo Molnar 4eb8676517 Merge branch 'smp/hotplug' into sched/core, to resolve conflicts
Conflicts:
	kernel/sched/core.c

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-12 09:51:36 +02:00
Thomas Gleixner 20a5c8cc74 sched/fair: Make ilb_notifier an explicit call
No need for an extra notifier.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: rt@linutronix.de
Link: http://lkml.kernel.org/r/20160310120025.693720241@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-05-06 14:58:26 +02:00
Yuyang Du 172895e6b5 sched/fair: Rename SCHED_LOAD_SHIFT to NICE_0_LOAD_SHIFT and remove SCHED_LOAD_SCALE
After cleaning up the sched metrics, there are two definitions that are
ambiguous and confusing: SCHED_LOAD_SHIFT and SCHED_LOAD_SHIFT.

Resolve this:

 - Rename SCHED_LOAD_SHIFT to NICE_0_LOAD_SHIFT, which better reflects what
   it is.

 - Replace SCHED_LOAD_SCALE use with SCHED_CAPACITY_SCALE and remove SCHED_LOAD_SCALE.

Suggested-by: Ben Segall <bsegall@google.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dietmar.eggemann@arm.com
Cc: lizefan@huawei.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1459829551-21625-3-git-send-email-yuyang.du@intel.com
[ Rewrote the changelog and fixed the build on 32-bit kernels. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:35:21 +02:00
Yuyang Du 6ecdd74962 sched/fair: Generalize the load/util averages resolution definition
Integer metric needs fixed point arithmetic. In sched/fair, a few
metrics, e.g., weight, load, load_avg, util_avg, freq, and capacity,
may have different fixed point ranges, which makes their update and
usage error-prone.

In order to avoid the errors relating to the fixed point range, we
definie a basic fixed point range, and then formalize all metrics to
base on the basic range.

The basic range is 1024 or (1 << 10). Further, one can recursively
apply the basic range to have larger range.

Pointed out by Ben Segall, weight (visible to user, e.g., NICE-0 has
1024) and load (e.g., NICE_0_LOAD) have independent ranges, but they
must be well calibrated.

Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: lizefan@huawei.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1459829551-21625-2-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:24:00 +02:00
Peter Zijlstra 2159197d66 sched/core: Enable increased load resolution on 64-bit kernels
Mike ran into the low load resolution limitation on his big machine.

So reenable these bits; nobody could ever reproduce/analyze the
reported power usage claim and Google has been running with this for
years as well.

Reported-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Tested-by: Mike Galbraith <umgwanakikbuti@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:24:00 +02:00
Peter Zijlstra e7904a28f5 locking/lockdep, sched/core: Implement a better lock pinning scheme
The problem with the existing lock pinning is that each pin is of
value 1; this mean you can simply unpin if you know its pinned,
without having any extra information.

This scheme generates a random (16 bit) cookie for each pin and
requires this same cookie to unpin. This means you have to keep the
cookie in context.

No objsize difference for !LOCKDEP kernels.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:23:59 +02:00
Peter Zijlstra eb58075149 sched/core: Introduce 'struct rq_flags'
In order to be able to pass around more than just the IRQ flags in the
future, add a rq_flags structure.

No difference in code generation for the x86_64-defconfig build I
tested.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:23:59 +02:00
Peter Zijlstra 3e71a462dd sched/core: Move task_rq_lock() out of line
Its a rather large function, inline doesn't seems to make much sense:

 $ size defconfig-build/kernel/sched/core.o{.orig,}
    text    data     bss     dec     hex filename
   56533   21037    2320   79890   13812 defconfig-build/kernel/sched/core.o.orig
   55733   21037    2320   79090   134f2 defconfig-build/kernel/sched/core.o

The 'perf bench sched messaging' micro-benchmark shows a visible improvement
of 4-5%:

  $ for i in /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor ; do echo performance > $i ; done
  $ perf stat --null --repeat 25 -- perf bench sched messaging -g 40 -l 5000

  pre:
       4.582798193 seconds time elapsed          ( +-  1.41% )
       4.733374877 seconds time elapsed          ( +-  2.10% )
       4.560955136 seconds time elapsed          ( +-  1.43% )
       4.631062303 seconds time elapsed          ( +-  1.40% )

  post:
       4.364765213 seconds time elapsed          ( +-  0.91% )
       4.454442734 seconds time elapsed          ( +-  1.18% )
       4.448893817 seconds time elapsed          ( +-  1.41% )
       4.424346872 seconds time elapsed          ( +-  0.97% )

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-05 09:23:58 +02:00
Frederic Weisbecker 9fd81dd5ce sched/fair: Optimize !CONFIG_NO_HZ_COMMON CPU load updates
Some code in CPU load update only concern NO_HZ configs but it is
built on all configurations. When NO_HZ isn't built, that code is harmless
but just happens to take some useless ressources in CPU and memory:

1) one useless field in struct rq
2) jiffies record on every tick that is never used (cpu_load_update_periodic)
3) decay_load_missed is called two times on every tick to eventually
   return immediately with no action taken. And that function is dead
   code.

For pure optimization purposes, lets conditionally build the NO_HZ
related code.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1461080211-16271-1-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-23 14:20:42 +02:00
Frederic Weisbecker cee1afce30 sched/fair: Gather CPU load functions under a more conventional namespace
The CPU load update related functions have a weak naming convention
currently, starting with update_cpu_load_*() which isn't ideal as
"update" is a very generic concept.

Since two of these functions are public already (and a third is to come)
that's enough to introduce a more conventional naming scheme. So let's
do the following rename instead:

	update_cpu_load_*() -> cpu_load_update_*()

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1460555812-25375-2-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-04-23 14:20:41 +02:00
Rafael J. Wysocki 9bdcb44e39 cpufreq: schedutil: New governor based on scheduler utilization data
Add a new cpufreq scaling governor, called "schedutil", that uses
scheduler-provided CPU utilization information as input for making
its decisions.

Doing that is possible after commit 34e2c555f3 (cpufreq: Add
mechanism for registering utilization update callbacks) that
introduced cpufreq_update_util() called by the scheduler on
utilization changes (from CFS) and RT/DL task status updates.
In particular, CPU frequency scaling decisions may be based on
the the utilization data passed to cpufreq_update_util() by CFS.

The new governor is relatively simple.

The frequency selection formula used by it depends on whether or not
the utilization is frequency-invariant.  In the frequency-invariant
case the new CPU frequency is given by

	next_freq = 1.25 * max_freq * util / max

where util and max are the last two arguments of cpufreq_update_util().
In turn, if util is not frequency-invariant, the maximum frequency in
the above formula is replaced with the current frequency of the CPU:

	next_freq = 1.25 * curr_freq * util / max

The coefficient 1.25 corresponds to the frequency tipping point at
(util / max) = 0.8.

All of the computations are carried out in the utilization update
handlers provided by the new governor.  One of those handlers is
used for cpufreq policies shared between multiple CPUs and the other
one is for policies with one CPU only (and therefore it doesn't need
to use any extra synchronization means).

The governor supports fast frequency switching if that is supported
by the cpufreq driver in use and possible for the given policy.
In the fast switching case, all operations of the governor take
place in its utilization update handlers.  If fast switching cannot
be used, the frequency switch operations are carried out with the
help of a work item which only calls __cpufreq_driver_target()
(under a mutex) to trigger a frequency update (to a value already
computed beforehand in one of the utilization update handlers).

Currently, the governor treats all of the RT and DL tasks as
"unknown utilization" and sets the frequency to the allowed
maximum when updated from the RT or DL sched classes.  That
heavy-handed approach should be replaced with something more
subtle and specifically targeted at RT and DL tasks.

The governor shares some tunables management code with the
"ondemand" and "conservative" governors and uses some common
definitions from cpufreq_governor.h, but apart from that it
is stand-alone.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-04-02 01:09:12 +02:00
Yuyang Du 2b8c41daba sched/fair: Initiate a new task's util avg to a bounded value
A new task's util_avg is set to full utilization of a CPU (100% time
running). This accelerates a new task's utilization ramp-up, useful to
boost its execution in early time. However, it may result in
(insanely) high utilization for a transient time period when a flood
of tasks are spawned. Importantly, it violates the "fundamentally
bounded" CPU utilization, and its side effect is negative if we don't
take any measure to bound it.

This patch proposes an algorithm to address this issue. It has
two methods to approach a sensible initial util_avg:

(1) An expected (or average) util_avg based on its cfs_rq's util_avg:

  util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight

(2) A trajectory of how successive new tasks' util develops, which
gives 1/2 of the left utilization budget to a new task such that
the additional util is noticeably large (when overall util is low) or
unnoticeably small (when overall util is high enough). In the meantime,
the aggregate utilization is well bounded:

  util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n

where n denotes the nth task.

If util_avg is larger than util_avg_cap, then the effective util is
clamped to the util_avg_cap.

Reported-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bsegall@google.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: steve.muckle@linaro.org
Link: http://lkml.kernel.org/r/1459283456-21682-1-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-31 10:49:46 +02:00
Linus Torvalds be53f58fa0 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Misc fixes: a cgroup fix, a fair-scheduler migration accounting fix, a
  cputime fix and two cpuacct cleanups"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/cpuacct: Simplify the cpuacct code
  sched/cpuacct: Rename parameter in cpuusage_write() for readability
  sched/fair: Add comments to explain select_idle_sibling()
  sched/fair: Fix fairness issue on migration
  sched/cgroup: Fix/cleanup cgroup teardown/init
  sched/cputime: Fix steal time accounting vs. CPU hotplug
2016-03-24 09:42:50 -07:00
Ingo Molnar 42e405f7b1 Merge branch 'linus' into sched/urgent, to pick up dependencies
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-21 10:47:40 +01:00
Linus Torvalds 277edbabf6 Power management and ACPI material for v4.6-rc1, part 1
- Redesign of cpufreq governors and the intel_pstate driver to
    make them use callbacks invoked by the scheduler to trigger CPU
    frequency evaluation instead of using per-CPU deferrable timers
    for that purpose (Rafael Wysocki).
 
  - Reorganization and cleanup of cpufreq governor code to make it
    more straightforward and fix some concurrency problems in it
    (Rafael Wysocki, Viresh Kumar).
 
  - Cleanup and improvements of locking in the cpufreq core (Viresh
    Kumar).
 
  - Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
    Kumar, Eric Biggers).
 
  - intel_pstate driver updates including fixes, optimizations and a
    modification to make it enable enable hardware-coordinated P-state
    selection (HWP) by default if supported by the processor (Philippe
    Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
    Franciosi).
 
  - Operating Performance Points (OPP) framework updates to improve
    its handling of voltage regulators and device clocks and updates
    of the cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).
 
  - Updates of the powernv cpufreq driver to fix initialization
    and cleanup problems in it and correct its worker thread handling
    with respect to CPU offline, new powernv_throttle tracepoint
    (Shilpasri Bhat).
 
  - ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).
 
  - ACPICA updates including one fix for a regression introduced
    by previos changes in the ACPICA code (Bob Moore, Lv Zheng,
    David Box, Colin Ian King).
 
  - Support for installing ACPI tables from initrd (Lv Zheng).
 
  - Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
    Chaugule).
 
  - Support for _HID(ACPI0010) devices (ACPI processor containers)
    and ACPI processor driver cleanups (Sudeep Holla).
 
  - Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
    Aleksey Makarov).
 
  - Modification of the ACPI PCI IRQ management code to make it treat
    255 in the Interrupt Line register as "not connected" on x86 (as
    per the specification) and avoid attempts to use that value as
    a valid interrupt vector (Chen Fan).
 
  - ACPI APEI fixes related to resource leaks (Josh Hunt).
 
  - Removal of modularity from a few ACPI drivers (BGRT, GHES,
    intel_pmic_crc) that cannot be built as modules in practice (Paul
    Gortmaker).
 
  - PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
    as a valid resource type (Harb Abdulhamid).
 
  - New device ID (future AMD I2C controller) in the ACPI driver for
    AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).
 
  - Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).
 
  - cpuidle menu governor optimization to avoid a square root
    computation in it (Rasmus Villemoes).
 
  - Fix for potential use-after-free in the generic device properties
    framework (Heikki Krogerus).
 
  - Updates of the generic power domains (genpd) framework including
    support for multiple power states of a domain, fixes and debugfs
    output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
    Geert Uytterhoeven).
 
  - Intel RAPL power capping driver updates to reduce IPI overhead in
    it (Jacob Pan).
 
  - System suspend/hibernation code cleanups (Eric Biggers, Saurabh
    Sengar).
 
  - Year 2038 fix for the process freezer (Abhilash Jindal).
 
  - turbostat utility updates including new features (decoding of more
    registers and CPUID fields, sub-second intervals support, GFX MHz
    and RC6 printout, --out command line option), fixes (syscall jitter
    detection and workaround, reductioin of the number of syscalls made,
    fixes related to Xeon x200 processors, compiler warning fixes) and
    cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu).
 
 /
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABCAAGBQJW50NXAAoJEILEb/54YlRxvr8QAIktC9+ft0y5AmU46hDcBWcK
 QutyWJL9X9BS6DWBJZA2qclDYFmhMfi5Fza1se0gQ9TnLB/KrBwHWLsiYoTsb1k+
 nPKf214aPk+qAhkVuyB4leNWML9Qz9n9jwku/EYxWWpgtbSRf3+0ioIKZeWWc/8V
 JvuaOu4O+g/tkmL7QTrnGWBwhIIssAAV85QPsHkx+g68MrCj4UMMzm7z9G21SPXX
 bmP8yIHsczX/XnRsY0W2NSno7Vdk6ImHpDJ26IAZg28WRNPWICHgGYHvB0TTWMvb
 tts+yqfF7/7QLRjT/M8k9CzDBDE/DnVqoZ0fNJ+aYr7hNKF32mtAN+jH9ZB9dl/P
 fEFapJkPxnWyzAoVoB9Dz0rkcZkYMlbxlLWzUGpaPq0JflUUTzLk0ApSjmMn4HRO
 UddwCDdyHTaYThp3gn6GbOb0pIP0SdOVbI1M2QV2x/4PLcT2Ft8Np1+1RFWOeinZ
 Bdl9AE890big0808mqbBzw/buETwr9FjHtCdDPXpP0vJpkBLu3nIYRNb0LCt39es
 mWMp6dFhGgvGj3D3ahTuV3GI8hdpDkh9SObexa11RCjkTKrXcwEmFxHxLeFXwKYq
 alG278bo6cSChRMziS1lis+W/3tsJRN4TXUSv1PPzJHrFgptQVFRStU9ngBKP+pN
 WB+itPc4Fw0YHOrAFsrx
 =cfty
 -----END PGP SIGNATURE-----

Merge tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management and ACPI updates from Rafael Wysocki:
 "This time the majority of changes go into cpufreq and they are
  significant.

  First off, the way CPU frequency updates are triggered is different
  now.  Instead of having to set up and manage a deferrable timer for
  each CPU in the system to evaluate and possibly change its frequency
  periodically, cpufreq governors set up callbacks to be invoked by the
  scheduler on a regular basis (basically on utilization updates).  The
  "old" governors, "ondemand" and "conservative", still do all of their
  work in process context (although that is triggered by the scheduler
  now), but intel_pstate does it all in the callback invoked by the
  scheduler with no need for any additional asynchronous processing.

  Of course, this eliminates the overhead related to the management of
  all those timers, but also it allows the cpufreq governor code to be
  simplified quite a bit.  On top of that, the common code and data
  structures used by the "ondemand" and "conservative" governors are
  cleaned up and made more straightforward and some long-standing and
  quite annoying problems are addressed.  In particular, the handling of
  governor sysfs attributes is modified and the related locking becomes
  more fine grained which allows some concurrency problems to be avoided
  (particularly deadlocks with the core cpufreq code).

  In principle, the new mechanism for triggering frequency updates
  allows utilization information to be passed from the scheduler to
  cpufreq.  Although the current code doesn't make use of it, in the
  works is a new cpufreq governor that will make decisions based on the
  scheduler's utilization data.  That should allow the scheduler and
  cpufreq to work more closely together in the long run.

  In addition to the core and governor changes, cpufreq drivers are
  updated too.  Fixes and optimizations go into intel_pstate, the
  cpufreq-dt driver is updated on top of some modification in the
  Operating Performance Points (OPP) framework and there are fixes and
  other updates in the powernv cpufreq driver.

  Apart from the cpufreq updates there is some new ACPICA material,
  including a fix for a problem introduced by previous ACPICA updates,
  and some less significant changes in the ACPI code, like CPPC code
  optimizations, ACPI processor driver cleanups and support for loading
  ACPI tables from initrd.

  Also updated are the generic power domains framework, the Intel RAPL
  power capping driver and the turbostat utility and we have a bunch of
  traditional assorted fixes and cleanups.

  Specifics:

   - Redesign of cpufreq governors and the intel_pstate driver to make
     them use callbacks invoked by the scheduler to trigger CPU
     frequency evaluation instead of using per-CPU deferrable timers for
     that purpose (Rafael Wysocki).

   - Reorganization and cleanup of cpufreq governor code to make it more
     straightforward and fix some concurrency problems in it (Rafael
     Wysocki, Viresh Kumar).

   - Cleanup and improvements of locking in the cpufreq core (Viresh
     Kumar).

   - Assorted cleanups in the cpufreq core (Rafael Wysocki, Viresh
     Kumar, Eric Biggers).

   - intel_pstate driver updates including fixes, optimizations and a
     modification to make it enable enable hardware-coordinated P-state
     selection (HWP) by default if supported by the processor (Philippe
     Longepe, Srinivas Pandruvada, Rafael Wysocki, Viresh Kumar, Felipe
     Franciosi).

   - Operating Performance Points (OPP) framework updates to improve its
     handling of voltage regulators and device clocks and updates of the
     cpufreq-dt driver on top of that (Viresh Kumar, Jon Hunter).

   - Updates of the powernv cpufreq driver to fix initialization and
     cleanup problems in it and correct its worker thread handling with
     respect to CPU offline, new powernv_throttle tracepoint (Shilpasri
     Bhat).

   - ACPI cpufreq driver optimization and cleanup (Rafael Wysocki).

   - ACPICA updates including one fix for a regression introduced by
     previos changes in the ACPICA code (Bob Moore, Lv Zheng, David Box,
     Colin Ian King).

   - Support for installing ACPI tables from initrd (Lv Zheng).

   - Optimizations of the ACPI CPPC code (Prashanth Prakash, Ashwin
     Chaugule).

   - Support for _HID(ACPI0010) devices (ACPI processor containers) and
     ACPI processor driver cleanups (Sudeep Holla).

   - Support for ACPI-based enumeration of the AMBA bus (Graeme Gregory,
     Aleksey Makarov).

   - Modification of the ACPI PCI IRQ management code to make it treat
     255 in the Interrupt Line register as "not connected" on x86 (as
     per the specification) and avoid attempts to use that value as a
     valid interrupt vector (Chen Fan).

   - ACPI APEI fixes related to resource leaks (Josh Hunt).

   - Removal of modularity from a few ACPI drivers (BGRT, GHES,
     intel_pmic_crc) that cannot be built as modules in practice (Paul
     Gortmaker).

   - PNP framework update to make it treat ACPI_RESOURCE_TYPE_SERIAL_BUS
     as a valid resource type (Harb Abdulhamid).

   - New device ID (future AMD I2C controller) in the ACPI driver for
     AMD SoCs (APD) and in the designware I2C driver (Xiangliang Yu).

   - Assorted ACPI cleanups (Colin Ian King, Kaiyen Chang, Oleg Drokin).

   - cpuidle menu governor optimization to avoid a square root
     computation in it (Rasmus Villemoes).

   - Fix for potential use-after-free in the generic device properties
     framework (Heikki Krogerus).

   - Updates of the generic power domains (genpd) framework including
     support for multiple power states of a domain, fixes and debugfs
     output improvements (Axel Haslam, Jon Hunter, Laurent Pinchart,
     Geert Uytterhoeven).

   - Intel RAPL power capping driver updates to reduce IPI overhead in
     it (Jacob Pan).

   - System suspend/hibernation code cleanups (Eric Biggers, Saurabh
     Sengar).

   - Year 2038 fix for the process freezer (Abhilash Jindal).

   - turbostat utility updates including new features (decoding of more
     registers and CPUID fields, sub-second intervals support, GFX MHz
     and RC6 printout, --out command line option), fixes (syscall jitter
     detection and workaround, reductioin of the number of syscalls
     made, fixes related to Xeon x200 processors, compiler warning
     fixes) and cleanups (Len Brown, Hubert Chrzaniuk, Chen Yu)"

* tag 'pm+acpi-4.6-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (182 commits)
  tools/power turbostat: bugfix: TDP MSRs print bits fixing
  tools/power turbostat: correct output for MSR_NHM_SNB_PKG_CST_CFG_CTL dump
  tools/power turbostat: call __cpuid() instead of __get_cpuid()
  tools/power turbostat: indicate SMX and SGX support
  tools/power turbostat: detect and work around syscall jitter
  tools/power turbostat: show GFX%rc6
  tools/power turbostat: show GFXMHz
  tools/power turbostat: show IRQs per CPU
  tools/power turbostat: make fewer systems calls
  tools/power turbostat: fix compiler warnings
  tools/power turbostat: add --out option for saving output in a file
  tools/power turbostat: re-name "%Busy" field to "Busy%"
  tools/power turbostat: Intel Xeon x200: fix turbo-ratio decoding
  tools/power turbostat: Intel Xeon x200: fix erroneous bclk value
  tools/power turbostat: allow sub-sec intervals
  ACPI / APEI: ERST: Fixed leaked resources in erst_init
  ACPI / APEI: Fix leaked resources
  intel_pstate: Do not skip samples partially
  intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
  intel_pstate: Move intel_pstate_calc_busy() into get_target_pstate_use_performance()
  ...
2016-03-16 14:10:53 -07:00
Linus Torvalds e23604edac Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull NOHZ updates from Ingo Molnar:
 "NOHZ enhancements, by Frederic Weisbecker, which reorganizes/refactors
  the NOHZ 'can the tick be stopped?' infrastructure and related code to
  be data driven, and harmonizes the naming and handling of all the
  various properties"

[ This makes the ugly "fetch_or()" macro that the scheduler used
  internally a new generic helper, and does a bad job at it.

  I'm pulling it, but I've asked Ingo and Frederic to get this
  fixed up ]

* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched-clock: Migrate to use new tick dependency mask model
  posix-cpu-timers: Migrate to use new tick dependency mask model
  sched: Migrate sched to use new tick dependency mask model
  sched: Account rr tasks
  perf: Migrate perf to use new tick dependency mask model
  nohz: Use enum code for tick stop failure tracing message
  nohz: New tick dependency mask
  nohz: Implement wide kick on top of irq work
  atomic: Export fetch_or()
2016-03-14 19:44:38 -07:00
Rafael J. Wysocki adaf9fcd13 cpufreq: Move scheduler-related code to the sched directory
Create cpufreq.c under kernel/sched/ and move the cpufreq code
related to the scheduler to that file and to sched.h.

Redefine cpufreq_update_util() as a static inline function to avoid
function calls at its call sites in the scheduler code (as suggested
by Peter Zijlstra).

Also move the definition of struct update_util_data and declaration
of cpufreq_set_update_util_data() from include/linux/cpufreq.h to
include/linux/sched.h.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2016-03-10 20:44:47 +01:00
Rafael J. Wysocki 34e2c555f3 cpufreq: Add mechanism for registering utilization update callbacks
Introduce a mechanism by which parts of the cpufreq subsystem
("setpolicy" drivers or the core) can register callbacks to be
executed from cpufreq_update_util() which is invoked by the
scheduler's update_load_avg() on CPU utilization changes.

This allows the "setpolicy" drivers to dispense with their timers
and do all of the computations they need and frequency/voltage
adjustments in the update_load_avg() code path, among other things.

The update_load_avg() changes were suggested by Peter Zijlstra.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
2016-03-09 14:39:19 +01:00
Thomas Gleixner e9532e69b8 sched/cputime: Fix steal time accounting vs. CPU hotplug
On CPU hotplug the steal time accounting can keep a stale rq->prev_steal_time
value over CPU down and up. So after the CPU comes up again the delta
calculation in steal_account_process_tick() wreckages itself due to the
unsigned math:

	 u64 steal = paravirt_steal_clock(smp_processor_id());

	 steal -= this_rq()->prev_steal_time;

So if steal is smaller than rq->prev_steal_time we end up with an insane large
value which then gets added to rq->prev_steal_time, resulting in a permanent
wreckage of the accounting. As a consequence the per CPU stats in /proc/stat
become stale.

Nice trick to tell the world how idle the system is (100%) while the CPU is
100% busy running tasks. Though we prefer realistic numbers.

None of the accounting values which use a previous value to account for
fractions is reset at CPU hotplug time. update_rq_clock_task() has a sanity
check for prev_irq_time and prev_steal_time_rq, but that sanity check solely
deals with clock warps and limits the /proc/stat visible wreckage. The
prev_time values are still wrong.

Solution is simple: Reset rq->prev_*_time when the CPU is plugged in again.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Fixes: commit 095c0aa83e "sched: adjust scheduler cpu power for stolen time"
Fixes: commit aa48380851 "sched: Remove irq time from available CPU power"
Fixes: commit e6e6685acc "KVM guest: Steal time accounting"
Link: http://lkml.kernel.org/r/alpine.DEB.2.11.1603041539490.3686@nanos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-03-05 09:17:20 +01:00
Frederic Weisbecker 76d92ac305 sched: Migrate sched to use new tick dependency mask model
Instead of providing asynchronous checks for the nohz subsystem to verify
sched tick dependency, migrate sched to the new mask.

Everytime a task is enqueued or dequeued, we evaluate the state of the
tick dependency on top of the policy of the tasks in the runqueue, by
order of priority:

SCHED_DEADLINE: Need the tick in order to periodically check for runtime
SCHED_FIFO    : Don't need the tick (no round-robin)
SCHED_RR      : Need the tick if more than 1 task of the same priority
                for round robin (simplified with checking if more than
                one SCHED_RR task no matter what priority).
SCHED_NORMAL  : Need the tick if more than 1 task for round-robin.

We could optimize that further with one flag per sched policy on the tick
dependency mask and perform only the checks relevant to the policy
concerned by an enqueue/dequeue operation.

Since the checks aren't based on the current task anymore, we could get
rid of the task switch hook but it's still needed for posix cpu
timers.

Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2016-03-02 16:43:41 +01:00
Frederic Weisbecker 01d36d0ac3 sched: Account rr tasks
In order to evaluate the scheduler tick dependency without probing
context switches, we need to know how much SCHED_RR and SCHED_FIFO tasks
are enqueued as those policies don't have the same preemption
requirements.

To prepare for that, let's account SCHED_RR tasks, we'll be able to
deduce SCHED_FIFO tasks as well from it and the total RT tasks in the
runqueue.

Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2016-03-02 16:43:04 +01:00
Steven Rostedt (Red Hat) 3866e845ed sched/debug: Move sched_domain_sysctl to debug.c
The sched_domain_sysctl setup is only enabled when SCHED_DEBUG is
configured. As debug.c is only compiled when SCHED_DEBUG is configured as
well, move the setup of sched_domain_sysctl into that file.

Note, the (un)register_sched_domain_sysctl() functions had to be changed
from static to allow access to them from core.c.

Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Clark Williams <williams@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160222212825.599278093@goodmis.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:53:06 +01:00
Peter Zijlstra ff77e46853 sched/rt: Fix PI handling vs. sched_setscheduler()
Andrea Parri reported:

> I found that the following scenario (with CONFIG_RT_GROUP_SCHED=y) is not
> handled correctly:
>
>     T1 (prio = 20)
>        lock(rtmutex);
>
>     T2 (prio = 20)
>        blocks on rtmutex  (rt_nr_boosted = 0 on T1's rq)
>
>     T1 (prio = 20)
>        sys_set_scheduler(prio = 0)
>           [new_effective_prio == oldprio]
>           T1 prio = 20    (rt_nr_boosted = 0 on T1's rq)
>
> The last step is incorrect as T1 is now boosted (c.f., rt_se_boosted());
> in particular, if we continue with
>
>    T1 (prio = 20)
>       unlock(rtmutex)
>          wakeup(T2)
>          adjust_prio(T1)
>             [prio != rt_mutex_getprio(T1)]
>	    dequeue(T1)
>	       rt_nr_boosted = (unsigned long)(-1)
>	       ...
>             T1 prio = 0
>
> then we end up leaving rt_nr_boosted in an "inconsistent" state.
>
> The simple program attached could reproduce the previous scenario; note
> that, as a consequence of the presence of this state, the "assertion"
>
>     WARN_ON(!rt_nr_running && rt_nr_boosted)
>
> from dec_rt_group() may trigger.

So normally we dequeue/enqueue tasks in sched_setscheduler(), which
would ensure the accounting stays correct. However in the early PI path
we fail to do so.

So this was introduced at around v3.14, by:

  c365c292d0 ("sched: Consider pi boosting in setscheduler()")

which fixed another problem exactly because that dequeue/enqueue, joy.

Fix this by teaching rt about DEQUEUE_SAVE/ENQUEUE_RESTORE and have it
preserve runqueue location with that option. This requires decoupling
the on_rt_rq() state from being on the list.

In order to allow for explicit movement during the SAVE/RESTORE,
introduce {DE,EN}QUEUE_MOVE. We still must use SAVE/RESTORE in these
cases to preserve other invariants.

Respecting the SAVE/RESTORE flags also has the (nice) side-effect that
things like sys_nice()/sys_sched_setaffinity() also do not reorder
FIFO tasks (whereas they used to before this patch).

Reported-by: Andrea Parri <parri.andrea@gmail.com>
Tested-by: Andrea Parri <parri.andrea@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:53:05 +01:00
Dongsheng Yang 41d9339733 sched/core: Remove duplicated sched_group_set_shares() prototype
Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1452674558-31897-1-git-send-email-yangds.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:53:05 +01:00
Ingo Molnar 6aa447bcbb Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:42:07 +01:00
Peter Zijlstra 6fe1f348b3 sched/cgroup: Fix cgroup entity load tracking tear-down
When a cgroup's CPU runqueue is destroyed, it should remove its
remaining load accounting from its parent cgroup.

The current site for doing so it unsuited because its far too late and
unordered against other cgroup removal (->css_free() will be, but we're also
in an RCU callback).

Put it in the ->css_offline() callback, which is the start of cgroup
destruction, right after the group has been made unavailable to
userspace. The ->css_offline() callbacks are called in hierarchical order
after the following v4.4 commit:

  aa226ff4a1 ("cgroup: make sure a parent css isn't offlined before its children")

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20160121212416.GL6357@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-29 09:41:50 +01:00
Mel Gorman cb2517653f sched/debug: Make schedstats a runtime tunable that is disabled by default
schedstats is very useful during debugging and performance tuning but it
incurs overhead to calculate the stats. As such, even though it can be
disabled at build time, it is often enabled as the information is useful.

This patch adds a kernel command-line and sysctl tunable to enable or
disable schedstats on demand (when it's built in). It is disabled
by default as someone who knows they need it can also learn to enable
it when necessary.

The benefits are dependent on how scheduler-intensive the workload is.
If it is then the patch reduces the number of cycles spent calculating
the stats with a small benefit from reducing the cache footprint of the
scheduler.

These measurements were taken from a 48-core 2-socket
machine with Xeon(R) E5-2670 v3 cpus although they were also tested on a
single socket machine 8-core machine with Intel i7-3770 processors.

netperf-tcp
                           4.5.0-rc1             4.5.0-rc1
                             vanilla          nostats-v3r1
Hmean    64         560.45 (  0.00%)      575.98 (  2.77%)
Hmean    128        766.66 (  0.00%)      795.79 (  3.80%)
Hmean    256        950.51 (  0.00%)      981.50 (  3.26%)
Hmean    1024      1433.25 (  0.00%)     1466.51 (  2.32%)
Hmean    2048      2810.54 (  0.00%)     2879.75 (  2.46%)
Hmean    3312      4618.18 (  0.00%)     4682.09 (  1.38%)
Hmean    4096      5306.42 (  0.00%)     5346.39 (  0.75%)
Hmean    8192     10581.44 (  0.00%)    10698.15 (  1.10%)
Hmean    16384    18857.70 (  0.00%)    18937.61 (  0.42%)

Small gains here, UDP_STREAM showed nothing intresting and neither did
the TCP_RR tests. The gains on the 8-core machine were very similar.

tbench4
                                 4.5.0-rc1             4.5.0-rc1
                                   vanilla          nostats-v3r1
Hmean    mb/sec-1         500.85 (  0.00%)      522.43 (  4.31%)
Hmean    mb/sec-2         984.66 (  0.00%)     1018.19 (  3.41%)
Hmean    mb/sec-4        1827.91 (  0.00%)     1847.78 (  1.09%)
Hmean    mb/sec-8        3561.36 (  0.00%)     3611.28 (  1.40%)
Hmean    mb/sec-16       5824.52 (  0.00%)     5929.03 (  1.79%)
Hmean    mb/sec-32      10943.10 (  0.00%)    10802.83 ( -1.28%)
Hmean    mb/sec-64      15950.81 (  0.00%)    16211.31 (  1.63%)
Hmean    mb/sec-128     15302.17 (  0.00%)    15445.11 (  0.93%)
Hmean    mb/sec-256     14866.18 (  0.00%)    15088.73 (  1.50%)
Hmean    mb/sec-512     15223.31 (  0.00%)    15373.69 (  0.99%)
Hmean    mb/sec-1024    14574.25 (  0.00%)    14598.02 (  0.16%)
Hmean    mb/sec-2048    13569.02 (  0.00%)    13733.86 (  1.21%)
Hmean    mb/sec-3072    12865.98 (  0.00%)    13209.23 (  2.67%)

Small gains of 2-4% at low thread counts and otherwise flat.  The
gains on the 8-core machine were slightly different

tbench4 on 8-core i7-3770 single socket machine
Hmean    mb/sec-1        442.59 (  0.00%)      448.73 (  1.39%)
Hmean    mb/sec-2        796.68 (  0.00%)      794.39 ( -0.29%)
Hmean    mb/sec-4       1322.52 (  0.00%)     1343.66 (  1.60%)
Hmean    mb/sec-8       2611.65 (  0.00%)     2694.86 (  3.19%)
Hmean    mb/sec-16      2537.07 (  0.00%)     2609.34 (  2.85%)
Hmean    mb/sec-32      2506.02 (  0.00%)     2578.18 (  2.88%)
Hmean    mb/sec-64      2511.06 (  0.00%)     2569.16 (  2.31%)
Hmean    mb/sec-128     2313.38 (  0.00%)     2395.50 (  3.55%)
Hmean    mb/sec-256     2110.04 (  0.00%)     2177.45 (  3.19%)
Hmean    mb/sec-512     2072.51 (  0.00%)     2053.97 ( -0.89%)

In constract, this shows a relatively steady 2-3% gain at higher thread
counts. Due to the nature of the patch and the type of workload, it's
not a surprise that the result will depend on the CPU used.

hackbench-pipes
                         4.5.0-rc1             4.5.0-rc1
                           vanilla          nostats-v3r1
Amean    1        0.0637 (  0.00%)      0.0660 ( -3.59%)
Amean    4        0.1229 (  0.00%)      0.1181 (  3.84%)
Amean    7        0.1921 (  0.00%)      0.1911 (  0.52%)
Amean    12       0.3117 (  0.00%)      0.2923 (  6.23%)
Amean    21       0.4050 (  0.00%)      0.3899 (  3.74%)
Amean    30       0.4586 (  0.00%)      0.4433 (  3.33%)
Amean    48       0.5910 (  0.00%)      0.5694 (  3.65%)
Amean    79       0.8663 (  0.00%)      0.8626 (  0.43%)
Amean    110      1.1543 (  0.00%)      1.1517 (  0.22%)
Amean    141      1.4457 (  0.00%)      1.4290 (  1.16%)
Amean    172      1.7090 (  0.00%)      1.6924 (  0.97%)
Amean    192      1.9126 (  0.00%)      1.9089 (  0.19%)

Some small gains and losses and while the variance data is not included,
it's close to the noise. The UMA machine did not show anything particularly
different

pipetest
                             4.5.0-rc1             4.5.0-rc1
                               vanilla          nostats-v2r2
Min         Time        4.13 (  0.00%)        3.99 (  3.39%)
1st-qrtle   Time        4.38 (  0.00%)        4.27 (  2.51%)
2nd-qrtle   Time        4.46 (  0.00%)        4.39 (  1.57%)
3rd-qrtle   Time        4.56 (  0.00%)        4.51 (  1.10%)
Max-90%     Time        4.67 (  0.00%)        4.60 (  1.50%)
Max-93%     Time        4.71 (  0.00%)        4.65 (  1.27%)
Max-95%     Time        4.74 (  0.00%)        4.71 (  0.63%)
Max-99%     Time        4.88 (  0.00%)        4.79 (  1.84%)
Max         Time        4.93 (  0.00%)        4.83 (  2.03%)
Mean        Time        4.48 (  0.00%)        4.39 (  1.91%)
Best99%Mean Time        4.47 (  0.00%)        4.39 (  1.91%)
Best95%Mean Time        4.46 (  0.00%)        4.38 (  1.93%)
Best90%Mean Time        4.45 (  0.00%)        4.36 (  1.98%)
Best50%Mean Time        4.36 (  0.00%)        4.25 (  2.49%)
Best10%Mean Time        4.23 (  0.00%)        4.10 (  3.13%)
Best5%Mean  Time        4.19 (  0.00%)        4.06 (  3.20%)
Best1%Mean  Time        4.13 (  0.00%)        4.00 (  3.39%)

Small improvement and similar gains were seen on the UMA machine.

The gain is small but it stands to reason that doing less work in the
scheduler is a good thing. The downside is that the lack of schedstats and
tracepoints may be surprising to experts doing performance analysis until
they find the existence of the schedstats= parameter or schedstats sysctl.
It will be automatically activated for latencytop and sleep profiling to
alleviate the problem. For tracepoints, there is a simple warning as it's
not safe to activate schedstats in the context when it's known the tracepoint
may be wanted but is unavailable.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <mgalbraith@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1454663316-22048-1-git-send-email-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-02-09 11:54:23 +01:00
Linus Torvalds af345201ea Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
 "The main changes in this cycle were:

   - tickless load average calculation enhancements (Byungchul Park)

   - vtime handling enhancements (Frederic Weisbecker)

   - scalability improvement via properly aligning a key structure field
     (Jiri Olsa)

   - various stop_machine() fixes (Oleg Nesterov)

   - sched/numa enhancement (Rik van Riel)

   - various fixes and improvements (Andi Kleen, Dietmar Eggemann,
     Geliang Tang, Hiroshi Shimamoto, Joonwoo Park, Peter Zijlstra,
     Waiman Long, Wanpeng Li, Yuyang Du)"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
  sched/fair: Fix new task's load avg removed from source CPU in wake_up_new_task()
  sched/core: Move sched_entity::avg into separate cache line
  x86/fpu: Properly align size in CHECK_MEMBER_AT_END_OF() macro
  sched/deadline: Fix the earliest_dl.next logic
  sched/fair: Disable the task group load_avg update for the root_task_group
  sched/fair: Move the cache-hot 'load_avg' variable into its own cacheline
  sched/fair: Avoid redundant idle_cpu() call in update_sg_lb_stats()
  sched/core: Move the sched_to_prio[] arrays out of line
  sched/cputime: Convert vtime_seqlock to seqcount
  sched/cputime: Introduce vtime accounting check for readers
  sched/cputime: Rename vtime_accounting_enabled() to vtime_accounting_cpu_enabled()
  sched/cputime: Correctly handle task guest time on housekeepers
  sched/cputime: Clarify vtime symbols and document them
  sched/cputime: Remove extra cost in task_cputime()
  sched/fair: Make it possible to account fair load avg consistently
  sched/fair: Modify the comment about lock assumptions in migrate_task_rq_fair()
  stop_machine: Clean up the usage of the preemption counter in cpu_stopper_thread()
  stop_machine: Shift the 'done != NULL' check from cpu_stop_signal_done() to callers
  stop_machine: Kill cpu_stop_done->executed
  stop_machine: Change __stop_cpus() to rely on cpu_stop_queue_work()
  ...
2016-01-11 15:13:38 -08:00
Waiman Long b0367629ac sched/fair: Move the cache-hot 'load_avg' variable into its own cacheline
If a system with large number of sockets was driven to full
utilization, it was found that the clock tick handling occupied a
rather significant proportion of CPU time when fair group scheduling
and autogroup were enabled.

Running a java benchmark on a 16-socket IvyBridge-EX system, the perf
profile looked like:

  10.52%   0.00%  java   [kernel.vmlinux]  [k] smp_apic_timer_interrupt
   9.66%   0.05%  java   [kernel.vmlinux]  [k] hrtimer_interrupt
   8.65%   0.03%  java   [kernel.vmlinux]  [k] tick_sched_timer
   8.56%   0.00%  java   [kernel.vmlinux]  [k] update_process_times
   8.07%   0.03%  java   [kernel.vmlinux]  [k] scheduler_tick
   6.91%   1.78%  java   [kernel.vmlinux]  [k] task_tick_fair
   5.24%   5.04%  java   [kernel.vmlinux]  [k] update_cfs_shares

In particular, the high CPU time consumed by update_cfs_shares()
was mostly due to contention on the cacheline that contained the
task_group's load_avg statistical counter. This cacheline may also
contains variables like shares, cfs_rq & se which are accessed rather
frequently during clock tick processing.

This patch moves the load_avg variable into another cacheline
separated from the other frequently accessed variables. It also
creates a cacheline aligned kmemcache for task_group to make sure
that all the allocated task_group's are cacheline aligned.

By doing so, the perf profile became:

   9.44%   0.00%  java   [kernel.vmlinux]  [k] smp_apic_timer_interrupt
   8.74%   0.01%  java   [kernel.vmlinux]  [k] hrtimer_interrupt
   7.83%   0.03%  java   [kernel.vmlinux]  [k] tick_sched_timer
   7.74%   0.00%  java   [kernel.vmlinux]  [k] update_process_times
   7.27%   0.03%  java   [kernel.vmlinux]  [k] scheduler_tick
   5.94%   1.74%  java   [kernel.vmlinux]  [k] task_tick_fair
   4.15%   3.92%  java   [kernel.vmlinux]  [k] update_cfs_shares

The %cpu time is still pretty high, but it is better than before. The
benchmark results before and after the patch was as follows:

  Before patch - Max-jOPs: 907533    Critical-jOps: 134877
  After patch  - Max-jOPs: 916011    Critical-jOps: 142366

Signed-off-by: Waiman Long <Waiman.Long@hpe.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Douglas Hatch <doug.hatch@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1449081710-20185-3-git-send-email-Waiman.Long@hpe.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 10:34:48 +01:00
Andi Kleen ed82b8a1ff sched/core: Move the sched_to_prio[] arrays out of line
When building a kernel with a gcc 6 snapshot the compiler complains
about unused const static variables for prio_to_weight and prio_to_mult
for multiple scheduler files (all but core.c and autogroup.c)

The way the array is currently declared it will be duplicated in
every scheduler file that includes sched.h, which seems rather wasteful.

Move the array out of line into core.c. I also added a sched_ prefix
to avoid any potential name space collisions.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1448859583-3252-1-git-send-email-andi@firstfloor.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 10:34:46 +01:00
Byungchul Park ad936d8658 sched/fair: Make it possible to account fair load avg consistently
The current code accounts for the time a task was absent from the fair
class (per ATTACH_AGE_LOAD). However it does not work correctly when a
task got migrated or moved to another cgroup while outside of the fair
class.

This patch tries to address that by aging on migration. We locklessly
read the 'last_update_time' stamp from both the old and new cfs_rq,
ages the load upto the old time, and sets it to the new time.

These timestamps should in general not be more than 1 tick apart from
one another, so there is a definite bound on things.

Signed-off-by: Byungchul Park <byungchul.park@lge.com>
[ Changelog, a few edits and !SMP build fix ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1445616981-29904-2-git-send-email-byungchul.park@lge.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 10:34:42 +01:00
Peter Zijlstra b3e0b1b6d8 locking, sched: Introduce smp_cond_acquire() and use it
Introduce smp_cond_acquire() which combines a control dependency and a
read barrier to form acquire semantics.

This primitive has two benefits:

 - it documents control dependencies,
 - its typically cheaper than using smp_load_acquire() in a loop.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 10:33:41 +01:00
Ingo Molnar 467386fbbf Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 10:27:36 +01:00
Peter Zijlstra b75a225315 sched/core: Better document the try_to_wake_up() barriers
Explain how the control dependency and smp_rmb() end up providing
ACQUIRE semantics and pair with smp_store_release() in
finish_lock_switch().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-12-04 10:26:42 +01:00
Dietmar Eggemann 38c6ade2dd sched/fair: Remove empty idle enter and exit functions
Commit cd126afe83 ("sched/fair: Remove rq's runnable avg") got rid of
rq->avg and so there is no need to update it any more when entering or
exiting idle.

Remove the now empty functions idle_{enter|exit}_fair().

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yuyang Du <yuyang.du@intel.com>
Link: http://lkml.kernel.org/r/1445342681-17171-1-git-send-email-dietmar.eggemann@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-11-23 09:37:51 +01:00
xiaofeng.yan 5a4fd03685 sched/core: Remove a parameter in the migrate_task_rq() function
The parameter "int next_cpu" in the following function is unused:

  migrate_task_rq(struct task_struct *p, int next_cpu)

Remove it.

Signed-off-by: xiaofeng.yan <yanxiaofeng@inspur.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1442991360-31945-1-git-send-email-yanxiaofeng@inspur.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06 17:08:23 +02:00
Peter Zijlstra 1de64443d7 sched/core: Fix task and run queue sched_info::run_delay inconsistencies
Mike Meyer reported the following bug:

> During evaluation of some performance data, it was discovered thread
> and run queue run_delay accounting data was inconsistent with the other
> accounting data that was collected.  Further investigation found under
> certain circumstances execution time was leaking into the task and
> run queue accounting of run_delay.
>
> Consider the following sequence:
>
>     a. thread is running.
>     b. thread moves beween cgroups, changes scheduling class or priority.
>     c. thread sleeps OR
>     d. thread involuntarily gives up cpu.
>
> a. implies:
>
>     thread->sched_info.last_queued = 0
>
> a. and b. results in the following:
>
>     1. dequeue_task(rq, thread)
>
>            sched_info_dequeued(rq, thread)
>                delta = 0
>
>                sched_info_reset_dequeued(thread)
>                    thread->sched_info.last_queued = 0
>
>                thread->sched_info.run_delay += delta
>
>     2. enqueue_task(rq, thread)
>
>            sched_info_queued(rq, thread)
>
>                /* thread is still on cpu at this point. */
>                thread->sched_info.last_queued = task_rq(thread)->clock;
>
> c. results in:
>
>     dequeue_task(rq, thread)
>
>         sched_info_dequeued(rq, thread)
>
>             /* delta is execution time not run_delay. */
>             delta = task_rq(thread)->clock - thread->sched_info.last_queued
>
>         sched_info_reset_dequeued(thread)
>             thread->sched_info.last_queued = 0
>
>         thread->sched_info.run_delay += delta
>
>     Since thread was running between enqueue_task(rq, thread) and
>     dequeue_task(rq, thread), the delta above is really execution
>     time and not run_delay.
>
> d. results in:
>
>     __sched_info_switch(thread, next_thread)
>
>         sched_info_depart(rq, thread)
>
>             sched_info_queued(rq, thread)
>
>                 /* last_queued not updated due to being non-zero */
>                 return
>
>     Since thread was running between enqueue_task(rq, thread) and
>     __sched_info_switch(thread, next_thread), the execution time
>     between enqueue_task(rq, thread) and
>     __sched_info_switch(thread, next_thread) now will become
>     associated with run_delay due to when last_queued was last updated.
>

This alternative patch solves the problem by not calling
sched_info_{de,}queued() in {de,en}queue_task(). Therefore the
sched_info state is preserved and things work as expected.

By inlining the {de,en}queue_task() functions the new condition
becomes (mostly) a compile-time constant and we'll not emit any new
branch instructions.

It even shrinks the code (due to inlining {en,de}queue_task()):

$ size defconfig-build/kernel/sched/core.o defconfig-build/kernel/sched/core.o.orig
   text    data     bss     dec     hex filename
  64019   23378    2344   89741   15e8d defconfig-build/kernel/sched/core.o
  64149   23378    2344   89871   15f0f defconfig-build/kernel/sched/core.o.orig

Reported-by: Mike Meyer <Mike.Meyer@Teradata.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20150930154413.GO3604@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06 17:08:22 +02:00
Ingo Molnar fe19159225 Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying new changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06 17:05:36 +02:00
Peter Zijlstra 95913d9791 sched/core: Fix TASK_DEAD race in finish_task_switch()
So the problem this patch is trying to address is as follows:

        CPU0                            CPU1

        context_switch(A, B)
                                        ttwu(A)
                                          LOCK A->pi_lock
                                          A->on_cpu == 0
        finish_task_switch(A)
          prev_state = A->state  <-.
          WMB                      |
          A->on_cpu = 0;           |
          UNLOCK rq0->lock         |
                                   |    context_switch(C, A)
                                   `--  A->state = TASK_DEAD
          prev_state == TASK_DEAD
            put_task_struct(A)
                                        context_switch(A, C)
                                        finish_task_switch(A)
                                          A->state == TASK_DEAD
                                            put_task_struct(A)

The argument being that the WMB will allow the load of A->state on CPU0
to cross over and observe CPU1's store of A->state, which will then
result in a double-drop and use-after-free.

Now the comment states (and this was true once upon a long time ago)
that we need to observe A->state while holding rq->lock because that
will order us against the wakeup; however the wakeup will not in fact
acquire (that) rq->lock; it takes A->pi_lock these days.

We can obviously fix this by upgrading the WMB to an MB, but that is
expensive, so we'd rather avoid that.

The alternative this patch takes is: smp_store_release(&A->on_cpu, 0),
which avoids the MB on some archs, but not important ones like ARM.

Reported-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@vger.kernel.org> # v3.1+
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: manfred@colorfullife.com
Cc: will.deacon@arm.com
Fixes: e4a52bcb9a ("sched: Remove rq->lock from the first half of ttwu()")
Link: http://lkml.kernel.org/r/20150929124509.GG3816@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-06 17:05:17 +02:00
Juri Lelli 2726d6ce38 sched/deadline: Unify dl_time_before() usage
Move dl_time_before() static definition in include/linux/sched/deadline.h
so that it can be used by different parties without being re-defined.

Reported-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1441188096-23021-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-23 09:51:25 +02:00
Henrik Austad 20f9cd2acb sched/core: Make policy-testing consistent
Most of the policy-tests are done via the <class>_policy() helpers with
the notable exception of idle. A new wrapper for valid_policy() has also
been added to improve readability  in set_load_weight().

This commit does not change the logical behavior of the scheduler core.

Signed-off-by: Henrik Austad <henrik@austad.us>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1441810841-4756-1-git-send-email-henrik@austad.us
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-18 09:23:13 +02:00
Dietmar Eggemann e3279a2e6d sched/fair: Make utilization tracking CPU scale-invariant
Besides the existing frequency scale-invariance correction factor, apply
CPU scale-invariance correction factor to utilization tracking to
compensate for any differences in compute capacity. This could be due to
micro-architectural differences (i.e. instructions per seconds) between
cpus in HMP systems (e.g. big.LITTLE), and/or differences in the current
maximum frequency supported by individual cpus in SMP systems. In the
existing implementation utilization isn't comparable between cpus as it
is relative to the capacity of each individual CPU.

Each segment of the sched_avg.util_sum geometric series is now scaled
by the CPU performance factor too so the sched_avg.util_avg of each
sched entity will be invariant from the particular CPU of the HMP/SMP
system on which the sched entity is scheduled.

With this patch, the utilization of a CPU stays relative to the max CPU
performance of the fastest CPU in the system.

In contrast to utilization (sched_avg.util_sum), load
(sched_avg.load_sum) should not be scaled by compute capacity. The
utilization metric is based on running time which only makes sense when
cpus are _not_ fully utilized (utilization cannot go beyond 100% even if
more tasks are added), where load is runnable time which isn't limited
by the capacity of the CPU and therefore is a better metric for
overloaded scenarios. If we run two nice-0 busy loops on two cpus with
different compute capacity their load should be similar since their
compute demands are the same. We have to assume that the compute demand
of any task running on a fully utilized CPU (no spare cycles = 100%
utilization) is high and the same no matter of the compute capacity of
its current CPU, hence we shouldn't scale load by CPU capacity.

Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/55CE7409.1000700@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 09:52:56 +02:00
Morten Rasmussen 8cd5601c50 sched/fair: Convert arch_scale_cpu_capacity() from weak function to #define
Bring arch_scale_cpu_capacity() in line with the recent change of its
arch_scale_freq_capacity() sibling in commit dfbca41f34 ("sched:
Optimize freq invariant accounting") from weak function to #define to
allow inlining of the function.

While at it, remove the ARCH_CAPACITY sched_feature as well. With the
change to #define there isn't a straightforward way to allow runtime
switch between an arch implementation and the default implementation of
arch_scale_cpu_capacity() using sched_feature. The default was to use
the arch-specific implementation, but only the arm architecture provides
one and that is essentially equivalent to the default implementation.

Signed-off-by: Morten Rasmussen <morten.rasmussen@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dietmar Eggemann <Dietmar.Eggemann@arm.com>
Cc: Juri Lelli <Juri.Lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: daniel.lezcano@linaro.org
Cc: mturquette@baylibre.com
Cc: pang.xunlei@zte.com.cn
Cc: rjw@rjwysocki.net
Cc: sgurrappadi@nvidia.com
Cc: vincent.guittot@linaro.org
Cc: yuyang.du@intel.com
Link: http://lkml.kernel.org/r/1439569394-11974-3-git-send-email-morten.rasmussen@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 09:52:55 +02:00
Srikar Dronamraju 2a595721a1 sched/numa: Convert sched_numa_balancing to a static_branch
Variable sched_numa_balancing toggles numa_balancing feature. Hence
moving from a simple read mostly variable to a more apt static_branch.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439310261-16124-1-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 09:52:54 +02:00
Srikar Dronamraju c3b9bc5bbf sched/numa: Disable sched_numa_balancing on UMA systems
Commit 2a1ed24 ("sched/numa: Prefer NUMA hotness over cache hotness")
sets sched feature NUMA to true. However this can enable NUMA hinting
faults on a UMA system.

This commit ensures that NUMA hinting faults occur only on a NUMA system
by setting/resetting sched_numa_balancing.

This commit:

  - Makes sched_numa_balancing common to CONFIG_SCHED_DEBUG and
    !CONFIG_SCHED_DEBUG. Earlier it was only in !CONFIG_SCHED_DEBUG.

  - Checks for sched_numa_balancing instead of sched_feat(NUMA).

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-3-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 09:52:53 +02:00
Srikar Dronamraju 78a9c54649 sched/numa: Rename numabalancing_enabled to sched_numa_balancing
Simple rename of the 'numabalancing_enabled' variable to 'sched_numa_balancing'.
No functional changes.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1439290813-6683-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 09:52:52 +02:00
Peter Zijlstra bc54da2176 sched/core: Remove unused argument from sched_class::task_move_group
The previous patches made the second argument go unused, remove it.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-09-13 09:52:50 +02:00
Peter Zijlstra c5b2803840 sched: Make sched_class::set_cpus_allowed() unconditional
Give every class a set_cpus_allowed() method, this enables some small
optimization in the RT,DL implementation by avoiding a double
cpumask_weight() call.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dedekind1@gmail.com
Cc: juri.lelli@arm.com
Cc: mgorman@suse.de
Cc: riel@redhat.com
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20150515154833.614517487@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-12 12:06:09 +02:00
Peter Zijlstra 3c8e479355 sched: Remove finish_arch_switch()
One less arch hook..

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-04 09:38:33 +02:00
Yuyang Du 139622343e sched/fair: Provide runnable_load_avg back to cfs_rq
The cfs_rq's load_avg is composed of runnable_load_avg and blocked_load_avg.
Before this series, sometimes the runnable_load_avg is used, and sometimes
the load_avg is used. Completely replacing all uses of runnable_load_avg
with load_avg may be too big a leap, i.e., the blocked_load_avg is concerned
to result in overrated load. Therefore, we get runnable_load_avg back.

The new cfs_rq's runnable_load_avg is improved to be updated with all of the
runnable sched_eneities at the same time, so the one sched_entity updated and
the others stale problem is solved.

Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-7-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 12:24:31 +02:00
Yuyang Du 540247fb5d sched/fair: Init cfs_rq's sched_entity load average
The runnable load and utilization averages of cfs_rq's sched_entity
were not initiated. Like done to a task, give new cfs_rq' sched_entity
start values to heavy its load in infant time.

Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-5-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 12:24:29 +02:00
Yuyang Du 9d89c257df sched/fair: Rewrite runnable load and utilization average tracking
The idea of runnable load average (let runnable time contribute to weight)
was proposed by Paul Turner and Ben Segall, and it is still followed by
this rewrite. This rewrite aims to solve the following issues:

1. cfs_rq's load average (namely runnable_load_avg and blocked_load_avg) is
   updated at the granularity of an entity at a time, which results in the
   cfs_rq's load average is stale or partially updated: at any time, only
   one entity is up to date, all other entities are effectively lagging
   behind. This is undesirable.

   To illustrate, if we have n runnable entities in the cfs_rq, as time
   elapses, they certainly become outdated:

     t0: cfs_rq { e1_old, e2_old, ..., en_old }

   and when we update:

     t1: update e1, then we have cfs_rq { e1_new, e2_old, ..., en_old }

     t2: update e2, then we have cfs_rq { e1_old, e2_new, ..., en_old }

     ...

   We solve this by combining all runnable entities' load averages together
   in cfs_rq's avg, and update the cfs_rq's avg as a whole. This is based
   on the fact that if we regard the update as a function, then:

   w * update(e) = update(w * e) and

   update(e1) + update(e2) = update(e1 + e2), then

   w1 * update(e1) + w2 * update(e2) = update(w1 * e1 + w2 * e2)

   therefore, by this rewrite, we have an entirely updated cfs_rq at the
   time we update it:

     t1: update cfs_rq { e1_new, e2_new, ..., en_new }

     t2: update cfs_rq { e1_new, e2_new, ..., en_new }

     ...

2. cfs_rq's load average is different between top rq->cfs_rq and other
   task_group's per CPU cfs_rqs in whether or not blocked_load_average
   contributes to the load.

   The basic idea behind runnable load average (the same for utilization)
   is that the blocked state is taken into account as opposed to only
   accounting for the currently runnable state. Therefore, the average
   should include both the runnable/running and blocked load averages.
   This rewrite does that.

   In addition, we also combine runnable/running and blocked averages
   of all entities into the cfs_rq's average, and update it together at
   once. This is based on the fact that:

     update(runnable) + update(blocked) = update(runnable + blocked)

   This significantly reduces the code as we don't need to separately
   maintain/update runnable/running load and blocked load.

3. How task_group entities' share is calculated is complex and imprecise.

   We reduce the complexity in this rewrite to allow a very simple rule:
   the task_group's load_avg is aggregated from its per CPU cfs_rqs's
   load_avgs. Then group entity's weight is simply proportional to its
   own cfs_rq's load_avg / task_group's load_avg. To illustrate,

   if a task_group has { cfs_rq1, cfs_rq2, ..., cfs_rqn }, then,

   task_group_avg = cfs_rq1_avg + cfs_rq2_avg + ... + cfs_rqn_avg, then

   cfs_rqx's entity's share = cfs_rqx_avg / task_group_avg * task_group's share

To sum up, this rewrite in principle is equivalent to the current one, but
fixes the issues described above. Turns out, it significantly reduces the
code complexity and hence increases clarity and efficiency. In addition,
the new averages are more smooth/continuous (no spurious spikes and valleys)
and updated more consistently and quickly to reflect the load dynamics.

As a result, we have less load tracking overhead, better performance,
and especially better power efficiency due to more balanced load.

Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: dietmar.eggemann@arm.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-3-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 12:21:29 +02:00
Yuyang Du cd126afe83 sched/fair: Remove rq's runnable avg
The current rq->avg is not used at all since its merge into the kernel,
and the code is in the scheduler's hot path, so remove it.

Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Yuyang Du <yuyang.du@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: arjan@linux.intel.com
Cc: bsegall@google.com
Cc: fengguang.wu@intel.com
Cc: len.brown@intel.com
Cc: morten.rasmussen@arm.com
Cc: pjt@google.com
Cc: rafael.j.wysocki@intel.com
Cc: umgwanakikbuti@gmail.com
Cc: vincent.guittot@linaro.org
Link: http://lkml.kernel.org/r/1436918682-4971-2-git-send-email-yuyang.du@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-08-03 12:21:28 +02:00
Linus Torvalds 22a093b2fb Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Debug info and other statistics fixes and related enhancements"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/numa: Fix numa balancing stats in /proc/pid/sched
  sched/numa: Show numa_group ID in /proc/sched_debug task listings
  sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
  sched/stat: Expose /proc/pid/schedstat if CONFIG_SCHED_INFO=y
  sched/stat: Simplify the sched_info accounting dependency
2015-07-04 08:56:53 -07:00
Srikar Dronamraju 397f2378f1 sched/numa: Fix numa balancing stats in /proc/pid/sched
Commit 44dba3d5d6 ("sched: Refactor task_struct to use
numa_faults instead of numa_* pointers") modified the way
tsk->numa_faults stats are accounted.

However that commit never touched show_numa_stats() that is displayed
in /proc/pid/sched and thus the numbers displayed in /proc/pid/sched
don't match the actual numbers.

Fix it by making sure that /proc/pid/sched reflects the task
fault numbers. Also add group fault stats too.

Also couple of more modifications are added here:

1. Format changes:

  - Previously we would list two entries per node, one for private
    and one for shared. Also the home node info was listed in each entry.

  - Now preferred node, total_faults and current node are
    displayed separately.

  - Now there is one entry per node, that lists private,shared task and
    group faults.

2. Unit changes:

  - p->numa_pages_migrated was getting reset after every read of
    /proc/pid/sched. It's more useful to have absolute numbers since
    differential migrations between two accesses can be more easily
    calculated.

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Iulia Manda <iulia.manda21@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435252903-1081-4-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-04 10:04:33 +02:00
Srikar Dronamraju 6b55c9654f sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
Currently print_cfs_rq() is declared in include/linux/sched.h.
However it's not used outside kernel/sched. Hence move the
declaration to kernel/sched/sched.h

Also some functions are only available for CONFIG_SCHED_DEBUG=y.
Hence move the declarations to within the #ifdef.

Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Iulia Manda <iulia.manda21@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1435252903-1081-2-git-send-email-srikar@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-04 10:04:31 +02:00
Linus Torvalds 98ec21a018 Merge branch 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Thomas Gleixner:
 "This series of scheduler updates depends on sched/core and timers/core
  branches, which are already in your tree:

   - Scheduler balancing overhaul to plug a hard to trigger race which
     causes an oops in the balancer (Peter Zijlstra)

   - Lockdep updates which are related to the balancing updates (Peter
     Zijlstra)"

* 'sched-hrtimers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched,lockdep: Employ lock pinning
  lockdep: Implement lock pinning
  lockdep: Simplify lock_release()
  sched: Streamline the task migration locking a little
  sched: Move code around
  sched,dl: Fix sched class hopping CBS hole
  sched, dl: Convert switched_{from, to}_dl() / prio_changed_dl() to balance callbacks
  sched,dl: Remove return value from pull_dl_task()
  sched, rt: Convert switched_{from, to}_rt() / prio_changed_rt() to balance callbacks
  sched,rt: Remove return value from pull_rt_task()
  sched: Allow balance callbacks for check_class_changed()
  sched: Use replace normalize_task() with __sched_setscheduler()
  sched: Replace post_schedule with a balance callback list
2015-06-24 15:09:40 -07:00
Linus Torvalds 43224b96af Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "A rather largish update for everything time and timer related:

   - Cache footprint optimizations for both hrtimers and timer wheel

   - Lower the NOHZ impact on systems which have NOHZ or timer migration
     disabled at runtime.

   - Optimize run time overhead of hrtimer interrupt by making the clock
     offset updates smarter

   - hrtimer cleanups and removal of restrictions to tackle some
     problems in sched/perf

   - Some more leap second tweaks

   - Another round of changes addressing the 2038 problem

   - First step to change the internals of clock event devices by
     introducing the necessary infrastructure

   - Allow constant folding for usecs/msecs_to_jiffies()

   - The usual pile of clockevent/clocksource driver updates

  The hrtimer changes contain updates to sched, perf and x86 as they
  depend on them plus changes all over the tree to cleanup API changes
  and redundant code, which got copied all over the place.  The y2038
  changes touch s390 to remove the last non 2038 safe code related to
  boot/persistant clock"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
  clocksource: Increase dependencies of timer-stm32 to limit build wreckage
  timer: Minimize nohz off overhead
  timer: Reduce timer migration overhead if disabled
  timer: Stats: Simplify the flags handling
  timer: Replace timer base by a cpu index
  timer: Use hlist for the timer wheel hash buckets
  timer: Remove FIFO "guarantee"
  timers: Sanitize catchup_timer_jiffies() usage
  hrtimer: Allow hrtimer::function() to free the timer
  seqcount: Introduce raw_write_seqcount_barrier()
  seqcount: Rename write_seqcount_barrier()
  hrtimer: Fix hrtimer_is_queued() hole
  hrtimer: Remove HRTIMER_STATE_MIGRATE
  selftest: Timers: Avoid signal deadlock in leap-a-day
  timekeeping: Copy the shadow-timekeeper over the real timekeeper last
  clockevents: Check state instead of mode in suspend/resume path
  selftests: timers: Add leap-second timer edge testing to leap-a-day.c
  ntp: Do leapsecond adjustment in adjtimex read path
  time: Prevent early expiry of hrtimers[CLOCK_REALTIME] at the leap second edge
  ntp: Introduce and use SECS_PER_DAY macro instead of 86400
  ...
2015-06-22 18:57:44 -07:00
Wanpeng Li 178a4d23e4 sched/deadline: Drop duplicate init_sched_dl_class() declaration
There are two init_sched_dl_class() declarations, this patch drops
the duplicate.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1431496867-4194-5-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-06-19 10:06:47 +02:00
Peter Zijlstra cbce1a6867 sched,lockdep: Employ lock pinning
Employ the new lockdep lock pinning annotation to ensure no
'accidental' lock-breaks happen with rq->lock.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124744.003233193@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19 00:25:27 +02:00
Peter Zijlstra e3fca9e7cb sched: Replace post_schedule with a balance callback list
Generalize the post_schedule() stuff into a balance callback list.
This allows us to more easily use it outside of schedule() and cross
sched_class.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124742.424032725@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-06-19 00:25:26 +02:00
Thomas Gleixner 624bbdfac9 Merge branch 'timers/core' into sched/hrtimers
Merge sched/core and timers/core so we can apply the sched balancing
patch queue, which depends on both.
2015-06-19 00:17:47 +02:00
Peter Zijlstra 4cfafd3082 sched,perf: Fix periodic timers
In the below two commits (see Fixes) we have periodic timers that can
stop themselves when they're no longer required, but need to be
(re)-started when their idle condition changes.

Further complications is that we want the timer handler to always do
the forward such that it will always correctly deal with the overruns,
and we do not want to race such that the handler has already decided
to stop, but the (external) restart sees the timer still active and we
end up with a 'lost' timer.

The problem with the current code is that the re-start can come before
the callback does the forward, at which point the forward from the
callback will WARN about forwarding an enqueued timer.

Now, conceptually its easy to detect if you're before or after the fwd
by comparing the expiration time against the current time. Of course,
that's expensive (and racy) because we don't have the current time.

Alternatively one could cache this state inside the timer, but then
everybody pays the overhead of maintaining this extra state, and that
is undesired.

The only other option that I could see is the external timer_active
variable, which I tried to kill before. I would love a nicer interface
for this seemingly simple 'problem' but alas.

Fixes: 272325c482 ("perf: Fix mux_interval hrtimer wreckage")
Fixes: 77a4d1a1b9 ("sched: Cleanup bandwidth timers")
Cc: pjt@google.com
Cc: tglx@linutronix.de
Cc: klamm@yandex-team.ru
Cc: mingo@kernel.org
Cc: bsegall@google.com
Cc: hpa@zytor.com
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150514102311.GX21418@twins.programming.kicks-ass.net
2015-05-18 17:17:42 +02:00
Jason Low 316c1608d1 sched, timer: Convert usages of ACCESS_ONCE() in the scheduler to READ_ONCE()/WRITE_ONCE()
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.

Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-08 12:11:32 +02:00
Peter Zijlstra 3289bdb429 sched: Move the loadavg code to a more obvious location
I could not find the loadavg code.. turns out it was hidden in a file
called proc.c. It further got mingled up with the cruft per rq load
indexes (which we really want to get rid of).

Move the per rq load indexes into the fair.c load-balance code (that's
the only thing that uses them) and rename proc.c to loadavg.c so we
can find it again.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
[ Did minor cleanups to the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-08 12:04:12 +02:00
Peter Zijlstra 77a4d1a1b9 sched: Cleanup bandwidth timers
Roman reported a 3 cpu lockup scenario involving __start_cfs_bandwidth().

The more I look at that code the more I'm convinced its crack, that
entire __start_cfs_bandwidth() thing is brain melting, we don't need to
cancel a timer before starting it, *hrtimer_start*() will happily remove
the timer for you if its still enqueued.

Removing that, removes a big part of the problem, no more ugly cancel
loop to get stuck in.

So now, if I understand things right, the entire reason you have this
cfs_b->lock guarded ->timer_active nonsense is to make sure we don't
accidentally lose the timer.

It appears to me that it should be possible to guarantee that same by
unconditionally (re)starting the timer when !queued. Because regardless
what hrtimer::function will return, if we beat it to (re)enqueue the
timer, it doesn't matter.

Now, because hrtimers don't come with any serialization guarantees we
must ensure both handler and (re)start loop serialize their access to
the hrtimer to avoid both trying to forward the timer at the same
time.

Update the rt bandwidth timer to match.

This effectively reverts: 09dc4ab039 ("sched/fair: Fix
tg_set_cfs_bandwidth() deadlock on rq->lock").

Reported-by: Roman Gushchin <klamm@yandex-team.ru>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20150415095011.804589208@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-04-22 17:06:53 +02:00
Abel Vesa 07c54f7a7f sched/core: Remove unused argument from init_[rt|dl]_rq()
Obviously, 'rq' is not used in these two functions, therefore,
there is no reason for it to be passed as an argument.

Signed-off-by: Abel Vesa <abelvesa@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1425383427-26244-1-git-send-email-abelvesa@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-02 17:42:55 +02:00
Peter Zijlstra dfbca41f34 sched: Optimize freq invariant accounting
Currently the freq invariant accounting (in
__update_entity_runnable_avg() and sched_rt_avg_update()) get the
scale factor from a weak function call, this means that even for archs
that default on their implementation the compiler cannot see into this
function and optimize the extra scaling math away.

This is sad, esp. since its a 64-bit multiplication which can be quite
costly on some platforms.

So replace the weak function with #ifdef and __always_inline goo. This
is not quite as nice from an arch support PoV but should at least
result in compile time errors if done wrong.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/20150323131905.GF23123@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:08 +01:00
Vincent Guittot dc7ff76ead sched: Remove unused struct sched_group_capacity::capacity_orig
The 'struct sched_group_capacity::capacity_orig' field is no longer used
in the scheduler so we can remove it.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425378903-5349-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:05 +01:00
Vincent Guittot ca6d75e690 sched: Add struct rq::cpu_capacity_orig
This new field 'cpu_capacity_orig' reflects the original capacity of a CPU
before being altered by rt tasks and/or IRQ

The cpu_capacity_orig will be used:

  - to detect when the capacity of a CPU has been noticeably reduced so we can
    trig load balance to look for a CPU with better capacity. As an example, we
    can detect when a CPU handles a significant amount of irq
    (with CONFIG_IRQ_TIME_ACCOUNTING) but this CPU is seen as an idle CPU by
    scheduler whereas CPUs, which are really idle, are available.

  - evaluate the available capacity for CFS tasks

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-7-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:02 +01:00
Vincent Guittot b5b4860d1d sched: Make scale_rt invariant with frequency
The average running time of RT tasks is used to estimate the remaining compute
capacity for CFS tasks. This remaining capacity is the original capacity scaled
down by a factor (aka scale_rt_capacity). This estimation of available capacity
must also be invariant with frequency scaling.

A frequency scaling factor is applied on the running time of the RT tasks for
computing scale_rt_capacity.

In sched_rt_avg_update(), we now scale the RT execution time like below:

  rq->rt_avg += rt_delta * arch_scale_freq_capacity() >> SCHED_CAPACITY_SHIFT

Then, scale_rt_capacity can be summarized by:

  scale_rt_capacity = SCHED_CAPACITY_SCALE * available / total

with available = total - rq->rt_avg

This has been been optimized in current code by:

  scale_rt_capacity = available / (total >> SCHED_CAPACITY_SHIFT)

But we can also developed the equation like below:

  scale_rt_capacity = SCHED_CAPACITY_SCALE - ((rq->rt_avg << SCHED_CAPACITY_SHIFT) / total)

and we can optimize the equation by removing SCHED_CAPACITY_SHIFT shift in
the computation of rq->rt_avg and scale_rt_capacity().

so rq->rt_avg += rt_delta * arch_scale_freq_capacity()
and
scale_rt_capacity = SCHED_CAPACITY_SCALE - (rq->rt_avg / total)

arch_scale_frequency_capacity() will be called in the hot path of the scheduler
which implies to have a short and efficient function.

As an example, arch_scale_frequency_capacity() should return a cached value that
is updated periodically outside of the hot path.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Morten.Rasmussen@arm.com
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-6-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:36:01 +01:00
Vincent Guittot 36ee28e45d sched: Add sched_avg::utilization_avg_contrib
Add new statistics which reflect the average time a task is running on the CPU
and the sum of these running time of the tasks on a runqueue. The latter is
named utilization_load_avg.

This patch is based on the usage metric that was proposed in the 1st
versions of the per-entity load tracking patchset by Paul Turner
<pjt@google.com> but that has be removed afterwards. This version differs from
the original one in the sense that it's not linked to task_group.

The rq's utilization_load_avg will be used to check if a rq is overloaded or
not instead of trying to compute how many tasks a group of CPUs can handle.

Rename runnable_avg_period into avg_period as it is now used with both
runnable_avg_sum and running_avg_sum.

Add some descriptions of the variables to explain their differences.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Ben Segall <bsegall@google.com>
Cc: Morten.Rasmussen@arm.com
Cc: Paul Turner <pjt@google.com>
Cc: dietmar.eggemann@arm.com
Cc: efault@gmx.de
Cc: kamalesh@linux.vnet.ibm.com
Cc: linaro-kernel@lists.linaro.org
Cc: nicolas.pitre@linaro.org
Cc: preeti@linux.vnet.ibm.com
Cc: riel@redhat.com
Link: http://lkml.kernel.org/r/1425052454-25797-2-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:35:57 +01:00
Steven Rostedt b6366f048e sched/rt: Use IPI to trigger RT task push migration instead of pulling
When debugging the latencies on a 40 core box, where we hit 300 to
500 microsecond latencies, I found there was a huge contention on the
runqueue locks.

Investigating it further, running ftrace, I found that it was due to
the pulling of RT tasks.

The test that was run was the following:

 cyclictest --numa -p95 -m -d0 -i100

This created a thread on each CPU, that would set its wakeup in iterations
of 100 microseconds. The -d0 means that all the threads had the same
interval (100us). Each thread sleeps for 100us and wakes up and measures
its latencies.

cyclictest is maintained at:
 git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git

What happened was another RT task would be scheduled on one of the CPUs
that was running our test, when the other CPU tests went to sleep and
scheduled idle. This caused the "pull" operation to execute on all
these CPUs. Each one of these saw the RT task that was overloaded on
the CPU of the test that was still running, and each one tried
to grab that task in a thundering herd way.

To grab the task, each thread would do a double rq lock grab, grabbing
its own lock as well as the rq of the overloaded CPU. As the sched
domains on this box was rather flat for its size, I saw up to 12 CPUs
block on this lock at once. This caused a ripple affect with the
rq locks especially since the taking was done via a double rq lock, which
means that several of the CPUs had their own rq locks held while trying
to take this rq lock. As these locks were blocked, any wakeups or load
balanceing on these CPUs would also block on these locks, and the wait
time escalated.

I've tried various methods to lessen the load, but things like an
atomic counter to only let one CPU grab the task wont work, because
the task may have a limited affinity, and we may pick the wrong
CPU to take that lock and do the pull, to only find out that the
CPU we picked isn't in the task's affinity.

Instead of doing the PULL, I now have the CPUs that want the pull to
send over an IPI to the overloaded CPU, and let that CPU pick what
CPU to push the task to. No more need to grab the rq lock, and the
push/pull algorithm still works fine.

With this patch, the latency dropped to just 150us over a 20 hour run.
Without the patch, the huge latencies would trigger in seconds.

I've created a new sched feature called RT_PUSH_IPI, which is enabled
by default.

When RT_PUSH_IPI is not enabled, the old method of grabbing the rq locks
and having the pulling CPU do the work is implemented. When RT_PUSH_IPI
is enabled, the IPI is sent to the overloaded CPU to do a push.

To enabled or disable this at run time:

 # mount -t debugfs nodev /sys/kernel/debug
 # echo RT_PUSH_IPI > /sys/kernel/debug/sched_features
or
 # echo NO_RT_PUSH_IPI > /sys/kernel/debug/sched_features

Update: This original patch would send an IPI to all CPUs in the RT overload
list. But that could theoretically cause the reverse issue. That is, there
could be lots of overloaded RT queues and one CPU lowers its priority. It would
then send an IPI to all the overloaded RT queues and they could then all try
to grab the rq lock of the CPU lowering its priority, and then we have the
same problem.

The latest design sends out only one IPI to the first overloaded CPU. It tries to
push any tasks that it can, and then looks for the next overloaded CPU that can
push to the source CPU. The IPIs stop when all overloaded CPUs that have pushable
tasks that have priorities greater than the source CPU are covered. In case the
source CPU lowers its priority again, a flag is set to tell the IPI traversal to
restart with the first RT overloaded CPU after the source CPU.

Parts-suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Joern Engel <joern@purestorage.com>
Cc: Clark Williams <williams@redhat.com>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150318144946.2f3cc982@gandalf.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-23 10:55:22 +01:00
Peter Zijlstra 3960c8c0c7 sched: Make dl_task_time() use task_rq_lock()
Kirill reported that a dl task can be throttled and dequeued at the
same time. This happens, when it becomes throttled in schedule(),
which is called to go to sleep:

current->state = TASK_INTERRUPTIBLE;
schedule()
    deactivate_task()
        dequeue_task_dl()
            update_curr_dl()
                start_dl_timer()
            __dequeue_task_dl()
    prev->on_rq = 0;

This invalidates the assumption from commit 0f397f2c90 ("sched/dl:
Fix race in dl_task_timer()"):

  "The only reason we don't strictly need ->pi_lock now is because
   we're guaranteed to have p->state == TASK_RUNNING here and are
   thus free of ttwu races".

And therefore we have to use the full task_rq_lock() here.

This further amends the fact that we forgot to update the rq lock loop
for TASK_ON_RQ_MIGRATE, from commit cca26e8009 ("sched: Teach
scheduler to understand TASK_ON_RQ_MIGRATING state").

Reported-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Link: http://lkml.kernel.org/r/20150217123139.GN5029@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-02-18 14:27:30 +01:00
Peter Zijlstra 9edfbfed3f sched/core: Rework rq->clock update skips
The original purpose of rq::skip_clock_update was to avoid 'costly' clock
updates for back to back wakeup-preempt pairs. The big problem with it
has always been that the rq variable is unaware of the context and
causes indiscrimiate clock skips.

Rework the entire thing and create a sense of context by only allowing
schedule() to skip clock updates. (XXX can we measure the cost of the
added store?)

By ensuring only schedule can ever skip an update, we guarantee we're
never more than 1 tick behind on the update.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150105103554.432381549@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:20 +01:00
Peter Zijlstra cebde6d681 sched/core: Validate rq_clock*() serialization
rq->clock{,_task} are serialized by rq->lock, verify this.

One immediate fail is the usage in scale_rt_capability, so 'annotate'
that for now, there's more 'funny' there. Maybe change rq->lock into a
raw_seqlock_t?

(Only 32-bit is affected)

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20150105103554.361872747@infradead.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-01-14 13:34:19 +01:00
Ingo Molnar e9ac5f0fa8 Merge branch 'sched/urgent' into sched/core, to pick up fixes before applying more changes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:50:25 +01:00
Stanislaw Gruszka 6e998916df sched/cputime: Fix clock_nanosleep()/clock_gettime() inconsistency
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.

Reproducer/tester can be found further below, it can be compiled and ran by:

	gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
	while ./tst-cpuclock2 ; do : ; done

This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".

Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.

KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .

This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.

Full reproducer (tst-cpuclock2.c):

	#define _GNU_SOURCE
	#include <unistd.h>
	#include <sys/syscall.h>
	#include <stdio.h>
	#include <time.h>
	#include <pthread.h>
	#include <stdint.h>
	#include <inttypes.h>

	/* Parameters for the Linux kernel ABI for CPU clocks.  */
	#define CPUCLOCK_SCHED          2
	#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
		((~(clockid_t) (pid) << 3) | (clockid_t) (clock))

	static pthread_barrier_t barrier;

	/* Help advance the clock.  */
	static void *chew_cpu(void *arg)
	{
		pthread_barrier_wait(&barrier);
		while (1) ;

		return NULL;
	}

	/* Don't use the glibc wrapper.  */
	static int do_nanosleep(int flags, const struct timespec *req)
	{
		clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);

		return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
	}

	static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
	{
		int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
		int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;

		return after_i - before_i;
	}

	int main(void)
	{
		int result = 0;
		pthread_t th;

		pthread_barrier_init(&barrier, NULL, 2);

		if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
			perror("pthread_create");
			return 1;
		}

		pthread_barrier_wait(&barrier);

		/* The test.  */
		struct timespec before, after, sleeptimeabs;
		int64_t sleepdiff, diffabs;
		const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };

		/* The relative nanosleep.  Not sure why this is needed, but its presence
		   seems to make it easier to reproduce the problem.  */
		if (do_nanosleep(0, &sleeptime) != 0) {
			perror("clock_nanosleep");
			return 1;
		}

		/* Get the current time.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
			perror("clock_gettime[2]");
			return 1;
		}

		/* Compute the absolute sleep time based on the current time.  */
		uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
		sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
		sleeptimeabs.tv_nsec = nsec % 1000000000;

		/* Sleep for the computed time.  */
		if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
			perror("absolute clock_nanosleep");
			return 1;
		}

		/* Get the time after the sleep.  */
		if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
			perror("clock_gettime[3]");
			return 1;
		}

		/* The time after sleep should always be equal to or after the absolute sleep
		   time passed to clock_nanosleep.  */
		sleepdiff = tsdiff(&sleeptimeabs, &after);
		if (sleepdiff < 0) {
			printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
			result = 1;

			printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
			printf("After  %llu.%09llu\n", after.tv_sec, after.tv_nsec);
			printf("Sleep  %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
		}

		/* The difference between the timestamps taken before and after the
		   clock_nanosleep call should be equal to or more than the duration of the
		   sleep.  */
		diffabs = tsdiff(&before, &after);
		if (diffabs < sleeptime.tv_nsec) {
			printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
			result = 1;
		}

		pthread_cancel(th);

		return result;
	}

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-16 10:04:20 +01:00
Iulia Manda 44dba3d5d6 sched: Refactor task_struct to use numa_faults instead of numa_* pointers
This patch simplifies task_struct by removing the four numa_* pointers
in the same array and replacing them with the array pointer. By doing this,
on x86_64, the size of task_struct is reduced by 3 ulong pointers (24 bytes on
x86_64).

A new parameter is added to the task_faults_idx function so that it can return
an index to the correct offset, corresponding with the old precalculated
pointers.

All of the code in sched/ that depended on task_faults_idx and numa_* was
changed in order to match the new logic.

Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: dave@stgolabs.net
Cc: riel@redhat.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141031001331.GA30662@winterfell
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:57 +01:00
Wanpeng Li acb32132ec sched/deadline: Add deadline rq status print
This patch add deadline rq status print.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414708776-124078-3-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:54 +01:00
Kirill Tkhai 67dfa1b756 sched/deadline: Implement cancel_dl_timer() to use in switched_from_dl()
Currently used hrtimer_try_to_cancel() is racy:

raw_spin_lock(&rq->lock)
...                            dl_task_timer                 raw_spin_lock(&rq->lock)
...                               raw_spin_lock(&rq->lock)   ...
   switched_from_dl()             ...                        ...
      hrtimer_try_to_cancel()     ...                        ...
   switched_to_fair()             ...                        ...
...                               ...                        ...
...                               ...                        ...
raw_spin_unlock(&rq->lock)        ...                        (asquired)
...                               ...                        ...
...                               ...                        ...
do_exit()                         ...                        ...
   schedule()                     ...                        ...
      raw_spin_lock(&rq->lock)    ...                        raw_spin_unlock(&rq->lock)
      ...                         ...                        ...
      raw_spin_unlock(&rq->lock)  ...                        raw_spin_lock(&rq->lock)
      ...                         ...                        (asquired)
      put_task_struct()           ...                        ...
          free_task_struct()      ...                        ...
      ...                         ...                        raw_spin_unlock(&rq->lock)
...                               (asquired)                 ...
...                               ...                        ...
...                               (use after free)           ...

So, let's implement 100% guaranteed way to cancel the timer and let's
be sure we are safe even in very unlikely situations.

rq unlocking does not limit the area of switched_from_dl() use, because
this has already been possible in pull_dl_task() below.

Let's consider the safety of of this unlocking. New code in the patch
is working when hrtimer_try_to_cancel() fails. This means the callback
is running. In this case hrtimer_cancel() is just waiting till the
callback is finished. Two

1) Since we are in switched_from_dl(), new class is not dl_sched_class and
new prio is not less MAX_DL_PRIO. So, the callback returns early; it's
right after !dl_task() check. After that hrtimer_cancel() returns back too.

The above is:

raw_spin_lock(rq->lock);                  ...
...                                       dl_task_timer()
...                                          raw_spin_lock(rq->lock);
   switched_from_dl()                        ...
       hrtimer_try_to_cancel()               ...
          raw_spin_unlock(rq->lock);         ...
          hrtimer_cancel()                   ...
          ...                                raw_spin_unlock(rq->lock);
          ...                                return HRTIMER_NORESTART;
          ...                             ...
          raw_spin_lock(rq->lock);        ...

2) But the below is also possible:
                                   dl_task_timer()
                                      raw_spin_lock(rq->lock);
                                      ...
                                      raw_spin_unlock(rq->lock);
raw_spin_lock(rq->lock);              ...
   switched_from_dl()                 ...
       hrtimer_try_to_cancel()        ...
       ...                            return HRTIMER_NORESTART;
       raw_spin_unlock(rq->lock);  ...
       hrtimer_cancel();           ...
       raw_spin_lock(rq->lock);    ...

In this case hrtimer_cancel() returns immediately. Very unlikely case,
just to mention.

Nobody can manipulate the task, because check_class_changed() is
always called with pi_lock locked. Nobody can force the task to
participate in (concurrent) priority inheritance schemes (the same reason).

All concurrent task operations require pi_lock, which is held by us.
No deadlocks with dl_task_timer() are possible, because it returns
right after !dl_task() check (it does nothing).

If we receive a new dl_task during the time of unlocked rq, we just
don't have to do pull_dl_task() in switched_from_dl() further.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
[ Added comments]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414420852.19914.186.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-11-04 07:17:50 +01:00
Juri Lelli 7f51412a41 sched/deadline: Fix bandwidth check/update when migrating tasks between exclusive cpusets
Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks
affinity (performing what is commonly called clustered scheduling).
Unfortunately, such thing is currently broken for two reasons:

 - No check is performed when the user tries to attach a task to
   an exlusive cpuset (recall that exclusive cpusets have an
   associated maximum allowed bandwidth).

 - Bandwidths of source and destination cpusets are not correctly
   updated after a task is migrated between them.

This patch fixes both things at once, as they are opposite faces
of the same coin.

The check is performed in cpuset_can_attach(), as there aren't any
points of failure after that function. The updated is split in two
halves. We first reserve bandwidth in the destination cpuset, after
we pass the check in cpuset_can_attach(). And we then release
bandwidth from the source cpuset when the task's affinity is
actually changed. Even if there can be time windows when sched_setattr()
may erroneously fail in the source cpuset, we are fine with it, as
we can't perfom an atomic update of both cpusets at once.

Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: michael@amarulasolutions.com
Cc: luca.abeni@unitn.it
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:58 +01:00
Rik van Riel e3fe70b1f7 sched/numa: Classify the NUMA topology of a system
Smaller NUMA systems tend to have all NUMA nodes directly connected
to each other. This includes the degenerate case of a system with just
one node, ie. a non-NUMA system.

Larger systems can have two kinds of NUMA topology, which affects how
tasks and memory should be placed on the system.

On glueless mesh systems, nodes that are not directly connected to
each other will bounce traffic through intermediary nodes. Task groups
can be run closer to each other by moving tasks from a node to an
intermediary node between it and the task's preferred node.

On NUMA systems with backplane controllers, the intermediary hops
are incapable of running programs. This creates "islands" of nodes
that are at an equal distance to anywhere else in the system.

Each kind of topology requires a slightly different placement
algorithm; this patch provides the mechanism to detect the kind
of NUMA topology of a system.

Signed-off-by: Rik van Riel <riel@redhat.com>
Tested-by: Chegu Vinod <chegu_vinod@hp.com>
[ Changed to use kernel/sched/sched.h ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Link: http://lkml.kernel.org/r/1413530994-9732-3-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:48 +01:00
Rik van Riel 9942f79baa sched/numa: Export info needed for NUMA balancing on complex topologies
Export some information that is necessary to do placement of
tasks on systems with multi-level NUMA topologies.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: mgorman@suse.de
Cc: chegu_vinod@hp.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413530994-9732-2-git-send-email-riel@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-10-28 10:47:47 +01:00
Linus Torvalds 0429fbc0bd Merge branch 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
Pull percpu consistent-ops changes from Tejun Heo:
 "Way back, before the current percpu allocator was implemented, static
  and dynamic percpu memory areas were allocated and handled separately
  and had their own accessors.  The distinction has been gone for many
  years now; however, the now duplicate two sets of accessors remained
  with the pointer based ones - this_cpu_*() - evolving various other
  operations over time.  During the process, we also accumulated other
  inconsistent operations.

  This pull request contains Christoph's patches to clean up the
  duplicate accessor situation.  __get_cpu_var() uses are replaced with
  with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().

  Unfortunately, the former sometimes is tricky thanks to C being a bit
  messy with the distinction between lvalues and pointers, which led to
  a rather ugly solution for cpumask_var_t involving the introduction of
  this_cpu_cpumask_var_ptr().

  This converts most of the uses but not all.  Christoph will follow up
  with the remaining conversions in this merge window and hopefully
  remove the obsolete accessors"

* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
  irqchip: Properly fetch the per cpu offset
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
  ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
  percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
  Revert "powerpc: Replace __get_cpu_var uses"
  percpu: Remove __this_cpu_ptr
  clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
  sparc: Replace __get_cpu_var uses
  avr32: Replace __get_cpu_var with __this_cpu_write
  blackfin: Replace __get_cpu_var uses
  tile: Use this_cpu_ptr() for hardware counters
  tile: Replace __get_cpu_var uses
  powerpc: Replace __get_cpu_var uses
  alpha: Replace __get_cpu_var
  ia64: Replace __get_cpu_var uses
  s390: cio driver &__get_cpu_var replacements
  s390: Replace __get_cpu_var uses
  mips: Replace __get_cpu_var uses
  MIPS: Replace __get_cpu_var uses in FPU emulator.
  arm: Replace __this_cpu_ptr with raw_cpu_ptr
  ...
2014-10-15 07:48:18 +02:00
Peter Zijlstra c55f5158f5 sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
Kirill found that there's a subtle race in the
__ARCH_WANT_UNLOCKED_CTXSW code, and instead of fixing it, remove the
entire exception because neither arch that uses it seems to actually
still require it.

Boot tested on mips64el (qemu) only.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Burton <paul.burton@imgtec.com>
Cc: Qais Yousef <qais.yousef@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: oleg@redhat.com
Cc: linux@roeck-us.net
Cc: linux-ia64@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Link: http://lkml.kernel.org/r/20140923150641.GH3312@worktop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:47:05 +02:00
Daniel Lezcano 442bf3aaf5 sched: Let the scheduler see CPU idle states
When the cpu enters idle, it stores the cpuidle state pointer in its
struct rq instance which in turn could be used to make a better decision
when balancing tasks.

As soon as the cpu exits its idle state, the struct rq reference is
cleared.

There are a couple of situations where the idle state pointer could be changed
while it is being consulted:

1. For x86/acpi with dynamic c-states, when a laptop switches from battery
   to AC that could result on removing the deeper idle state. The acpi driver
   triggers:
	'acpi_processor_cst_has_changed'
		'cpuidle_pause_and_lock'
			'cpuidle_uninstall_idle_handler'
				'kick_all_cpus_sync'.

All cpus will exit their idle state and the pointed object will be set to
NULL.

2. The cpuidle driver is unloaded. Logically that could happen but not
in practice because the drivers are always compiled in and 95% of them are
not coded to unregister themselves.  In any case, the unloading code must
call 'cpuidle_unregister_device', that calls 'cpuidle_pause_and_lock'
leading to 'kick_all_cpus_sync' as mentioned above.

A race can happen if we use the pointer and then one of these two scenarios
occurs at the same moment.

In order to be safe, the idle state pointer stored in the rq must be
used inside a rcu_read_lock section where we are protected with the
'rcu_barrier' in the 'cpuidle_uninstall_idle_handler' function. The
idle_get_state() and idle_put_state() accessors should be used to that
effect.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linux-pm@vger.kernel.org
Cc: linaro-kernel@lists.linaro.org
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:46:58 +02:00
Juri Lelli a5e7be3b28 sched/deadline: Clear dl_entity params when setscheduling to different class
When a task is using SCHED_DEADLINE and the user setschedules it to a
different class its sched_dl_entity static parameters are not cleaned
up. This causes a bug if the user sets it back to SCHED_DEADLINE with
the same parameters again.  The problem resides in the check we
perform at the very beginning of dl_overflow():

	if (new_bw == p->dl.dl_bw)
		return 0;

This condition is met in the case depicted above, so the function
returns and dl_b->total_bw is not updated (the p->dl.dl_bw is not
added to it). After this, admission control is broken.

This patch fixes the thing, properly clearing static parameters for a
task that ceases to use SCHED_DEADLINE.

Reported-by: Daniele Alessandrelli <daniele.alessandrelli@gmail.com>
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Tested-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1411118561-26323-2-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-24 14:46:56 +02:00
Zhihui Zhang 9c58c79a8a sched: Clean up some typos and grammatical errors in code/comments
Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Cc: peterz@infradead.org
Link: http://lkml.kernel.org/r/1411262676-19928-1-git-send-email-zzhsuny@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-09-21 09:00:02 +02:00
Christoph Lameter 4a32fea9d7 scheduler: Replace __get_cpu_var with this_cpu_ptr
Convert all uses of __get_cpu_var for address calculation to use
this_cpu_ptr instead.

[Uses of __get_cpu_var with cpumask_var_t are no longer
handled by this patch]

Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-26 13:45:45 -04:00
Kirill Tkhai cca26e8009 sched: Teach scheduler to understand TASK_ON_RQ_MIGRATING state
This is a new p->on_rq state which will be used to indicate that a task
is in a process of migrating between two RQs. It allows to get
rid of double_rq_lock(), which we used to use to change a rq of
a queued task before.

Let's consider an example. To move a task between src_rq and
dst_rq we will do the following:

	raw_spin_lock(&src_rq->lock);
	/* p is a task which is queued on src_rq */
	p = ...;

	dequeue_task(src_rq, p, 0);
	p->on_rq = TASK_ON_RQ_MIGRATING;
	set_task_cpu(p, dst_cpu);
	raw_spin_unlock(&src_rq->lock);

    	/*
    	 * Both RQs are unlocked here.
    	 * Task p is dequeued from src_rq
    	 * but its on_rq value is not zero.
    	 */

	raw_spin_lock(&dst_rq->lock);
	p->on_rq = TASK_ON_RQ_QUEUED;
	enqueue_task(dst_rq, p, 0);
	raw_spin_unlock(&dst_rq->lock);

While p->on_rq is TASK_ON_RQ_MIGRATING, task is considered as
"migrating", and other parallel scheduler actions with it are
not available to parallel callers. The parallel caller is
spining till migration is completed.

The unavailable actions are changing of cpu affinity, changing
of priority etc, in other words all the functionality which used
to require task_rq(p)->lock before (and related to the task).

To implement TASK_ON_RQ_MIGRATING support we primarily are using
the following fact. Most of scheduler users (from which we are
protecting a migrating task) use task_rq_lock() and
__task_rq_lock() to get the lock of task_rq(p). These primitives
know that task's cpu may change, and they are spining while the
lock of the right RQ is not held. We add one more condition into
them, so they will be also spinning until the migration is
finished.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528062.23412.88.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:53:00 +02:00
Kirill Tkhai da0c1e65b5 sched: Add wrapper for checking task_struct::on_rq
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.

The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 14:52:59 +02:00
Pranith Kumar 8b06c55bdb sched: Match declaration with definition
Match the declaration of runqueues with the definition.

Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1407950893-32731-1-git-send-email-bobby.prani@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-08-20 09:47:19 +02:00
Jason Baron 6e76ea8a82 sched: Remove extra static_key*() function indirection
I think its a bit simpler without having to follow an extra layer of static
inline fuctions. No functional change just cosmetic.

Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: rostedt@goodmis.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/2ce52233ce200faad93b6029d90f1411cd926667.1404315388.git.jbaron@akamai.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:20 +02:00
Kirill Tkhai 8875125efe sched: Transform resched_task() into resched_curr()
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.

The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:

  (before)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155274	  16445	   7042	 178761	  2ba49	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411490	1178376	 991232	9581098	 92322a	vmlinux

  (after)
	$ size kernel/sched/built-in.o
	   text	   data	    bss	    dec	    hex	filename
	155130	  16445	   7042	 178617	  2b9b9	kernel/sched/built-in.o

	$ size vmlinux
	   text	   data	    bss	    dec	    hex	filename
	7411362	1178376	 991232	9580970	 9231aa	vmlinux

	I was choosing between resched_curr() and resched_rq(),
	and the first name looks better for me.

A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-16 13:38:19 +02:00
Tim Chen 4486edd12b sched/fair: Implement fast idling of CPUs when the system is partially loaded
When a system is lightly loaded (i.e. no more than 1 job per cpu),
attempt to pull job to a cpu before putting it to idle is unnecessary and
can be skipped.  This patch adds an indicator so the scheduler can know
when there's no more than 1 active job is on any CPU in the system to
skip needless job pulls.

On a 4 socket machine with a request/response kind of workload from
clients, we saw about 0.13 msec delay when we go through a full load
balance to try pull job from all the other cpus.  While 0.1 msec was
spent on processing the request and generating a response, the 0.13 msec
load balance overhead was actually more than the actual work being done.
This overhead can be skipped much of the time for lightly loaded systems.

With this patch, we tested with a netperf request/response workload that
has the server busy with half the cpus in a 4 socket system.  We found
the patch eliminated 75% of the load balance attempts before idling a cpu.

The overhead of setting/clearing the indicator is low as we already gather
the necessary info while we call add_nr_running() and update_sd_lb_stats.()
We switch to full load balance load immediately if any cpu got more than
one job on its run queue in add_nr_running.  We'll clear the indicator
to avoid load balance when we detect no cpu's have more than one job
when we scan the work queues in update_sg_lb_stats().  We are aggressive
in turning on the load balance and opportunistic in skipping the load
balance.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Jason Low <jason.low2@hp.com>
Cc: "Paul E.McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: Alex Shi <alex.shi@linaro.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1403551009.2970.613.camel@schen9-DESK
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-07-05 11:17:32 +02:00
Frederic Weisbecker 3882ec6439 nohz: Use IPI implicit full barrier against rq->nr_running r/w
A full dynticks CPU is allowed to stop its tick when a single task runs.
Meanwhile when a new task gets enqueued, the CPU must be notified so that
it can restart its tick to maintain local fairness and other accounting
details.

This notification is performed by way of an IPI. Then when the target
receives the IPI, we expect it to see the new value of rq->nr_running.

Hence the following ordering scenario:

   CPU 0                   CPU 1

   write rq->running       get IPI
   smp_wmb()               smp_rmb()
   send IPI                read rq->nr_running

But Paul Mckenney says that nowadays IPIs imply a full barrier on
all architectures. So we can safely remove this pair and rely on the
implicit barriers that come along IPI send/receive. Lets
just comment on this new assumption.

Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2014-06-16 16:27:24 +02:00
Frederic Weisbecker fd2ac4f4a6 nohz: Use nohz own full kick on 2nd task enqueue
Now that we have a nohz full remote kick based on irq work, lets use
it to notify a CPU that it's exiting single task mode.

This unbloats a bit the scheduler IPI that the nohz code was abusing
for its cool "callable anywhere/anytime" properties.

Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2014-06-16 16:26:55 +02:00
Linus Torvalds b2e09f633a Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull more scheduler updates from Ingo Molnar:
 "Second round of scheduler changes:
   - try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
   - continued power scheduling cleanups and refactorings, from Nicolas
     Pitre
   - misc fixes and enhancements"

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/deadline: Delete extraneous extern for to_ratio()
  sched/idle: Optimize try-to-wake-up IPI
  sched/idle: Simplify wake_up_idle_cpu()
  sched/idle: Clear polling before descheduling the idle thread
  sched, trace: Add a tracepoint for IPI-less remote wakeups
  cpuidle: Set polling in poll_idle
  sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
  sched: Rename capacity related flags
  sched: Final power vs. capacity cleanups
  sched: Remove remaining dubious usage of "power"
  sched: Let 'struct sched_group_power' care about CPU capacity
  sched/fair: Disambiguate existing/remaining "capacity" usage
  sched/fair: Change "has_capacity" to "has_free_capacity"
  sched/fair: Remove "power" from 'struct numa_stats'
  sched: Fix signedness bug in yield_to()
  sched/fair: Use time_after() in record_wakee()
  sched/balancing: Reduce the rate of needless idle load balancing
  sched/fair: Fix unlocked reads of some cfs_b->quota/period
2014-06-12 19:42:15 -07:00
Linus Torvalds 3f17ea6dea Merge branch 'next' (accumulated 3.16 merge window patches) into master
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.

* accumulated work in next: (6809 commits)
  ufs: sb mutex merge + mutex_destroy
  powerpc: update comments for generic idle conversion
  cris: update comments for generic idle conversion
  idle: remove cpu_idle() forward declarations
  nbd: zero from and len fields in NBD_CMD_DISCONNECT.
  mm: convert some level-less printks to pr_*
  MAINTAINERS: adi-buildroot-devel is moderated
  MAINTAINERS: add linux-api for review of API/ABI changes
  mm/kmemleak-test.c: use pr_fmt for logging
  fs/dlm/debug_fs.c: replace seq_printf by seq_puts
  fs/dlm/lockspace.c: convert simple_str to kstr
  fs/dlm/config.c: convert simple_str to kstr
  mm: mark remap_file_pages() syscall as deprecated
  mm: memcontrol: remove unnecessary memcg argument from soft limit functions
  mm: memcontrol: clean up memcg zoneinfo lookup
  mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
  mm/mempool.c: update the kmemleak stack trace for mempool allocations
  lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
  mm: introduce kmemleak_update_trace()
  mm/kmemleak.c: use %u to print ->checksum
  ...
2014-06-08 11:31:16 -07:00
Peter Zijlstra e3baac47f0 sched/idle: Optimize try-to-wake-up IPI
[ This series reduces the number of IPIs on Andy's workload by something like
  99%. It's down from many hundreds per second to very few.

  The basic idea behind this series is to make TIF_POLLING_NRFLAG be a
  reliable indication that the idle task is polling.  Once that's done,
  the rest is reasonably straightforward. ]

When enqueueing tasks on remote LLC domains, we send an IPI to do the
work 'locally' and avoid bouncing all the cachelines over.

However, when the remote CPU is idle (and polling, say x86 mwait), we
don't need to send an IPI, we can simply kick the TIF word to wake it
up and have the 'idle' loop do the work.

So when _TIF_POLLING_NRFLAG is set, but _TIF_NEED_RESCHED is not (yet)
set, set _TIF_NEED_RESCHED and avoid sending the IPI.

Much-requested-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[Edited by Andy Lutomirski, but this is mostly Peter Zijlstra's code.]
Signed-off-by: Andy Lutomirski <luto@amacapital.net>
Cc: nicolas.pitre@linaro.org
Cc: daniel.lezcano@linaro.org
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: umgwanakikbuti@gmail.com
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/ce06f8b02e7e337be63e97597fc4b248d3aa6f9b.1401902905.git.luto@amacapital.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 12:09:53 +02:00
Nicolas Pitre ced549fa5f sched: Remove remaining dubious usage of "power"
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

This is the remaining "power" -> "capacity" rename for local symbols.
Those symbols visible to the rest of the kernel are not included yet.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-yyyhohzhkwnaotr3lx8zd5aa@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:29 +02:00
Nicolas Pitre 63b2ca30bd sched: Let 'struct sched_group_power' care about CPU capacity
It is better not to think about compute capacity as being equivalent
to "CPU power".  The upcoming "power aware" scheduler work may create
confusion with the notion of energy consumption if "power" is used too
liberally.

Since struct sched_group_power is really about compute capacity of sched
groups, let's rename it to struct sched_group_capacity. Similarly sgp
becomes sgc. Related variables and functions dealing with groups are also
adjusted accordingly.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: linaro-kernel@lists.linaro.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/n/tip-5yeix833vvgf2uyj5o36hpu9@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:52:26 +02:00
Roman Gushchin 09dc4ab039 sched/fair: Fix tg_set_cfs_bandwidth() deadlock on rq->lock
tg_set_cfs_bandwidth() sets cfs_b->timer_active to 0 to
force the period timer restart. It's not safe, because
can lead to deadlock, described in commit 927b54fccbf0:
"__start_cfs_bandwidth calls hrtimer_cancel while holding rq->lock,
waiting for the hrtimer to finish. However, if sched_cfs_period_timer
runs for another loop iteration, the hrtimer can attempt to take
rq->lock, resulting in deadlock."

Three CPUs must be involved:

  CPU0               CPU1                         CPU2
  take rq->lock      period timer fired
  ...                take cfs_b lock
  ...                ...                          tg_set_cfs_bandwidth()
  throttle_cfs_rq()  release cfs_b lock           take cfs_b lock
  ...                distribute_cfs_runtime()     timer_active = 0
  take cfs_b->lock   wait for rq->lock            ...
  __start_cfs_bandwidth()
  {wait for timer callback
   break if timer_active == 1}

So, CPU0 and CPU1 are deadlocked.

Instead of resetting cfs_b->timer_active, tg_set_cfs_bandwidth can
wait for period timer callbacks (ignoring cfs_b->timer_active) and
restart the timer explicitly.

Signed-off-by: Roman Gushchin <klamm@yandex-team.ru>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/87wqdi9g8e.wl\%klamm@yandex-team.ru
Cc: pjt@google.com
Cc: chris.j.arges@canonical.com
Cc: gregkh@linuxfoundation.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-06-05 11:51:34 +02:00
Kirill Tkhai 7246544786 sched, nohz: Change rq->nr_running to always use wrappers
Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.

Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-05-22 11:16:33 +02:00
Kirill Tkhai 46383648b3 sched: Revert commit 4c6c4e38c4 ("sched/core: Fix endless loop in pick_next_task()")
This reverts commit 4c6c4e38c4 ("sched/core: Fix endless loop in
pick_next_task()"), which is not necessary after ("sched/rt: Substract number
of tasks of throttled queues from rq->nr_running").

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Reviewed-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
[conflict resolution with stop task checking patch]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835307.18748.34.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:29 +02:00
Kirill Tkhai f4ebcbc0d7 sched/rt: Substract number of tasks of throttled queues from rq->nr_running
Now rq->rt becomes to be able to be in dequeued or enqueued state.
We add new member rt_rq->rt_queued, which is used to indicate this.
The member is used only for top queue rq->rt_rq.

The goal is to fit generic scheme which is used in deadline and
fair classes, i.e. throttled rt_rq's rt_nr_running is beeing
substracted from rq->nr_running.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394835300.18748.33.camel@HP-250-G1-Notebook-PC
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-18 12:07:28 +02:00
Mike Galbraith 60e69eed85 sched/numa: Fix task_numa_free() lockdep splat
Sasha reported that lockdep claims that the following commit:
made numa_group.lock interrupt unsafe:

  156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")

While I don't see how that could be, given the commit in question moved
task_numa_free() from one irq enabled region to another, the below does
make both gripes and lockups upon gripe with numa=fake=4 go away.

Reported-by: Sasha Levin <sasha.levin@oracle.com>
Fixes: 156654f491 ("sched/numa: Move task_numa_free() to __put_task_struct()")
Signed-off-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: torvalds@linux-foundation.org
Cc: mgorman@suse.com
Cc: akpm@linux-foundation.org
Cc: Dave Jones <davej@redhat.com>
Link: http://lkml.kernel.org/r/1396860915.5170.5.camel@marge.simpson.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-04-11 10:39:15 +02:00
Linus Torvalds a21e40877a Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Ingo Molnar:
 "The main purpose is to fix a full dynticks bug related to
  virtualization, where steal time accounting appears to be zero in
  /proc/stat even after a few seconds of competing guests running busy
  loops in a same host CPU.  It's not a regression though as it was
  there since the beginning.

  The other commits are preparatory work to fix the bug and various
  cleanups"

* 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  arch: Remove stub cputime.h headers
  sched: Remove needless round trip nsecs <-> tick conversion of steal time
  cputime: Fix jiffies based cputime assumption on steal accounting
  cputime: Bring cputime -> nsecs conversion
  cputime: Default implementation of nsecs -> cputime conversion
  cputime: Fix nsecs_to_cputime() return type cast
2014-04-01 10:16:10 -07:00
Frederic Weisbecker 300a9d887e sched: Remove needless round trip nsecs <-> tick conversion of steal time
When update_rq_clock_task() accounts the pending steal time for a task,
it converts the steal delta from nsecs to tick then from tick to nsecs.

There is no apparent good reason for doing that though because both
the task clock and the prev steal delta are u64 and store values
in nsecs.

So lets remove the needless conversion.

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2014-03-13 15:56:44 +01:00
Kirill Tkhai 4c6c4e38c4 sched/core: Fix endless loop in pick_next_task()
1) Single cpu machine case.

When rq has only RT tasks, but no one of them can be picked
because of throttling, we enter in endless loop.

pick_next_task_{dl,rt} return NULL.

In pick_next_task_fair() we permanently go to retry

	if (rq->nr_running != rq->cfs.h_nr_running)
		return RETRY_TASK;

(rq->nr_running is not being decremented when rt_rq becomes
throttled).

No chances to unthrottle any rt_rq or to wake fair here,
because of rq is locked permanently and interrupts are
disabled.

2) In case of SMP this can cause a hang too. Although we unlock
   rq in idle_balance(), interrupts are still disabled.

The solution is to check for available tasks in DL and RT
classes instead of checking for sum.

Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1394098321.19290.11.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 12:05:39 +01:00
Ingo Molnar a02ed5e3e0 Merge branch 'sched/urgent' into sched/core
Pick up fixes before queueing up new changes.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-03-11 11:34:27 +01:00
Peter Zijlstra 37e117c07b sched: Guarantee task priority in pick_next_task()
Michael spotted that the idle_balance() push down created a task
priority problem.

Previously, when we called idle_balance() before pick_next_task() it
wasn't a problem when -- because of the rq->lock droppage -- an rt/dl
task slipped in.

Similarly for pre_schedule(), rt pre-schedule could have a dl task
slip in.

But by pulling it into the pick_next_task() loop, we'll not try a
higher task priority again.

Cure this by creating a re-start condition in pick_next_task(); and
triggering this from pick_next_task_{rt,fair}().

It also fixes a live-lock where we get stuck in pick_next_task_fair()
due to idle_balance() seeing !0 nr_running but there not actually
being any fair tasks about.

Reported-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140224121218.GR15586@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:41:02 +01:00
Dietmar Eggemann f5f9739d7a sched: Put rq's sched_avg under CONFIG_FAIR_GROUP_SCHED
The struct sched_avg of struct rq is only used in case group
scheduling is enabled inside __update_tg_runnable_avg() to update
per-cpu representation of a task group.  I.e. that there is no need to
maintain the runnable avg of a rq in the !CONFIG_FAIR_GROUP_SCHED case.

This patch guards struct sched_avg of struct rq and
update_rq_runnable_avg() with CONFIG_FAIR_GROUP_SCHED.

There is an extra empty definition for update_rq_runnable_avg()
necessary for the !CONFIG_FAIR_GROUP_SCHED && CONFIG_SMP case.

The function print_cfs_group_stats() which prints out struct sched_avg
of struct rq is already guarded with CONFIG_FAIR_GROUP_SCHED.

Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/530DCDC5.1060406@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-27 12:41:00 +01:00
Li Zefan d82fd25356 sched/rt: Remove 'leaf_rt_rq_list' from 'struct rq'
This is a leftover from commit e23ee74777
("sched/rt: Simplify pull_rt_task() logic and remove .leaf_rt_rq_list").

Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/52F5CBF6.4060901@huawei.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-22 18:10:43 +01:00
Peter Zijlstra dc87734106 sched: Remove some #ifdeffery
Remove a few gratuitous #ifdefs in pick_next_task*().

Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-nnzddp5c4fijyzzxxrwlxghf@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:18 +01:00
Peter Zijlstra 3f1d2a3181 sched: Fix hotplug task migration
Dan Carpenter reported:

> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)

Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.

Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.

A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.

We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().

Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:18 +01:00
Peter Zijlstra 6e83125c6b sched/fair: Remove idle_balance() declaration in sched.h
Remove idle_balance() from the public life; also reduce some #ifdef
clutter by folding the pick_next_task_fair() idle path into
idle_balance().

Cc: mingo@kernel.org
Reported-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140211151148.GP27965@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:43:17 +01:00
Kirill Tkhai 995b9ea440 sched/deadline: Remove useless dl_nr_total
In deadline class we do not have group scheduling like in RT.

dl_nr_total is the same as dl_nr_running. So, one of them should
be removed.

Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/368631392675853@web20h.yandex.ru
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2014-02-21 21:27:10 +01:00
Peter Zijlstra 38033c37fa sched: Push down pre_schedule() and idle_balance()
This patch both merged idle_balance() and pre_schedule() and pushes
both of them into pick_next_task().

Conceptually pre_schedule() and idle_balance() are rather similar,
both are used to pull more work onto the current CPU.

We cannot however first move idle_balance() into pre_schedule_fair()
since there is no guarantee the last runnable task is a fair task, and
thus we would miss newidle balances.

Similarly, the dl and rt pre_schedule calls must be ran before
idle_balance() since their respective tasks have higher priority and
it would not do to delay their execution searching for less important
tasks first.

However, by noticing that pick_next_tasks() already traverses the
sched_class hierarchy in the right order, we can get the right
behaviour and do away with both calls.

We must however change the special case optimization to also require
that prev is of sched_class_fair, otherwise we can miss doing a dl or
rt pull where we needed one.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-11 09:58:10 +01:00
Peter Zijlstra 606dba2e28 sched: Push put_prev_task() into pick_next_task()
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:13 +01:00
Daniel Lezcano 3c4017c13f sched: Move rq->idle_stamp up to the core
idle_balance() modifies the rq->idle_stamp field, making this information
shared across core.c and fair.c.

As we know if the cpu is going to idle or not with the previous patch, let's
encapsulate the rq->idle_stamp information in core.c by moving it up to the
caller.

The idle_balance() function returns true in case a balancing occured and the
cpu won't be idle, false if no balance happened and the cpu is going idle.

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-3-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:07 +01:00
Daniel Lezcano b4f2ab4361 sched: Remove 'cpu' parameter from idle_balance()
The cpu parameter passed to idle_balance() is not needed as it could
be retrieved from 'struct rq.'

Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: alex.shi@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389949444-14821-1-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-10 16:17:01 +01:00
Dongsheng Yang 6b6350f155 sched: Expose some macros related to priority
Some macros in kernel/sched/sched.h about priority are
private to kernel/sched. But they are useful to other
parts of the core kernel.

This patch moves these macros from kernel/sched/sched.h to
include/linux/sched/prio.h so that they are available to
other subsystems.

Signed-off-by: Dongsheng Yang <yangds.fnst@cn.fujitsu.com>
Cc: raistlin@linux.it
Cc: juri.lelli@gmail.com
Cc: clark.williams@gmail.com
Cc: rostedt@goodmis.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/2b022810905b52d13238466807f4b2a691577180.1390859827.git.yangds.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-02-09 13:31:51 +01:00
Daniel Lezcano 7caff66f36 sched: Reduce trigger_load_balance() parameters
The cpu information is already stored in the struct rq, so no need to pass it
as parameter to the trigger_load_balance function.

Cc: linaro-kernel@lists.linaro.org
Cc: preeti.lkml@gmail.com
Cc: mingo@redhat.com
Cc: peterz@infradead.org
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1389008085-9069-2-git-send-email-daniel.lezcano@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:47:26 +01:00
Peter Zijlstra 1724813d9f sched/deadline: Remove the sysctl_sched_dl knobs
Remove the deadline specific sysctls for now. The problem with them is
that the interaction with the exisiting rt knobs is nearly impossible
to get right.

The current (as per before this patch) situation is that the rt and dl
bandwidth is completely separate and we enforce rt+dl < 100%. This is
undesirable because this means that the rt default of 95% leaves us
hardly any room, even though dl tasks are saver than rt tasks.

Another proposed solution was (a discarted patch) to have the dl
bandwidth be a fraction of the rt bandwidth. This is highly
confusing imo.

Furthermore neither proposal is consistent with the situation we
actually want; which is rt tasks ran from a dl server. In which case
the rt bandwidth is a direct subset of dl.

So whichever way we go, the introduction of dl controls at this point
is painful. Therefore remove them and instead share the rt budget.

This means that for now the rt knobs are used for dl admission control
and the dl runtime is accounted against the rt runtime. I realise that
this isn't entirely desirable either; but whatever we do we appear to
need to change the interface later, so better have a small interface
for now.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-zpyqbqds1r0vyxtxza1e7rdc@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:47:23 +01:00
Juri Lelli 6bfd6d72f5 sched/deadline: speed up SCHED_DEADLINE pushes with a push-heap
Data from tests confirmed that the original active load balancing
logic didn't scale neither in the number of CPU nor in the number of
tasks (as sched_rt does).

Here we provide a global data structure to keep track of deadlines
of the running tasks in the system. The structure is composed by
a bitmask showing the free CPUs and a max-heap, needed when the system
is heavily loaded.

The implementation and concurrent access scheme are kept simple by
design. However, our measurements show that we can compete with sched_rt
on large multi-CPUs machines [1].

Only the push path is addressed, the extension to use this structure
also for pull decisions is straightforward. However, we are currently
evaluating different (in order to decrease/avoid contention) data
structures to solve possibly both problems. We are also going to re-run
tests considering recent changes inside cpupri [2].

 [1] http://retis.sssup.it/~jlelli/papers/Ospert11Lelli.pdf
 [2] http://www.spinics.net/lists/linux-rt-users/msg06778.html

Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-14-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:46:46 +01:00
Dario Faggioli 332ac17ef5 sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks
In order of deadline scheduling to be effective and useful, it is
important that some method of having the allocation of the available
CPU bandwidth to tasks and task groups under control.
This is usually called "admission control" and if it is not performed
at all, no guarantee can be given on the actual scheduling of the
-deadline tasks.

Since when RT-throttling has been introduced each task group have a
bandwidth associated to itself, calculated as a certain amount of
runtime over a period. Moreover, to make it possible to manipulate
such bandwidth, readable/writable controls have been added to both
procfs (for system wide settings) and cgroupfs (for per-group
settings).

Therefore, the same interface is being used for controlling the
bandwidth distrubution to -deadline tasks and task groups, i.e.,
new controls but with similar names, equivalent meaning and with
the same usage paradigm are added.

However, more discussion is needed in order to figure out how
we want to manage SCHED_DEADLINE bandwidth at the task group level.
Therefore, this patch adds a less sophisticated, but actually
very sensible, mechanism to ensure that a certain utilization
cap is not overcome per each root_domain (the single rq for !SMP
configurations).

Another main difference between deadline bandwidth management and
RT-throttling is that -deadline tasks have bandwidth on their own
(while -rt ones doesn't!), and thus we don't need an higher level
throttling mechanism to enforce the desired bandwidth.

This patch, therefore:

 - adds system wide deadline bandwidth management by means of:
    * /proc/sys/kernel/sched_dl_runtime_us,
    * /proc/sys/kernel/sched_dl_period_us,
   that determine (i.e., runtime / period) the total bandwidth
   available on each CPU of each root_domain for -deadline tasks;

 - couples the RT and deadline bandwidth management, i.e., enforces
   that the sum of how much bandwidth is being devoted to -rt
   -deadline tasks to stay below 100%.

This means that, for a root_domain comprising M CPUs, -deadline tasks
can be created until the sum of their bandwidths stay below:

    M * (sched_dl_runtime_us / sched_dl_period_us)

It is also possible to disable this bandwidth management logic, and
be thus free of oversubscribing the system up to any arbitrary level.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-12-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:46:42 +01:00
Dario Faggioli 2d3d891d33 sched/deadline: Add SCHED_DEADLINE inheritance logic
Some method to deal with rt-mutexes and make sched_dl interact with
the current PI-coded is needed, raising all but trivial issues, that
needs (according to us) to be solved with some restructuring of
the pi-code (i.e., going toward a proxy execution-ish implementation).

This is under development, in the meanwhile, as a temporary solution,
what this commits does is:

 - ensure a pi-lock owner with waiters is never throttled down. Instead,
   when it runs out of runtime, it immediately gets replenished and it's
   deadline is postponed;

 - the scheduling parameters (relative deadline and default runtime)
   used for that replenishments --during the whole period it holds the
   pi-lock-- are the ones of the waiting task with earliest deadline.

Acting this way, we provide some kind of boosting to the lock-owner,
still by using the existing (actually, slightly modified by the previous
commit) pi-architecture.

We would stress the fact that this is only a surely needed, all but
clean solution to the problem. In the end it's only a way to re-start
discussion within the community. So, as always, comments, ideas, rants,
etc.. are welcome! :-)

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
[ Added !RT_MUTEXES build fix. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-11-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:42:56 +01:00
Juri Lelli 1baca4ce16 sched/deadline: Add SCHED_DEADLINE SMP-related data structures & logic
Introduces data structures relevant for implementing dynamic
migration of -deadline tasks and the logic for checking if
runqueues are overloaded with -deadline tasks and for choosing
where a task should migrate, when it is the case.

Adds also dynamic migrations to SCHED_DEADLINE, so that tasks can
be moved among CPUs when necessary. It is also possible to bind a
task to a (set of) CPU(s), thus restricting its capability of
migrating, or forbidding migrations at all.

The very same approach used in sched_rt is utilised:
 - -deadline tasks are kept into CPU-specific runqueues,
 - -deadline tasks are migrated among runqueues to achieve the
   following:
    * on an M-CPU system the M earliest deadline ready tasks
      are always running;
    * affinity/cpusets settings of all the -deadline tasks is
      always respected.

Therefore, this very special form of "load balancing" is done with
an active method, i.e., the scheduler pushes or pulls tasks between
runqueues when they are woken up and/or (de)scheduled.
IOW, every time a preemption occurs, the descheduled task might be sent
to some other CPU (depending on its deadline) to continue executing
(push). On the other hand, every time a CPU becomes idle, it might pull
the second earliest deadline ready task from some other CPU.

To enforce this, a pull operation is always attempted before taking any
scheduling decision (pre_schedule()), as well as a push one after each
scheduling decision (post_schedule()). In addition, when a task arrives
or wakes up, the best CPU where to resume it is selected taking into
account its affinity mask, the system topology, but also its deadline.
E.g., from the scheduling point of view, the best CPU where to wake
up (and also where to push) a task is the one which is running the task
with the latest deadline among the M executing ones.

In order to facilitate these decisions, per-runqueue "caching" of the
deadlines of the currently running and of the first ready task is used.
Queued but not running tasks are also parked in another rb-tree to
speed-up pushes.

Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-5-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:07 +01:00
Dario Faggioli aab03e05e8 sched/deadline: Add SCHED_DEADLINE structures & implementation
Introduces the data structures, constants and symbols needed for
SCHED_DEADLINE implementation.

Core data structure of SCHED_DEADLINE are defined, along with their
initializers. Hooks for checking if a task belong to the new policy
are also added where they are needed.

Adds a scheduling class, in sched/dl.c and a new policy called
SCHED_DEADLINE. It is an implementation of the Earliest Deadline
First (EDF) scheduling algorithm, augmented with a mechanism (called
Constant Bandwidth Server, CBS) that makes it possible to isolate
the behaviour of tasks between each other.

The typical -deadline task will be made up of a computation phase
(instance) which is activated on a periodic or sporadic fashion. The
expected (maximum) duration of such computation is called the task's
runtime; the time interval by which each instance need to be completed
is called the task's relative deadline. The task's absolute deadline
is dynamically calculated as the time instant a task (better, an
instance) activates plus the relative deadline.

The EDF algorithms selects the task with the smallest absolute
deadline as the one to be executed first, while the CBS ensures each
task to run for at most its runtime every (relative) deadline
length time interval, avoiding any interference between different
tasks (bandwidth isolation).
Thanks to this feature, also tasks that do not strictly comply with
the computational model sketched above can effectively use the new
policy.

To summarize, this patch:
 - introduces the data structures, constants and symbols needed;
 - implements the core logic of the scheduling algorithm in the new
   scheduling class file;
 - provides all the glue code between the new scheduling class and
   the core scheduler and refines the interactions between sched/dl
   and the other existing scheduling classes.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Fabio Checconi <fchecconi@gmail.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-4-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:06 +01:00
Dario Faggioli d50dde5a10 sched: Add new scheduler syscalls to support an extended scheduling parameters ABI
Add the syscalls needed for supporting scheduling algorithms
with extended scheduling parameters (e.g., SCHED_DEADLINE).

In general, it makes possible to specify a periodic/sporadic task,
that executes for a given amount of runtime at each instance, and is
scheduled according to the urgency of their own timing constraints,
i.e.:

 - a (maximum/typical) instance execution time,
 - a minimum interval between consecutive instances,
 - a time constraint by which each instance must be completed.

Thus, both the data structure that holds the scheduling parameters of
the tasks and the system calls dealing with it must be extended.
Unfortunately, modifying the existing struct sched_param would break
the ABI and result in potentially serious compatibility issues with
legacy binaries.

For these reasons, this patch:

 - defines the new struct sched_attr, containing all the fields
   that are necessary for specifying a task in the computational
   model described above;

 - defines and implements the new scheduling related syscalls that
   manipulate it, i.e., sched_setattr() and sched_getattr().

Syscalls are introduced for x86 (32 and 64 bits) and ARM only, as a
proof of concept and for developing and testing purposes. Making them
available on other architectures is straightforward.

Since no "user" for these new parameters is introduced in this patch,
the implementation of the new system calls is just identical to their
already existing counterpart. Future patches that implement scheduling
policies able to exploit the new data structure must also take care of
modifying the sched_*attr() calls accordingly with their own purposes.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
[ Rewrote to use sched_attr. ]
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
[ Removed sched_setscheduler2() for now. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-3-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2014-01-13 13:41:04 +01:00
Dario Faggioli e6c390f2df sched: Add sched_class->task_dead() method
Add a new function to the scheduling class interface. It is called
at the end of a context switch, if the prev task is in TASK_DEAD state.

It will be useful for the scheduling classes that want to be notified
when one of their tasks dies, e.g. to perform some cleanup actions,
such as SCHED_DEADLINE.

Signed-off-by: Dario Faggioli <raistlin@linux.it>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Cc: bruce.ashfield@windriver.com
Cc: claudio@evidence.eu.com
Cc: darren@dvhart.com
Cc: dhaval.giani@gmail.com
Cc: fchecconi@gmail.com
Cc: fweisbec@gmail.com
Cc: harald.gustafsson@ericsson.com
Cc: hgu1972@gmail.com
Cc: insop.song@gmail.com
Cc: jkacur@redhat.com
Cc: johan.eker@ericsson.com
Cc: liming.wang@windriver.com
Cc: luca.abeni@unitn.it
Cc: michael@amarulasolutions.com
Cc: nicola.manica@disi.unitn.it
Cc: oleg@redhat.com
Cc: paulmck@linux.vnet.ibm.com
Cc: p.faure@akatech.ch
Cc: rostedt@goodmis.org
Cc: tommaso.cucinotta@sssup.it
Cc: vincent.guittot@linaro.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1383831828-15501-2-git-send-email-juri.lelli@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-27 14:08:50 +01:00
Preeti U Murthy 37dc6b50ce sched: Remove unnecessary iteration over sched domains to update nr_busy_cpus
nr_busy_cpus parameter is used by nohz_kick_needed() to find out the
number of busy cpus in a sched domain which has SD_SHARE_PKG_RESOURCES
flag set.  Therefore instead of updating nr_busy_cpus at every level
of sched domain, since it is irrelevant, we can update this parameter
only at the parent domain of the sd which has this flag set. Introduce
a per-cpu parameter sd_busy which represents this parent domain.

In nohz_kick_needed() we directly query the nr_busy_cpus parameter
associated with the groups of sd_busy.

By associating sd_busy with the highest domain which has
SD_SHARE_PKG_RESOURCES flag set, we cover all lower level domains
which could have this flag set and trigger nohz_idle_balancing if any
of the levels have more than one busy cpu.

sd_busy is irrelevant for asymmetric load balancing. However sd_asym
has been introduced to represent the highest sched domain which has
SD_ASYM_PACKING flag set so that it can be queried directly when
required.

While we are at it, we might as well change the nohz_idle parameter to
be updated at the sd_busy domain level alone and not the base domain
level of a CPU.  This will unify the concept of busy cpus at just one
level of sched domain where it is currently used.

Signed-off-by: Preeti U Murthy<preeti@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: svaidy@linux.vnet.ibm.com
Cc: vincent.guittot@linaro.org
Cc: bitbucket@online.de
Cc: benh@kernel.crashing.org
Cc: anton@samba.org
Cc: Morten.Rasmussen@arm.com
Cc: pjt@google.com
Cc: peterz@infradead.org
Cc: mikey@neuling.org
Link: http://lkml.kernel.org/r/20131030031252.23426.4417.stgit@preeti.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-11-06 12:37:55 +01:00
Ben Segall 1ee14e6c8c sched: Fix race on toggling cfs_bandwidth_used
When we transition cfs_bandwidth_used to false, any currently
throttled groups will incorrectly return false from cfs_rq_throttled.
While tg_set_cfs_bandwidth will unthrottle them eventually, currently
running code (including at least dequeue_task_fair and
distribute_cfs_runtime) will cause errors.

Fix this by turning off cfs_bandwidth_used only after unthrottling all
cfs_rqs.

Tested: toggle bandwidth back and forth on a loaded cgroup. Caused
crashes in minutes without the patch, hasn't crashed with it.

Signed-off-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: pjt@google.com
Link: http://lkml.kernel.org/r/20131016181611.22647.80365.stgit@sword-of-the-dawn.mtv.corp.google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-29 12:02:19 +01:00
Peter Zijlstra 746023159c sched: Fix race in migrate_swap_stop()
There is a subtle race in migrate_swap, when task P, on CPU A, decides to swap
places with task T, on CPU B.

Task P:
  - call migrate_swap
Task T:
  - go to sleep, removing itself from the runqueue
Task P:
  - double lock the runqueues on CPU A & B
Task T:
  - get woken up, place itself on the runqueue of CPU C
Task P:
  - see that task T is on a runqueue, and pretend to remove it
    from the runqueue on CPU B

Now CPUs B & C both have corrupted scheduler data structures.

This patch fixes it, by holding the pi_lock for both of the tasks
involved in the migrate swap. This prevents task T from waking up,
and placing itself onto another runqueue, until after migrate_swap
has released all locks.

This means that, when migrate_swap checks, task T will be either
on the runqueue where it was originally seen, or not on any
runqueue at all. Migrate_swap deals correctly with of those cases.

Tested-by: Joe Mario <jmario@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: hannes@cmpxchg.org
Cc: aarcange@redhat.com
Cc: srikar@linux.vnet.ibm.com
Cc: tglx@linutronix.de
Cc: hpa@zytor.com
Link: http://lkml.kernel.org/r/20131010181722.GO13848@laptop.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-16 14:22:14 +02:00
Peter Zijlstra 0ec8aa00f2 sched/numa: Avoid migrating tasks that are placed on their preferred node
This patch classifies scheduler domains and runqueues into types depending
the number of tasks that are about their NUMA placement and the number
that are currently running on their preferred node. The types are

regular: There are tasks running that do not care about their NUMA
	placement.

remote: There are tasks running that care about their placement but are
	currently running on a node remote to their ideal placement

all: No distinction

To implement this the patch tracks the number of tasks that are optimally
NUMA placed (rq->nr_preferred_running) and the number of tasks running
that care about their placement (nr_numa_running). The load balancer
uses this information to avoid migrating idea placed NUMA tasks as long
as better options for load balancing exists. For example, it will not
consider balancing between a group whose tasks are all perfectly placed
and a group with remote tasks.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-56-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:48:10 +02:00
Rik van Riel 82727018b0 sched/numa: Call task_numa_free() from do_execve()
It is possible for a task in a numa group to call exec, and
have the new (unrelated) executable inherit the numa group
association from its former self.

This has the potential to break numa grouping, and is trivial
to fix.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-51-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:48:00 +02:00
Peter Zijlstra 8c8a743c50 sched/numa: Use {cpu, pid} to create task groups for shared faults
While parallel applications tend to align their data on the cache
boundary, they tend not to align on the page or THP boundary.
Consequently tasks that partition their data can still "false-share"
pages presenting a problem for optimal NUMA placement.

This patch uses NUMA hinting faults to chain tasks together into
numa_groups. As well as storing the NID a task was running on when
accessing a page a truncated representation of the faulting PID is
stored. If subsequent faults are from different PIDs it is reasonable
to assume that those two tasks share a page and are candidates for
being grouped together. Note that this patch makes no scheduling
decisions based on the grouping information.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-44-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:47 +02:00
Mel Gorman fb13c7ee0e sched/numa: Use a system-wide search to find swap/migration candidates
This patch implements a system-wide search for swap/migration candidates
based on total NUMA hinting faults. It has a balance limit, however it
doesn't properly consider total node balance.

In the old scheme a task selected a preferred node based on the highest
number of private faults recorded on the node. In this scheme, the preferred
node is based on the total number of faults. If the preferred node for a
task changes then task_numa_migrate will search the whole system looking
for tasks to swap with that would improve both the overall compute
balance and minimise the expected number of remote NUMA hinting faults.

Not there is no guarantee that the node the source task is placed
on by task_numa_migrate() has any relationship to the newly selected
task->numa_preferred_nid due to compute overloading.

Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Do not swap with tasks that cannot run on source cpu]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Fixed compiler warning on UP. ]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-40-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 14:47:25 +02:00
Peter Zijlstra ac66f54772 sched/numa: Introduce migrate_swap()
Use the new stop_two_cpus() to implement migrate_swap(), a function that
flips two tasks between their respective cpus.

I'm fairly sure there's a less crude way than employing the stop_two_cpus()
method, but everything I tried either got horribly fragile and/or complex. So
keep it simple for now.

The notable detail is how we 'migrate' tasks that aren't runnable
anymore. We'll make it appear like we migrated them before they went to
sleep. The sole difference is the previous cpu in the wakeup path, so we
override this.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Link: http://lkml.kernel.org/r/1381141781-10992-39-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:46 +02:00
Mel Gorman e6628d5b0a sched/numa: Reschedule task on preferred NUMA node once selected
A preferred node is selected based on the node the most NUMA hinting
faults was incurred on. There is no guarantee that the task is running
on that node at the time so this patch rescheules the task to run on
the most idle CPU of the selected node when selected. This avoids
waiting for the balancer to make a decision.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-25-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:28 +02:00
Mel Gorman f809ca9a55 sched/numa: Track NUMA hinting faults on per-node basis
This patch tracks what nodes numa hinting faults were incurred on.
This information is later used to schedule a task on the node storing
the pages most frequently faulted by the task.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-20-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-10-09 12:40:22 +02:00
Jason Low 9bd721c55c sched/balancing: Consider max cost of idle balance per sched domain
In this patch, we keep track of the max cost we spend doing idle load balancing
for each sched domain. If the avg time the CPU remains idle is less then the
time we have already spent on idle balancing + the max cost of idle balancing
in the sched domain, then we don't continue to attempt the balance. We also
keep a per rq variable, max_idle_balance_cost, which keeps track of the max
time spent on newidle load balances throughout all its domains so that we can
determine the avg_idle's max value.

By using the max, we avoid overrunning the average. This further reduces the
chance we attempt balancing when the CPU is not idle for longer than the cost
to balance.

Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1379096813-3032-3-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-20 12:03:44 +02:00
Peter Zijlstra 6263322c5e sched/fair: Rewrite group_imb trigger
Change the group_imb detection from the old 'load-spike' detector to
an actual imbalance detector. We set it from the lower domain balance
pass when it fails to create a balance in the presence of task
affinities.

The advantage is that this should no longer generate the false
positive group_imb conditions generated by transient load spikes from
the normal balancing/bulk-wakeup etc. behaviour.

While I haven't actually observed those they could happen.

I'm not entirely happy with this patch; it somehow feels a little
fragile.

Nor does it solve the biggest issue I have with the group_imb code; it
it still a fragile construct in that once we 'fixed' the imbalance
we'll not detect the group_imb again and could end up re-creating it.

That said, this patch does seem to preserve behaviour for the
described degenerate case. In particular on my 2*6*2 wsm-ep:

  taskset -c 3-11 bash -c 'for ((i=0;i<9;i++)) do while :; do :; done & done'

ends up with 9 spinners, each on their own CPU; whereas if you disable
the group_imb code that typically doesn't happen (you'll get one pair
sharing a CPU most of the time).

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-36fpbgl39dv4u51b6yz2ypz5@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-09-12 19:14:42 +02:00
Linus Torvalds 0d99b70873 Merge branches 'perf-urgent-for-linus' and 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf changes from Ingo Molnar:
 "As a first remark I'd like to point out that the obsolete '-f'
  (--force) option, which has not done anything for several releases,
  has been removed from 'perf record' and related utilities.  Everyone
  please update muscle memory accordingly! :-)

  Main changes on the perf kernel side:

   - Performance optimizations:
        . for trace events, by Steve Rostedt.
        . for time values, by Peter Zijlstra

   - New hardware support:
        . for Intel Silvermont (22nm Atom) CPUs, by Zheng Yan
        . for Intel SNB-EP uncore PMUs, by Zheng Yan

   - Enhanced hardware support:
        . for Intel uncore PMUs: add filter support for QPI boxes, by Zheng Yan

   - Core perf events code enhancements and fixes:
        . for full-nohz feature handling, by Frederic Weisbecker
        . for group events, by Jiri Olsa
        . for call chains, by Frederic Weisbecker
        . for event stream parsing, by Adrian Hunter

   - New ABI details:
        . Add attr->mmap2 attribute, by Stephane Eranian
        . Add PERF_EVENT_IOC_ID ioctl to return event ID, by Jiri Olsa
        . Export u64 time_zero on the mmap header page to allow TSC
          calculation, by Adrian Hunter
        . Add dummy software event, by Adrian Hunter.
        . Add a new PERF_SAMPLE_IDENTIFIER to make samples always
          parseable, by Adrian Hunter.
        . Make Power7 events available via sysfs, by Runzhen Wang.

   - Code cleanups and refactorings:
        . for nohz-full, by Frederic Weisbecker
        . for group events, by Jiri Olsa

   - Documentation updates:
        . for perf_event_type, by Peter Zijlstra

  Main changes on the perf tooling side (some of these tooling changes
  utilize the above kernel side changes):

   - Lots of 'perf trace' enhancements:

        . Make 'perf trace' command line arguments consistent with
          'perf record', by David Ahern.

        . Allow specifying syscalls a la strace, by Arnaldo Carvalho de Melo.

        . Add --verbose and -o/--output options, by Arnaldo Carvalho de Melo.

        . Support ! in -e expressions, to filter a list of syscalls,
          by Arnaldo Carvalho de Melo.

        . Arg formatting improvements to allow masking arguments in
          syscalls such as futex and open, where the some arguments are
          ignored and thus should not be printed depending on other args,
          by Arnaldo Carvalho de Melo.

        . Beautify futex open, openat, open_by_handle_at, lseek and futex
          syscalls, by Arnaldo Carvalho de Melo.

        . Add option to analyze events in a file versus live, so that
          one can do:

           [root@zoo ~]# perf record -a -e raw_syscalls:* sleep 1
           [ perf record: Woken up 0 times to write data ]
           [ perf record: Captured and wrote 25.150 MB perf.data (~1098836 samples) ]
           [root@zoo ~]# perf trace -i perf.data -e futex --duration 1
              17.799 ( 1.020 ms): 7127 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, ua
             113.344 (95.429 ms): 7127 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, uaddr2: 0x7fff3f6c6648, val3: 4294967
             133.778 ( 1.042 ms): 18004 futex(uaddr: 0x7fff3f6c6674, op: 393, val: 1, utime: 0x7fff3f6c6470, uaddr2: 0x7fff3f6c6648, val3: 429496
           [root@zoo ~]#

          By David Ahern.

        . Honor target pid / tid options when analyzing a file, by David Ahern.

        . Introduce better formatting of syscall arguments, including so
          far beautifiers for mmap, madvise, syscall return values,
          by Arnaldo Carvalho de Melo.

        . Handle HUGEPAGE defines in the mmap beautifier, by David Ahern.

   - 'perf report/top' enhancements:

        . Do annotation using /proc/kcore and /proc/kallsyms when
          available, removing the forced need for a vmlinux file kernel
          assembly annotation. This also improves this use case because
          vmlinux has just the initial kernel image, not what is actually
          in use after various code patchings by things like alternatives.
          By Adrian Hunter.

        . Add --ignore-callees=<regex> option to collapse undesired parts
          of call graphs, by Greg Price.

        . Simplify symbol filtering by doing it at machine class level,
          by Adrian Hunter.

        . Add support for callchains in the gtk UI, by Namhyung Kim.

        . Add --objdump option to 'perf top', by Sukadev Bhattiprolu.

   - 'perf kvm' enhancements:

        . Add option to print only events that exceed a specified time
          duration, by David Ahern.

        . Improve stack trace printing, by David Ahern.

        . Update documentation of the live command, by David Ahern

        . Add perf kvm stat live mode that combines aspects of 'perf kvm
          stat' record and report, by David Ahern.

        . Add option to analyze specific VM in perf kvm stat report, by
          David Ahern.

        . Do not require /lib/modules/* on a guest, by Jason Wessel.

   - 'perf script' enhancements:

        . Fix symbol offset computation for some dsos, by David Ahern.

        . Fix named threads support, by David Ahern.

        . Don't install scripting files files when perl/python support
          is disabled, by Arnaldo Carvalho de Melo.

   - 'perf test' enhancements:

        . Add various improvements and fixes to the "vmlinux matches
          kallsyms" 'perf test' entry, related to the /proc/kcore
          annotation feature. By Adrian Hunter.

        . Add sample parsing test, by Adrian Hunter.

        . Add test for reading object code, by Adrian Hunter.

        . Add attr record group sampling test, by Jiri Olsa.

        . Misc testing infrastructure improvements and other details,
          by Jiri Olsa.

   - 'perf list' enhancements:

        . Skip unsupported hardware events, by Namhyung Kim.

        . List pmu events, by Andi Kleen.

   - 'perf diff' enhancements:

        . Add support for more than two files comparison, by Jiri Olsa.

   - 'perf sched' enhancements:

        . Various improvements, including removing reliance on some
          scheduler tracepoints that provide the same information as the
          PERF_RECORD_{FORK,EXIT} events. By David Ahern.

        . Remove odd build stall by moving a large struct initialization
          from a local variable to a global one, by Namhyung Kim.

   - 'perf stat' enhancements:

        . Add --initial-delay option to skip measuring for a defined
          startup phase, by Andi Kleen.

   - Generic perf tooling infrastructure/plumbing changes:

        . Tidy up sample parsing validation, by Adrian Hunter.

        . Fix up jobserver setup in libtraceevent Makefile.
          by Arnaldo Carvalho de Melo.

        . Debug improvements, by Adrian Hunter.

        . Fix correlation of samples coming after PERF_RECORD_EXIT event,
          by David Ahern.

        . Improve robustness of the topology parsing code,
          by Stephane Eranian.

        . Add group leader sampling, that allows just one event in a group
          to sample while the other events have just its values read,
          by Jiri Olsa.

        . Add support for a new modifier "D", which requests that the
          event, or group of events, be pinned to the PMU.
          By Michael Ellerman.

        . Support callchain sorting based on addresses, by Andi Kleen

        . Prep work for multi perf data file storage, by Jiri Olsa.

        . libtraceevent cleanups, by Namhyung Kim.

  And lots and lots of other fixes and code reorganizations that did not
  make it into the list, see the shortlog, diffstat and the Git log for
  details!"

[ Also merge a leftover from the 3.11 cycle ]

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf: Prevent race in unthrottling code

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (237 commits)
  perf trace: Tell arg formatters the arg index
  perf trace: Add beautifier for open's flags arg
  perf trace: Add beautifier for lseek's whence arg
  perf tools: Fix symbol offset computation for some dsos
  perf list: Skip unsupported events
  perf tests: Add 'keep tracking' test
  perf tools: Add support for PERF_COUNT_SW_DUMMY
  perf: Add a dummy software event to keep tracking
  perf trace: Add beautifier for futex 'operation' parm
  perf trace: Allow syscall arg formatters to mask args
  perf: Convert kmalloc_node(...GFP_ZERO...) to kzalloc_node()
  perf: Export struct perf_branch_entry to userspace
  perf: Add attr->mmap2 attribute to an event
  perf/x86: Add Silvermont (22nm Atom) support
  perf/x86: use INTEL_UEVENT_EXTRA_REG to define MSR_OFFCORE_RSP_X
  perf trace: Handle missing HUGEPAGE defines
  perf trace: Honor target pid / tid options when analyzing a file
  perf trace: Add option to analyze events in a file versus live
  perf evlist: Add tracepoint lookup by name
  perf tests: Add a sample parsing test
  ...
2013-09-04 08:25:35 -07:00
Tejun Heo 8af01f56a0 cgroup: s/cgroup_subsys_state/cgroup_css/ s/task_subsys_state/task_css/
The names of the two struct cgroup_subsys_state accessors -
cgroup_subsys_state() and task_subsys_state() - are somewhat awkward.
The former clashes with the type name and the latter doesn't even
indicate it's somehow related to cgroup.

We're about to revamp large portion of cgroup API, so, let's rename
them so that they're less awkward.  Most per-controller usages of the
accessors are localized in accessor wrappers and given the amount of
scheduled changes, this isn't gonna add any noticeable headache.

Rename cgroup_subsys_state() to cgroup_css() and task_subsys_state()
to task_css().  This patch is pure rename.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
2013-08-08 20:11:22 -04:00
Peter Zijlstra 7d9ffa8961 sched: Micro-optimize the smart wake-affine logic
Smart wake-affine is using node-size as the factor currently, but the overhead
of the mask operation is high.

Thus, this patch introduce the 'sd_llc_size' percpu variable, which will record
the highest cache-share domain size, and make it to be the new factor, in order
to reduce the overhead and make it more reasonable.

Tested-by: Davidlohr Bueso <davidlohr.bueso@hp.com>
Tested-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Michael Wang <wangyun@linux.vnet.ibm.com>
Cc: Mike Galbraith <efault@gmx.de>
Link: http://lkml.kernel.org/r/51D5008E.6030102@linux.vnet.ibm.com
[ Tidied up the changelog. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-07-23 12:22:06 +02:00
Vladimir Davydov 685207963b sched: Move h_load calculation to task_h_load()
The bad thing about update_h_load(), which computes hierarchical load
factor for task groups, is that it is called for each task group in the
system before every load balancer run, and since rebalance can be
triggered very often, this function can eat really a lot of cpu time if
there are many cpu cgroups in the system.

Although the situation was improved significantly by commit a35b646
('sched, cgroup: Reduce rq->lock hold times for large cgroup
hierarchies'), the problem still can arise under some kinds of loads,
e.g. when cpus are switching from idle to busy and back very frequently.

For instance, when I start 1000 of processes that wake up every
millisecond on my 8 cpus host, 'top' and 'perf top' show:

Cpu(s): 17.8%us, 24.3%sy,  0.0%ni, 57.9%id,  0.0%wa,  0.0%hi,  0.0%si
Events: 243K cycles
  7.57%  [kernel]               [k] __schedule
  7.08%  [kernel]               [k] timerqueue_add
  6.13%  libc-2.12.so           [.] usleep

Then if I create 10000 *idle* cpu cgroups (no processes in them), cpu
usage increases significantly although the 'wakers' are still executing
in the root cpu cgroup:

Cpu(s): 19.1%us, 48.7%sy,  0.0%ni, 31.6%id,  0.0%wa,  0.0%hi,  0.7%si
Events: 230K cycles
 24.56%  [kernel]            [k] tg_load_down
  5.76%  [kernel]            [k] __schedule

This happens because this particular kind of load triggers 'new idle'
rebalance very frequently, which requires calling update_h_load(),
which, in turn, calls tg_load_down() for every *idle* cpu cgroup even
though it is absolutely useless, because idle cpu cgroups have no tasks
to pull.

This patch tries to improve the situation by making h_load calculation
proceed only when h_load is really necessary. To achieve this, it
substitutes update_h_load() with update_cfs_rq_h_load(), which computes
h_load only for a given cfs_rq and all its ascendants, and makes the
load balancer call this function whenever it considers if a task should
be pulled, i.e. it moves h_load calculations directly to task_h_load().
For h_load of the same cfs_rq not to be updated multiple times (in case
several tasks in the same cgroup are considered during the same balance
run), the patch keeps the time of the last h_load update for each cfs_rq
and breaks calculation when it finds h_load to be uptodate.

The benefit of it is that h_load is computed only for those cfs_rq's,
which really need it, in particular all idle task groups are skipped.
Although this, in fact, moves h_load calculation under rq lock, it
should not affect latency much, because the amount of work done under rq
lock while trying to pull tasks is limited by sched_nr_migrate.

After the patch applied with the setup described above (1000 wakers in
the root cgroup and 10000 idle cgroups), I get:

Cpu(s): 16.9%us, 24.8%sy,  0.0%ni, 58.4%id,  0.0%wa,  0.0%hi,  0.0%si
Events: 242K cycles
  7.57%  [kernel]                  [k] __schedule
  6.70%  [kernel]                  [k] timerqueue_add
  5.93%  libc-2.12.so              [.] usleep

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1373896159-1278-1-git-send-email-vdavydov@parallels.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-07-23 12:18:41 +02:00
Alex Shi a9cef46a10 sched/tg: Remove tg.load_weight
Since no one use it.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-13-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:43 +02:00
Alex Shi 2509940fd7 sched/cfs_rq: Change atomic64_t removed_load to atomic_long_t
Similar to runnable_load_avg, blocked_load_avg variable, long type is
enough for removed_load in 64 bit or 32 bit machine.

Then we avoid the expensive atomic64 operations on 32 bit machine.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-12-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:41 +02:00
Alex Shi bf5b986ed4 sched/tg: Use 'unsigned long' for load variable in task group
Since tg->load_avg is smaller than tg->load_weight, we don't need a
atomic64_t variable for load_avg in 32 bit machine.
The same reason for cfs_rq->tg_load_contrib.

The atomic_long_t/unsigned long variable type are more efficient and
convenience for them.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-11-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:40 +02:00
Alex Shi 72a4cf20cb sched: Change cfs_rq load avg to unsigned long
Since the 'u64 runnable_load_avg, blocked_load_avg' in cfs_rq struct are
smaller than 'unsigned long' cfs_rq->load.weight. We don't need u64
vaiables to describe them. unsigned long is more efficient and convenience.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Paul Turner <pjt@google.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-10-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:38 +02:00
Alex Shi a75cdaa915 sched: Set an initial value of runnable avg for new forked task
We need to initialize the se.avg.{decay_count, load_avg_contrib} for a
new forked task. Otherwise random values of above variables cause a
mess when a new task is enqueued:

    enqueue_task_fair
        enqueue_entity
            enqueue_entity_load_avg

and make fork balancing imbalance due to incorrect load_avg_contrib.

Further more, Morten Rasmussen notice some tasks were not launched at
once after created. So Paul and Peter suggest giving a start value for
new task runnable avg time same as sched_slice().

PeterZ said:

> So the 'problem' is that our running avg is a 'floating' average; ie. it
> decays with time. Now we have to guess about the future of our newly
> spawned task -- something that is nigh impossible seeing these CPU
> vendors keep refusing to implement the crystal ball instruction.
>
> So there's two asymptotic cases we want to deal well with; 1) the case
> where the newly spawned program will be 'nearly' idle for its lifetime;
> and 2) the case where its cpu-bound.
>
> Since we have to guess, we'll go for worst case and assume its
> cpu-bound; now we don't want to make the avg so heavy adjusting to the
> near-idle case takes forever. We want to be able to quickly adjust and
> lower our running avg.
>
> Now we also don't want to make our avg too light, such that it gets
> decremented just for the new task not having had a chance to run yet --
> even if when it would run, it would be more cpu-bound than not.
>
> So what we do is we make the initial avg of the same duration as that we
> guess it takes to run each task on the system at least once -- aka
> sched_slice().
>
> Of course we can defeat this with wakeup/fork bombs, but in the 'normal'
> case it should be good enough.

Paul also contributed most of the code comments in this commit.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Reviewed-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Paul Turner <pjt@google.com>
[peterz; added explanation of sched_slice() usage]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-4-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:30 +02:00
Alex Shi fa6bddeb14 sched: Move a few runnable tg variables into CONFIG_SMP
The following 2 variables are only used under CONFIG_SMP, so its
better to move their definiation into CONFIG_SMP too.

        atomic64_t load_avg;
        atomic_t runnable_avg;

Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1371694737-29336-3-git-send-email-alex.shi@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:29 +02:00
Alex Shi 141965c749 Revert "sched: Introduce temporary FAIR_GROUP_SCHED dependency for load-tracking"
Remove CONFIG_FAIR_GROUP_SCHED that covers the runnable info, then
we can use runnable load variables.

Also remove 2 CONFIG_FAIR_GROUP_SCHED setting which is not in reverted
patch(introduced in 9ee474f), but also need to revert.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/51CA76A3.3050207@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-27 10:07:22 +02:00
Kirill Tkhai e23ee74777 sched/rt: Simplify pull_rt_task() logic and remove .leaf_rt_rq_list
[ Peter, this is based off of some of my work, I ran it though a few
  tests and it passed. I also reviewed it, and added my SOB as I am
  somewhat a co-author to it. ]

Based on the patch by Steven Rostedt from previous year:

https://lkml.org/lkml/2012/4/18/517

1)Simplify pull_rt_task() logic: search in pushable tasks of dest runqueue.
The only pullable tasks are the tasks which are pushable in their local rq,
and no others.

2)Remove .leaf_rt_rq_list member of struct rt_rq and functions connected
with it: nobody uses it since now.

Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/287571370557898@web7d.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-06-19 12:58:40 +02:00
Frederic Weisbecker 78becc2709 sched: Use an accessor to read the rq clock
Read the runqueue clock through an accessor. This
prepares for adding a debugging infrastructure to
detect missing or redundant calls to update_rq_clock()
between a scheduler's entry and exit point.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Turner <pjt@google.com>
Cc: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365724262-20142-6-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28 09:40:27 +02:00
Neil Zhang c5405a495e sched: Remove redundant update_runtime notifier
migration_call() will do all the things that update_runtime() does.
So let's remove it.

Furthermore, there is potential risk that the current code will catch
BUG_ON at line 689 of rt.c when do cpu hotplug while there are realtime
threads running because of enabling runtime twice while the rt_runtime
may already changed.

Signed-off-by: Neil Zhang <zhangwm@marvell.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1365685499-26515-1-git-send-email-zhangwm@marvell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-28 09:40:22 +02:00
Paul Gortmaker 8527632dc9 sched: Move update_load_*() methods from sched.h to fair.c
These inlines are only used by kernel/sched/fair.c so they do
not need to be present in the main kernel/sched/sched.h file.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-3-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-07 13:14:51 +02:00
Paul Gortmaker 45ceebf776 sched: Factor out load calculation code from sched/core.c --> sched/proc.c
This large chunk of load calculation code can be easily divorced
from the main core.c scheduler file, with only a couple
prototypes and externs added to a kernel/sched header.

Some recent commits expanded the code and the documentation of
it, making it large enough to warrant separation.  For example,
see:

  556061b, "sched/nohz: Fix rq->cpu_load[] calculations"
  5aaa0b7, "sched/nohz: Fix rq->cpu_load calculations some more"
  5167e8d, "sched/nohz: Rewrite and fix load-avg computation -- again"

More importantly, it helps reduce the size of the main
sched/core.c by yet another significant amount (~600 lines).

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/1366398650-31599-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-05-07 13:14:50 +02:00
Frederic Weisbecker 265f22a975 sched: Keep at least 1 tick per second for active dynticks tasks
The scheduler doesn't yet fully support environments
with a single task running without a periodic tick.

In order to ensure we still maintain the duties of scheduler_tick(),
keep at least 1 tick per second.

This makes sure that we keep the progression of various scheduler
accounting and background maintainance even with a very low granularity.
Examples include cpu load, sched average, CFS entity vruntime,
avenrun and events such as load balancing, amongst other details
handled in sched_class::task_tick().

This limitation will be removed in the future once we get
these individual items to work in full dynticks CPUs.

Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
2013-05-04 08:32:02 +02:00
Frederic Weisbecker c032862fba Merge commit '8700c95adb03' into timers/nohz
The full dynticks tree needs the latest RCU and sched
upstream updates in order to fix some dependencies.

Merge a common upstream merge point that has these
updates.

Conflicts:
	include/linux/perf_event.h
	kernel/rcutree.h
	kernel/rcutree_plugin.h

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
2013-05-02 17:54:19 +02:00
Vincent Guittot 25f55d9d01 sched: Fix init NOHZ_IDLE flag
On my SMP platform which is made of 5 cores in 2 clusters, I
have the nr_busy_cpu field of sched_group_power struct that is
not null when the platform is fully idle - which makes the
scheduler unhappy.

The root cause is:

During the boot sequence, some CPUs reach the idle loop and set
their NOHZ_IDLE flag while waiting for others CPUs to boot. But
the nr_busy_cpus field is initialized later with the assumption
that all CPUs are in the busy state whereas some CPUs have
already set their NOHZ_IDLE flag.

More generally, the NOHZ_IDLE flag must be initialized when new
sched_domains are created in order to ensure that NOHZ_IDLE and
nr_busy_cpus are aligned.

This condition can be ensured by adding a synchronize_rcu()
between the destruction of old sched_domains and the creation of
new ones so the NOHZ_IDLE flag will not be updated with old
sched_domain once it has been initialized. But this solution
introduces a additionnal latency in the rebuild sequence that is
called during cpu hotplug.

As suggested by Frederic Weisbecker, another solution is to have
the same rcu lifecycle for both NOHZ_IDLE and sched_domain
struct. A new nohz_idle field is added to sched_domain so both
status and sched_domain will share the same RCU lifecycle and
will be always synchronized. In addition, there is no more need
to protect nohz_idle against concurrent access as it is only
modified by 2 exclusive functions called by local cpu.

This solution has been prefered to the creation of a new struct
with an extra pointer indirection for sched_domain.

The synchronization is done at the cost of :

 - An additional indirection and a rcu_dereference for accessing nohz_idle.
 - We use only the nohz_idle field of the top sched_domain.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: linaro-kernel@lists.linaro.org
Cc: peterz@infradead.org
Cc: fweisbec@gmail.com
Cc: pjt@google.com
Cc: rostedt@goodmis.org
Cc: efault@gmx.de
Link: http://lkml.kernel.org/r/1366729142-14662-1-git-send-email-vincent.guittot@linaro.org
[ Fixed !NO_HZ build bug. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-26 12:13:44 +02:00
Frederic Weisbecker 9f3660c2c1 sched: Kick full dynticks CPU that have more than one task enqueued.
Kick the tick on full dynticks CPUs when they get more
than one task running on their queue. This makes sure that
local fairness is maintained by the tick on the destination.

This is done regardless of these tasks' class. We should
be able to be more clever in the future depending on these. eg:
a CPU that runs a SCHED_FIFO task doesn't need to maintain
fairness against local pending tasks of the fair class.

But keep things simple for now.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-22 20:06:54 +02:00
Vincent Guittot 642dbc39ab sched: Fix wrong rq's runnable_avg update with rt tasks
The current update of the rq's load can be erroneous when RT
tasks are involved.

The update of the load of a rq that becomes idle, is done only
if the avg_idle is less than sysctl_sched_migration_cost. If RT
tasks and short idle duration alternate, the runnable_avg will
not be updated correctly and the time will be accounted as idle
time when a CFS task wakes up.

A new idle_enter function is called when the next task is the
idle function so the elapsed time will be accounted as run time
in the load of the rq, whatever the average idle time is. The
function update_rq_runnable_avg is removed from idle_balance.

When a RT task is scheduled on an idle CPU, the update of the
rq's load is not done when the rq exit idle state because CFS's
functions are not called. Then, the idle_balance, which is
called just before entering the idle function, updates the rq's
load and makes the assumption that the elapsed time since the
last update, was only running time.

As a consequence, the rq's load of a CPU that only runs a
periodic RT task, is close to LOAD_AVG_MAX whatever the running
duration of the RT task is.

A new idle_exit function is called when the prev task is the
idle function so the elapsed time will be accounted as idle time
in the rq's load.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: linaro-kernel@lists.linaro.org
Cc: peterz@infradead.org
Cc: pjt@google.com
Cc: fweisbec@gmail.com
Cc: efault@gmx.de
Link: http://lkml.kernel.org/r/1366302867-5055-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-21 11:22:52 +02:00
Li Zefan 60fed7891d sched: Split cpuacct code out of sched.h
Add cpuacct.h and let sched.h include it.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5155367B.2060506@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-04-10 13:54:16 +02:00
Frederic Weisbecker 3451d0243c nohz: Rename CONFIG_NO_HZ to CONFIG_NO_HZ_COMMON
We are planning to convert the dynticks Kconfig options layout
into a choice menu. The user must be able to easily pick
any of the following implementations: constant periodic tick,
idle dynticks, full dynticks.

As this implies a mutual exclusion, the two dynticks implementions
need to converge on the selection of a common Kconfig option in order
to ease the sharing of a common infrastructure.

It would thus seem pretty natural to reuse CONFIG_NO_HZ to
that end. It already implements all the idle dynticks code
and the full dynticks depends on all that code for now.
So ideally the choice menu would propose CONFIG_NO_HZ_IDLE and
CONFIG_NO_HZ_EXTENDED then both would select CONFIG_NO_HZ.

On the other hand we want to stay backward compatible: if
CONFIG_NO_HZ is set in an older config file, we want to
enable CONFIG_NO_HZ_IDLE by default.

But we can't afford both at the same time or we run into
a circular dependency:

1) CONFIG_NO_HZ_IDLE and CONFIG_NO_HZ_EXTENDED both select
   CONFIG_NO_HZ
2) If CONFIG_NO_HZ is set, we default to CONFIG_NO_HZ_IDLE

We might be able to support that from Kconfig/Kbuild but it
may not be wise to introduce such a confusing behaviour.

So to solve this, create a new CONFIG_NO_HZ_COMMON option
which gathers the common code between idle and full dynticks
(that common code for now is simply the idle dynticks code)
and select it from their referring Kconfig.

Then we'll later create CONFIG_NO_HZ_IDLE and map CONFIG_NO_HZ
to it for backward compatibility.

Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Geoff Levand <geoff@infradead.org>
Cc: Gilad Ben Yossef <gilad@benyossef.com>
Cc: Hakan Akkan <hakanakkan@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Kevin Hilman <khilman@linaro.org>
Cc: Li Zhong <zhong@linux.vnet.ibm.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
2013-04-03 13:56:03 +02:00
Li Zefan b719203b84 sched: Fix update_group_power() prototype placement to fix build warning when !CONFIG_SMP
All warnings:

   In file included from kernel/sched/core.c:85:0:
   kernel/sched/sched.h:1036:39: warning: 'struct sched_domain' declared inside parameter list
   kernel/sched/sched.h:1036:39: warning: its scope is only this definition or declaration, which is probably not what you want

It's because struct sched_domain is defined inside #if CONFIG_SMP,
while update_group_power() is declared unconditionally.

Fix this warning by declaring update_group_power() only if
CONFIG_SMP=n.

Build tested with CONFIG_SMP enabled and then disabled.

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5137F4BA.2060101@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-11 09:07:24 +01:00
Li Zefan 27b4b9319a sched: Remove double declaration of root_task_group
It's already declared in include/linux/sched.h

Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A7D8.7000107@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-06 11:24:35 +01:00
Li Zefan 25cc7da7e6 sched: Move group scheduling functions out of include/linux/sched.h
- Make sched_group_{set_,}runtime(), sched_group_{set_,}period()
and sched_rt_can_attach() static.

- Move sched_{create,destroy,online,offline}_group() to
kernel/sched/sched.h.

- Remove declaration of sched_group_shares().

Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A7C5.3000708@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-06 11:24:34 +01:00
Li Zefan c82ba9fa75 sched: Move struct sched_class to kernel/sched/sched.h
It's used internally only.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A79F.8090502@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-06 11:24:33 +01:00
Li Zefan b13095f07f sched: Move wake flags to kernel/sched/sched.h
They are used internally only.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A78E.7040609@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-06 11:24:32 +01:00
Li Zefan 5e6521eaa1 sched: Move struct sched_group to kernel/sched/sched.h
Move struct sched_group_power and sched_group and related inline
functions to kernel/sched/sched.h, as they are used internally
only.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A77F.2010705@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-06 11:24:31 +01:00
Li Zefan cc1f4b1f3f sched: Move SCHED_LOAD_SHIFT macros to kernel/sched/sched.h
They are used internally only.

Signed-off-by: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/5135A771.4070104@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-03-06 11:24:30 +01:00
Clark Williams 8bd75c77b7 sched/rt: Move rt specific bits into new header file
Move rt scheduler definitions out of include/linux/sched.h into
new file include/linux/sched/rt.h

Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-02-07 20:51:08 +01:00
Clark Williams cf4aebc292 sched: Move sched.h sysctl bits into separate header
Move the sysctl-related bits from include/linux/sched.h into
a new file: include/linux/sched/sysctl.h. Then update source
files requiring access to those bits by including the new
header file.

Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094659.06dced96@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2013-02-07 20:50:54 +01:00
Linus Torvalds 3d59eebc5e Automatic NUMA Balancing V11
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.18 (GNU/Linux)
 
 iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
 Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
 vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
 xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
 DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
 72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
 YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
 3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
 hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
 CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
 BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
 Ka0JKgnWvsa6ez6FSzKI
 =ivQa
 -----END PGP SIGNATURE-----

Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma

Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
 "There are three implementations for NUMA balancing, this tree
  (balancenuma), numacore which has been developed in tip/master and
  autonuma which is in aa.git.

  In almost all respects balancenuma is the dumbest of the three because
  its main impact is on the VM side with no attempt to be smart about
  scheduling.  In the interest of getting the ball rolling, it would be
  desirable to see this much merged for 3.8 with the view to building
  scheduler smarts on top and adapting the VM where required for 3.9.

  The most recent set of comparisons available from different people are

    mel:    https://lkml.org/lkml/2012/12/9/108
    mingo:  https://lkml.org/lkml/2012/12/7/331
    tglx:   https://lkml.org/lkml/2012/12/10/437
    srikar: https://lkml.org/lkml/2012/12/10/397

  The results are a mixed bag.  In my own tests, balancenuma does
  reasonably well.  It's dumb as rocks and does not regress against
  mainline.  On the other hand, Ingo's tests shows that balancenuma is
  incapable of converging for this workloads driven by perf which is bad
  but is potentially explained by the lack of scheduler smarts.  Thomas'
  results show balancenuma improves on mainline but falls far short of
  numacore or autonuma.  Srikar's results indicate we all suffer on a
  large machine with imbalanced node sizes.

  My own testing showed that recent numacore results have improved
  dramatically, particularly in the last week but not universally.
  We've butted heads heavily on system CPU usage and high levels of
  migration even when it shows that overall performance is better.
  There are also cases where it regresses.  Of interest is that for
  specjbb in some configurations it will regress for lower numbers of
  warehouses and show gains for higher numbers which is not reported by
  the tool by default and sometimes missed in treports.  Recently I
  reported for numacore that the JVM was crashing with
  NullPointerExceptions but currently it's unclear what the source of
  this problem is.  Initially I thought it was in how numacore batch
  handles PTEs but I'm no longer think this is the case.  It's possible
  numacore is just able to trigger it due to higher rates of migration.

  These reports were quite late in the cycle so I/we would like to start
  with this tree as it contains much of the code we can agree on and has
  not changed significantly over the last 2-3 weeks."

* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
  mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
  mm/rmap: Convert the struct anon_vma::mutex to an rwsem
  mm: migrate: Account a transhuge page properly when rate limiting
  mm: numa: Account for failed allocations and isolations as migration failures
  mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
  mm: numa: Add THP migration for the NUMA working set scanning fault case.
  mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
  mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
  mm: sched: numa: Control enabling and disabling of NUMA balancing
  mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
  mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
  mm: numa: migrate: Set last_nid on newly allocated page
  mm: numa: split_huge_page: Transfer last_nid on tail page
  mm: numa: Introduce last_nid to the page frame
  sched: numa: Slowly increase the scanning period as NUMA faults are handled
  mm: numa: Rate limit setting of pte_numa if node is saturated
  mm: numa: Rate limit the amount of memory that is migrated between nodes
  mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
  mm: numa: Migrate pages handled during a pmd_numa hinting fault
  mm: numa: Migrate on reference policy
  ...
2012-12-16 15:18:08 -08:00
Mel Gorman 3105b86a9f mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
The "mm: sched: numa: Control enabling and disabling of NUMA balancing"
depends on scheduling debug being enabled but it's perfectly legimate to
disable automatic NUMA balancing even without this option. This should
take care of it.

Signed-off-by: Mel Gorman <mgorman@suse.de>
2012-12-11 14:42:56 +00:00
Peter Zijlstra cbee9f88ec mm: numa: Add fault driven placement and migration
NOTE: This patch is based on "sched, numa, mm: Add fault driven
	placement and migration policy" but as it throws away all the policy
	to just leave a basic foundation I had to drop the signed-offs-by.

This patch creates a bare-bones method for setting PTEs pte_numa in the
context of the scheduler that when faulted later will be faulted onto the
node the CPU is running on.  In itself this does nothing useful but any
placement policy will fundamentally depend on receiving hints on placement
from fault context and doing something intelligent about it.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:42:45 +00:00
Paul Turner f4e26b120b sched: Introduce temporary FAIR_GROUP_SCHED dependency for load-tracking
While per-entity load-tracking is generally useful, beyond computing shares
distribution, e.g. runnable based load-balance (in progress), governors,
power-management, etc.

These facilities are not yet consumers of this data.  This may be trivially
reverted when the information is required; but avoid paying the overhead for
calculations we will not use until then.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.422162369@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:31 +02:00
Paul Turner 82958366cf sched: Replace update_shares weight distribution with per-entity computation
Now that the machinery in place is in place to compute contributed load in a
bottom up fashion; replace the shares distribution code within update_shares()
accordingly.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141507.061208672@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:28 +02:00
Paul Turner f1b17280ef sched: Maintain runnable averages across throttled periods
With bandwidth control tracked entities may cease execution according to user
specified bandwidth limits.  Charging this time as either throttled or blocked
however, is incorrect and would falsely skew in either direction.

What we actually want is for any throttled periods to be "invisible" to
load-tracking as they are removed from the system for that interval and
contribute normally otherwise.

Do this by moderating the progression of time to omit any periods in which the
entity belonged to a throttled hierarchy.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.998912151@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:27 +02:00
Paul Turner bb17f65571 sched: Normalize tg load contributions against runnable time
Entities of equal weight should receive equitable distribution of cpu time.
This is challenging in the case of a task_group's shares as execution may be
occurring on multiple cpus simultaneously.

To handle this we divide up the shares into weights proportionate with the load
on each cfs_rq.  This does not however, account for the fact that the sum of
the parts may be less than one cpu and so we need to normalize:
  load(tg) = min(runnable_avg(tg), 1) * tg->shares
Where runnable_avg is the aggregate time in which the task_group had runnable
children.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.930124292@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:26 +02:00
Paul Turner c566e8e9e4 sched: Aggregate total task_group load
Maintain a global running sum of the average load seen on each cfs_rq belonging
to each task group so that it may be used in calculating an appropriate
shares:weight distribution.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.792901086@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:24 +02:00
Paul Turner aff3e49884 sched: Account for blocked load waking back up
When a running entity blocks we migrate its tracked load to
cfs_rq->blocked_runnable_avg.  In the sleep case this occurs while holding
rq->lock and so is a natural transition.  Wake-ups however, are potentially
asynchronous in the presence of migration and so special care must be taken.

We use an atomic counter to track such migrated load, taking care to match this
with the previously introduced decay counters so that we don't migrate too much
load.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.726077467@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:23 +02:00
Paul Turner 9ee474f556 sched: Maintain the load contribution of blocked entities
We are currently maintaining:

  runnable_load(cfs_rq) = \Sum task_load(t)

For all running children t of cfs_rq.  While this can be naturally updated for
tasks in a runnable state (as they are scheduled); this does not account for
the load contributed by blocked task entities.

This can be solved by introducing a separate accounting for blocked load:

  blocked_load(cfs_rq) = \Sum runnable(b) * weight(b)

Obviously we do not want to iterate over all blocked entities to account for
their decay, we instead observe that:

  runnable_load(t) = \Sum p_i*y^i

and that to account for an additional idle period we only need to compute:

  y*runnable_load(t).

This means that we can compute all blocked entities at once by evaluating:

  blocked_load(cfs_rq)` = y * blocked_load(cfs_rq)

Finally we maintain a decay counter so that when a sleeping entity re-awakens
we can determine how much of its load should be removed from the blocked sum.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.585389902@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:22 +02:00
Paul Turner 2dac754e10 sched: Aggregate load contributed by task entities on parenting cfs_rq
For a given task t, we can compute its contribution to load as:

  task_load(t) = runnable_avg(t) * weight(t)

On a parenting cfs_rq we can then aggregate:

  runnable_load(cfs_rq) = \Sum task_load(t), for all runnable children t

Maintain this bottom up, with task entities adding their contributed load to
the parenting cfs_rq sum.  When a task entity's load changes we add the same
delta to the maintained sum.

Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.514678907@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:21 +02:00
Ben Segall 18bf2805d9 sched: Maintain per-rq runnable averages
Since runqueues do not have a corresponding sched_entity we instead embed a
sched_avg structure directly.

Signed-off-by: Ben Segall <bsegall@google.com>
Reviewed-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120823141506.442637130@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-10-24 10:27:20 +02:00
Peter Zijlstra f3e9478674 sched: Remove __ARCH_WANT_INTERRUPTS_ON_CTXSW
Now that the last architecture to use this has stopped doing so (ARM,
thanks Catalin!) we can remove this complexity from the scheduler
core.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/n/tip-g9p2a1w81xxbrze25v9zpzbf@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 16:52:04 +02:00