Граф коммитов

481416 Коммитов

Автор SHA1 Сообщение Дата
Igor Mammedov 1d4e7e3c0b kvm: x86: increase user memory slots to 509
With the 3 private slots, this gives us 512 slots total.
Motivation for this is in addition to assigned devices
support more memory hotplug slots, where 1 slot is
used by a hotplugged memory stick.
It will allow to support upto 256 hotplug memory
slots and leave 253 slots for assigned devices and
other devices that use them.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-14 10:02:40 +01:00
Chris J Arges d913b90435 kvm: svm: move WARN_ON in svm_adjust_tsc_offset
When running the tsc_adjust kvm-unit-test on an AMD processor with the
IA32_TSC_ADJUST feature enabled, the WARN_ON in svm_adjust_tsc_offset can be
triggered. This WARN_ON checks for a negative adjustment in case __scale_tsc
is called; however it may trigger unnecessary warnings.

This patch moves the WARN_ON to trigger only if __scale_tsc will actually be
called from svm_adjust_tsc_offset. In addition make adj in kvm_set_msr_common
s64 since this can have signed values.

Signed-off-by: Chris J Arges <chris.j.arges@canonical.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-13 11:56:11 +01:00
Andy Lutomirski 54b98bff8e x86, kvm, vmx: Don't set LOAD_IA32_EFER when host and guest match
There's nothing to switch if the host and guest values are the same.
I am unable to find evidence that this makes any difference
whatsoever.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
[I could see a difference on Nehalem.  From 5 runs:

 userspace exit, guest!=host   12200 11772 12130 12164 12327
 userspace exit, guest=host    11983 11780 11920 11919 12040
 lightweight exit, guest!=host  3214  3220  3238  3218  3337
 lightweight exit, guest=host   3178  3193  3193  3187  3220

 This passes the t-test with 99% confidence for userspace exit,
 98.5% confidence for lightweight exit. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-12 16:27:21 +01:00
Andy Lutomirski f6577a5fa1 x86, kvm, vmx: Always use LOAD_IA32_EFER if available
At least on Sandy Bridge, letting the CPU switch IA32_EFER is much
faster than switching it manually.

I benchmarked this using the vmexit kvm-unit-test (single run, but
GOAL multiplied by 5 to do more iterations):

Test                                  Before      After    Change
cpuid                                   2000       1932    -3.40%
vmcall                                  1914       1817    -5.07%
mov_from_cr8                              13         13     0.00%
mov_to_cr8                                19         19     0.00%
inl_from_pmtimer                       19164      10619   -44.59%
inl_from_qemu                          15662      10302   -34.22%
inl_from_kernel                         3916       3802    -2.91%
outl_to_kernel                          2230       2194    -1.61%
mov_dr                                   172        176     2.33%
ipi                                (skipped)  (skipped)
ipi+halt                           (skipped)  (skipped)
ple-round-robin                           13         13     0.00%
wr_tsc_adjust_msr                       1920       1845    -3.91%
rd_tsc_adjust_msr                       1892       1814    -4.12%
mmio-no-eventfd:pci-mem                16394      11165   -31.90%
mmio-wildcard-eventfd:pci-mem           4607       4645     0.82%
mmio-datamatch-eventfd:pci-mem          4601       4610     0.20%
portio-no-eventfd:pci-io               11507       7942   -30.98%
portio-wildcard-eventfd:pci-io          2239       2225    -0.63%
portio-datamatch-eventfd:pci-io         2250       2234    -0.71%

I haven't explicitly computed the significance of these numbers,
but this isn't subtle.

Signed-off-by: Andy Lutomirski <luto@amacapital.net>
[The results were reproducible on all of Nehalem, Sandy Bridge and
 Ivy Bridge.  The slowness of manual switching is because writing
 to EFER with WRMSR triggers a TLB flush, even if the only bit you're
 touching is SCE (so the page table format is not affected).  Doing
 the write as part of vmentry/vmexit, instead, does not flush the TLB,
 probably because all processors that have EPT also have VPID. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-12 12:35:02 +01:00
Paolo Bonzini ac146235d4 KVM: x86: fix warning on 32-bit compilation
PCIDs are only supported in 64-bit mode.  No need to clear bit 63
of CR3 unless the host is 64-bit.

Reported by Fengguang Wu's autobuilder.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-10 13:53:25 +01:00
David Matlack ce1a5e60a6 kvm: x86: add trace event for pvclock updates
The new trace event records:
  * the id of vcpu being updated
  * the pvclock_vcpu_time_info struct being written to guest memory

This is useful for debugging pvclock bugs, such as the bug fixed by
"[PATCH] kvm: x86: Fix kvm clock versioning.".

Signed-off-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-08 08:20:55 +01:00
Owen Hofmann 09a0c3f110 kvm: x86: Fix kvm clock versioning.
kvm updates the version number for the guest paravirt clock structure by
incrementing the version of its private copy. It does not read the guest
version, so will write version = 2 in the first update for every new VM,
including after restoring a saved state. If guest state is saved during
reading the clock, it could read and accept struct fields and guest TSC
from two different updates. This changes the code to increment the guest
version and write it back.

Signed-off-by: Owen Hofmann <osh@google.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-08 08:20:54 +01:00
Nadav Amit ed9aad215f KVM: x86: MOVNTI emulation min opsize is not respected
Commit 3b32004a66 ("KVM: x86: movnti minimum op size of 32-bit is not kept")
did not fully fix the minimum operand size of MONTI emulation. Still, MOVNTI
may be mistakenly performed using 16-bit opsize.

This patch add No16 flag to mark an instruction does not support 16-bits
operand size.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-08 08:20:54 +01:00
Marcelo Tosatti 7f187922dd KVM: x86: update masterclock values on TSC writes
When the guest writes to the TSC, the masterclock TSC copy must be
updated as well along with the TSC_OFFSET update, otherwise a negative
tsc_timestamp is calculated at kvm_guest_time_update.

Once "if (!vcpus_matched && ka->use_master_clock)" is simplified to
"if (ka->use_master_clock)", the corresponding "if (!ka->use_master_clock)"
becomes redundant, so remove the do_request boolean and collapse
everything into a single condition.

Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-08 08:20:53 +01:00
Nadav Amit b2c9d43e6c KVM: x86: Return UNHANDLABLE on unsupported SYSENTER
Now that KVM injects #UD on "unhandlable" error, it makes better sense to
return such error on sysenter instead of directly injecting #UD to the guest.
This allows to track more easily the unhandlable cases the emulator does not
support.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-08 08:20:52 +01:00
Nadav Amit db324fe6f2 KVM: x86: Warn on APIC base relocation
APIC base relocation is unsupported by KVM. If anyone uses it, the least should
be to report a warning in the hypervisor.

Note that KVM-unit-tests uses this feature for some reason, so running the
tests triggers the warning.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-08 08:20:51 +01:00
Nadav Amit d14cb5df59 KVM: x86: Emulator mis-decodes VEX instructions on real-mode
Commit 7fe864dc94 (KVM: x86: Mark VEX-prefix instructions emulation as
unimplemented, 2014-06-02) marked VEX instructions as such in protected
mode.  VEX-prefix instructions are not supported relevant on real-mode
and VM86, but should cause #UD instead of being decoded as LES/LDS.

Fix this behaviour to be consistent with real hardware.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
[Check for mod == 3, rather than 2 or 3. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-08 08:20:10 +01:00
Nadav Amit 2c2ca2d12f KVM: x86: Remove redundant and incorrect cpl check on task-switch
Task-switch emulation checks the privilege level prior to performing the
task-switch.  This check is incorrect in the case of task-gates, in which the
tss.dpl is ignored, and can cause superfluous exceptions.  Moreover this check
is unnecassary, since the CPU checks the privilege levels prior to exiting.
Intel SDM 25.4.2 says "If CALL or JMP accesses a TSS descriptor directly
outside IA-32e mode, privilege levels are checked on the TSS descriptor" prior
to exiting.  AMD 15.14.1 says "The intercept is checked before the task switch
takes place but after the incoming TSS and task gate (if one was involved) have
been checked for correctness."

This patch removes the CPL checks for CALL and JMP.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:10 +01:00
Nadav Amit 9a9abf6b61 KVM: x86: Inject #GP when loading system segments with non-canonical base
When emulating LTR/LDTR/LGDT/LIDT, #GP should be injected if the base is
non-canonical. Otherwise, VM-entry will fail.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:09 +01:00
Nadav Amit 5b7f6a1e6f KVM: x86: Combine the lgdt and lidt emulation logic
LGDT and LIDT emulation logic is almost identical. Merge the logic into a
single point to avoid redundancy. This will be used by the next patch that
will ensure the bases of the loaded GDTR and IDTR are canonical.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:08 +01:00
Nadav Amit 38827dbd3f KVM: x86: Do not update EFLAGS on faulting emulation
If the emulation ends in fault, eflags should not be updated.  However, several
instruction emulations (actually all the fastops) currently update eflags, if
the fault was detected afterwards (e.g., #PF during writeback).

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:08 +01:00
Nadav Amit 9d88fca71a KVM: x86: MOV to CR3 can set bit 63
Although Intel SDM mentions bit 63 is reserved, MOV to CR3 can have bit 63 set.
As Intel SDM states in section 4.10.4 "Invalidation of TLBs and
Paging-Structure Caches": " MOV to CR3. ... If CR4.PCIDE = 1 and bit 63 of the
instruction’s source operand is 0 ..."

In other words, bit 63 is not reserved. KVM emulator currently consider bit 63
as reserved. Fix it.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:07 +01:00
Nadav Amit 0fcc207c66 KVM: x86: Emulate push sreg as done in Core
According to Intel SDM push of segment selectors is done in the following
manner: "if the operand size is 32-bits, either a zero-extended value is pushed
on the stack or the segment selector is written on the stack using a 16-bit
move. For the last case, all recent Core and Atom processors perform a 16-bit
move, leaving the upper portion of the stack location unmodified."

This patch modifies the behavior to match the core behavior.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:06 +01:00
Nadav Amit 5aca372236 KVM: x86: Wrong flags on CMPS and SCAS emulation
CMPS and SCAS instructions are evaluated in the wrong order.  For reference (of
CMPS), see http://www.fermimn.gov.it/linux/quarta/x86/cmps.htm : "Note that the
direction of subtraction for CMPS is [SI] - [DI] or [ESI] - [EDI]. The left
operand (SI or ESI) is the source and the right operand (DI or EDI) is the
destination. This is the reverse of the usual Intel convention in which the
left operand is the destination and the right operand is the source."

Introducing em_cmp_r for this matter that performs comparison in reverse order
using fastop infrastructure to avoid a wrapper function.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:06 +01:00
Nadav Amit 807c142595 KVM: x86: SYSCALL cannot clear eflags[1]
SYSCALL emulation currently clears in 64-bit mode eflags according to
MSR_SYSCALL_MASK.  However, on bare-metal eflags[1] which is fixed to one
cannot be cleared, even if MSR_SYSCALL_MASK masks the bit.  This wrong behavior
may result in failed VM-entry, as VT disallows entry with eflags[1] cleared.

This patch sets the bit after masking eflags on syscall.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:05 +01:00
Nadav Amit b5bbf10ee6 KVM: x86: Emulation of MOV-sreg to memory uses incorrect size
In x86, you can only MOV-sreg to memory with either 16-bits or 64-bits size.
In contrast, KVM may write to 32-bits memory on MOV-sreg. This patch fixes KVM
behavior, and sets the destination operand size to two, if the destination is
memory.

When destination is registers, and the operand size is 32-bits, the high
16-bits in modern CPUs is filled with zero.  This is handled correctly.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:04 +01:00
Nadav Amit 82b32774c2 KVM: x86: Breakpoints do not consider CS.base
x86 debug registers hold a linear address. Therefore, breakpoints detection
should consider CS.base, and check whether instruction linear address equals
(CS.base + RIP). This patch introduces a function to evaluate RIP linear
address and uses it for breakpoints detection.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:04 +01:00
Nadav Amit 7305eb5d8c KVM: x86: Clear DR6[0:3] on #DB during handle_dr
DR6[0:3] (previous breakpoint indications) are cleared when #DB is injected
during handle_exception, just as real hardware does.  Similarily, handle_dr
should clear DR6[0:3].

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:03 +01:00
Nadav Amit 6d2a0526b0 KVM: x86: Emulator should set DR6 upon GD like real CPU
It should clear B0-B3 and set BD.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:02 +01:00
Nadav Amit 3ffb24681c KVM: x86: No error-code on real-mode exceptions
Real-mode exceptions do not deliver error code. As can be seen in Intel SDM
volume 2, real-mode exceptions do not have parentheses, which indicate
error-code.  To avoid significant changes of the code, the error code is
"removed" during exception queueing.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:02 +01:00
Nadav Amit 5b38ab877e KVM: x86: decode_modrm does not regard modrm correctly
In one occassion, decode_modrm uses the rm field after it is extended with
REX.B to determine the addressing mode. Doing so causes it not to read the
offset for rip-relative addressing with REX.B=1.

This patch moves the fetch where we already mask REX.B away instead.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:01 +01:00
Wei Wang 4114c27d45 KVM: x86: reset RVI upon system reset
A bug was reported as follows: when running Windows 7 32-bit guests on qemu-kvm,
sometimes the guests run into blue screen during reboot. The problem was that a
guest's RVI was not cleared when it rebooted. This patch has fixed the problem.

Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Yang Zhang <yang.z.zhang@intel.com>
Tested-by: Rongrong Liu <rongrongx.liu@intel.com>, Da Chun <ngugc@qq.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:00 +01:00
Paolo Bonzini a2ae9df7c9 kvm: x86: vmx: avoid returning bool to distinguish success from error
Return a negative error code instead, and WARN() when we should be covering
the entire 2-bit space of vmcs_field_type's return value.  For increased
robustness, add a BUILD_BUG_ON checking the range of vmcs_field_to_offset.

Suggested-by: Tiejun Chen <tiejun.chen@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:44:00 +01:00
Tiejun Chen 34a1cd60d1 kvm: x86: vmx: move some vmx setting from vmx_init() to hardware_setup()
Instead of vmx_init(), actually it would make reasonable sense to do
anything specific to vmx hardware setting in vmx_x86_ops->hardware_setup().

Signed-off-by: Tiejun Chen <tiejun.chen@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:43:59 +01:00
Tiejun Chen f2c7648d91 kvm: x86: vmx: move down hardware_setup() and hardware_unsetup()
Just move this pair of functions down to make sure later we can
add something dependent on others.

Signed-off-by: Tiejun Chen <tiejun.chen@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-07 15:43:59 +01:00
Paolo Bonzini 173ede4ddd KVM: s390: Fixes for kvm/next (3.19) and stable
1. We should flush TLBs for load control instruction emulation (stable)
 2. A workaround for a compiler bug that renders ACCESS_ONCE broken (stable)
 3. Fix program check handling for load control
 4. Documentation Fix
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.14 (GNU/Linux)
 
 iQIcBAABAgAGBQJUXJuyAAoJEBF7vIC1phx8/2kP/0UdpHpNWQA79ib1hDiMu9Sp
 Rs1b24wrAMoSuHTToD/MyyKdYQ8kHGV8QNqMUdssKO4UW1upHVGE4JVcMOLFoNxn
 VoQvz1ctfw9SXqwRsSQxA5zmVc/Nqa1urR+jxkDauQrJEJ2E19EOwWZzWAPtop3V
 oXYkjJMO6WO2nNuN2HxYtDkzJfeK863EBss4VYrCQFpwEPMPs/VTVtoi0KjzIEdY
 8UwfAdT56ydzLNIr+eG2ZOgKaPgb34BTtYsZg9HA8+yuSbLYnVpdIpFFky4E7sjg
 MlEO/8yc4UWqG/YFnT2W1+NigYi2OYjDthotKABRA9qtI73+P/zwiX74jepOP10M
 U1ZwkTiQfGQ5V9KLJoksYUjcN9atTwwNk+Vzf0U/FAjmnqxGD0fQUqVlKVPD1CD8
 U/vsoY5p+RKp3ZEkaApwH55YjvgrzLeDUk59ZiGcAyceEkUZXEIyi5TtmdNXtj2b
 INW5PyxlTdY3qq9AbhUtUZ5cs+5A1fLugBC6i8yxMYpTuj+fYYDtQvppKIRdvjzB
 DOxm9CoaJgxc/WnHY8QGNCbX7VuzX/cs+ZBSJ0ezUV7gWpnxhxJHqaqMP0SiuYl1
 YopnelQ79w8qAs8snIMw1kx4VTBQlLbKD+Ixn1RNPacER/hy50ZUIXedFJylHAzz
 tXJfzacYL8eSoiAdBh3f
 =kFKq
 -----END PGP SIGNATURE-----

Merge tag 'kvm-s390-next-20141107' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

KVM: s390: Fixes for kvm/next (3.19) and stable

1. We should flush TLBs for load control instruction emulation (stable)
2. A workaround for a compiler bug that renders ACCESS_ONCE broken (stable)
3. Fix program check handling for load control
4. Documentation Fix
2014-11-07 15:39:44 +01:00
Dominik Dingel 365dc16335 KVM: fix vm device attribute documentation
Documentation uses incorrect attribute names for some vm device
attributes: fix this.

Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-07 11:11:11 +01:00
Heiko Carstens fc56eb66c3 KVM: s390: fix handling of lctl[g]/stctl[g]
According to the architecture all instructions are suppressing if memory
access is prohibited due to DAT protection, unless stated otherwise for
an instruction.
The lctl[g]/stctl[g] implementations handled this incorrectly since
control register handling was done piecemeal, which means they had
terminating instead of suppressing semantics.
This patch fixes this.

Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-07 11:11:08 +01:00
Christian Borntraeger 2dca485f87 KVM: s390: flush CPU on load control
some control register changes will flush some aspects of the CPU, e.g.
POP explicitely mentions that for CR9-CR11 "TLBs may be cleared".
Instead of trying to be clever and only flush on specific CRs, let
play safe and flush on all lctl(g) as future machines might define
new bits in CRs. Load control intercept should not happen that often.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
2014-11-07 11:10:52 +01:00
Christian Borntraeger 1365039d0c KVM: s390: Fix ipte locking
ipte_unlock_siif uses cmpxchg to replace the in-memory data of the ipte
lock together with ACCESS_ONCE for the intial read.

union ipte_control {
        unsigned long val;
        struct {
                unsigned long k  : 1;
                unsigned long kh : 31;
                unsigned long kg : 32;
        };
};
[...]
static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
{
        union ipte_control old, new, *ic;

        ic = &vcpu->kvm->arch.sca->ipte_control;
        do {
                new = old = ACCESS_ONCE(*ic);
                new.kh--;
                if (!new.kh)
                        new.k = 0;
        } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
        if (!new.kh)
                wake_up(&vcpu->kvm->arch.ipte_wq);
}

The new value, is loaded twice from memory with gcc 4.7.2 of
fedora 18, despite the ACCESS_ONCE:

--->

l       %r4,0(%r3)      <--- load first 32 bit of lock (k and kh) in r4
alfi    %r4,2147483647  <--- add -1 to r4
llgtr   %r4,%r4         <--- zero out the sign bit of r4
lg      %r1,0(%r3)      <--- load all 64 bit of lock into new
lgr     %r2,%r1         <--- load the same into old
risbg   %r1,%r4,1,31,32 <--- shift and insert r4 into the bits 1-31 of
new
llihf   %r4,2147483647
ngrk    %r4,%r1,%r4
jne     aa0 <ipte_unlock+0xf8>
nihh    %r1,32767
lgr     %r4,%r2
csg     %r4,%r1,0(%r3)
cgr     %r2,%r4
jne     a70 <ipte_unlock+0xc8>

If the memory value changes between the first load (l) and the second
load (lg) we are broken. If that happens VCPU threads will hang
(unkillable) in handle_ipte_interlock.

Andreas Krebbel analyzed this and tracked it down to a compiler bug in
that version:
"while it is not that obvious the C99 standard basically forbids
duplicating the memory access also in that case. For an argumentation of
a similiar case please see:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=22278#c43

For the implementation-defined cases regarding volatile there are some
GCC-specific clarifications which can be found here:
https://gcc.gnu.org/onlinedocs/gcc/Volatiles.html#Volatiles

I've tracked down the problem with a reduced testcase. The problem was
that during a tree level optimization (SRA - scalar replacement of
aggregates) the volatile marker is lost. And an RTL level optimizer (CSE
- common subexpression elimination) then propagated the memory read into
  its second use introducing another access to the memory location. So
indeed Christian's suspicion that the union access has something to do
with it is correct (since it triggered the SRA optimization).

This issue has been reported and fixed in the GCC 4.8 development cycle:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145"

This patch replaces the ACCESS_ONCE scheme with a barrier() based scheme
that should work for all supported compilers.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: stable@vger.kernel.org # v3.16+
2014-11-07 11:10:26 +01:00
Tiejun Chen c6338ce494 kvm: kvmclock: use get_cpu() and put_cpu()
We can use get_cpu() and put_cpu() to replace
preempt_disable()/cpu = smp_processor_id() and
preempt_enable() for slightly better code.

Signed-off-by: Tiejun Chen <tiejun.chen@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:33 +01:00
Radim Krčmář f30ebc312c KVM: x86: optimize some accesses to LVTT and SPIV
We mirror a subset of these registers in separate variables.
Using them directly should be faster.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:32 +01:00
Radim Krčmář a323b40982 KVM: x86: detect LVTT changes under APICv
APIC-write VM exits are "trap-like": they save CS:RIP values for the
instruction after the write, and more importantly, the handler will
already see the new value in the virtual-APIC page.  This means that
apic_reg_write cannot use kvm_apic_get_reg to omit timer cancelation
when mode changes.

timer_mode_mask shouldn't be changing as it depends on cpuid.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:32 +01:00
Radim Krčmář e462755cae KVM: x86: detect SPIV changes under APICv
APIC-write VM exits are "trap-like": they save CS:RIP values for the
instruction after the write, and more importantly, the handler will
already see the new value in the virtual-APIC page.

This caused a bug if you used KVM_SET_IRQCHIP to set the SW-enabled bit
in the SPIV register.  The chain of events is as follows:

* When the irqchip is added to the destination VM, the apic_sw_disabled
static key is incremented (1)

* When the KVM_SET_IRQCHIP ioctl is invoked, it is decremented (0)

* When the guest disables the bit in the SPIV register, e.g. as part of
shutdown, apic_set_spiv does not notice the change and the static key is
_not_ incremented.

* When the guest is destroyed, the static key is decremented (-1),
resulting in this trace:

  WARNING: at kernel/jump_label.c:81 __static_key_slow_dec+0xa6/0xb0()
  jump label: negative count!

  [<ffffffff816bf898>] dump_stack+0x19/0x1b
  [<ffffffff8107c6f1>] warn_slowpath_common+0x61/0x80
  [<ffffffff8107c76c>] warn_slowpath_fmt+0x5c/0x80
  [<ffffffff811931e6>] __static_key_slow_dec+0xa6/0xb0
  [<ffffffff81193226>] static_key_slow_dec_deferred+0x16/0x20
  [<ffffffffa0637698>] kvm_free_lapic+0x88/0xa0 [kvm]
  [<ffffffffa061c63e>] kvm_arch_vcpu_uninit+0x2e/0xe0 [kvm]
  [<ffffffffa05ff301>] kvm_vcpu_uninit+0x21/0x40 [kvm]
  [<ffffffffa067cec7>] vmx_free_vcpu+0x47/0x70 [kvm_intel]
  [<ffffffffa061bc50>] kvm_arch_vcpu_free+0x50/0x60 [kvm]
  [<ffffffffa061ca22>] kvm_arch_destroy_vm+0x102/0x260 [kvm]
  [<ffffffff810b68fd>] ? synchronize_srcu+0x1d/0x20
  [<ffffffffa06030d1>] kvm_put_kvm+0xe1/0x1c0 [kvm]
  [<ffffffffa06036f8>] kvm_vcpu_release+0x18/0x20 [kvm]
  [<ffffffff81215c62>] __fput+0x102/0x310
  [<ffffffff81215f4e>] ____fput+0xe/0x10
  [<ffffffff810ab664>] task_work_run+0xb4/0xe0
  [<ffffffff81083944>] do_exit+0x304/0xc60
  [<ffffffff816c8dfc>] ? _raw_spin_unlock_irq+0x2c/0x50
  [<ffffffff810fd22d>] ?  trace_hardirqs_on_caller+0xfd/0x1c0
  [<ffffffff8108432c>] do_group_exit+0x4c/0xc0
  [<ffffffff810843b4>] SyS_exit_group+0x14/0x20
  [<ffffffff816d33a9>] system_call_fastpath+0x16/0x1b

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:31 +01:00
Dominik Dingel 02d5d55b7e KVM: trivial fix comment regarding __kvm_set_memory_region
commit 72dc67a696 ("KVM: remove the usage of the mmap_sem for the protection of the memory slots.")
changed the lock which will be taken. This should be reflected in the function
commentary.

Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:30 +01:00
Chao Peng 612263b30c KVM: x86: Enable Intel AVX-512 for guest
Expose Intel AVX-512 feature bits to guest. Also add checks for
xcr0 AVX512 related bits according to spec:
http://download-software.intel.com/sites/default/files/managed/71/2e/319433-017.pdf

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:30 +01:00
Michael S. Tsirkin 7f05db6a20 kvm: drop unsupported capabilities, fix documentation
No kernel ever reported KVM_CAP_DEVICE_MSIX, KVM_CAP_DEVICE_MSI,
KVM_CAP_DEVICE_ASSIGNMENT, KVM_CAP_DEVICE_DEASSIGNMENT.

This makes the documentation wrong, and no application ever
written to use these capabilities has a chance to work correctly.
The only way to detect support is to try, and test errno for ENOTTY.
That's unfortunate, but we can't fix the past.

Document the actual semantics, and drop the definitions from
the exported header to make it easier for application
developers to note and fix the bug.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:29 +01:00
Radim Krčmář 1e0ad70cc1 KVM: x86: fix deadline tsc interrupt injection
The check in kvm_set_lapic_tscdeadline_msr() was trying to prevent a
situation where we lose a pending deadline timer in a MSR write.
Losing it is fine, because it effectively occurs before the timer fired,
so we should be able to cancel or postpone it.

Another problem comes from interaction with QEMU, or other userspace
that can set deadline MSR without a good reason, when timer is already
pending:  one guest's deadline request results in more than one
interrupt because one is injected immediately on MSR write from
userspace and one through hrtimer later.

The solution is to remove the injection when replacing a pending timer
and to improve the usual QEMU path, we inject without a hrtimer when the
deadline has already passed.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reported-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:28 +01:00
Radim Krčmář 5d87db7119 KVM: x86: add apic_timer_expired()
Make the code reusable.

If the timer was already pending, we shouldn't be waiting in a queue,
so wake_up can be skipped, simplifying the path.

There is no 'reinject' case => the comment is removed.
Current race behaves correctly.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:27 +01:00
Tiejun Chen 91690bf32e Documentation: virtual: kvm: correct one bit description in APF case
When commit 6adba52742 (KVM: Let host know whether the guest can
handle async PF in non-userspace context.) is introduced, actually
bit 2 still is reserved and should be zero. Instead, bit 1 is 1 to
indicate if asynchronous page faults can be injected when vcpu is
in cpl == 0, and also please see this,

in the file kvm_para.h, #define KVM_ASYNC_PF_SEND_ALWAYS (1 << 1).

Signed-off-by: Tiejun Chen <tiejun.chen@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:27 +01:00
Nadav Amit 16f8a6f979 KVM: vmx: Unavailable DR4/5 is checked before CPL
If DR4/5 is accessed when it is unavailable (since CR4.DE is set), then #UD
should be generated even if CPL>0. This is according to Intel SDM Table 6-2:
"Priority Among Simultaneous Exceptions and Interrupts".

Note, that this may happen on the first DR access, even if the host does not
sets debug breakpoints. Obviously, it occurs when the host debugs the guest.

This patch moves the DR4/5 checks from __kvm_set_dr/_kvm_get_dr to handle_dr.
The emulator already checks DR4/5 availability in check_dr_read. Nested
virutalization related calls to kvm_set_dr/kvm_get_dr would not like to inject
exceptions to the guest.

As for SVM, the patch follows the previous logic as much as possible. Anyhow,
it appears the DR interception code might be buggy - even if the DR access
may cause an exception, the instruction is skipped.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:26 +01:00
Nadav Amit c49c759f7a KVM: x86: Emulator performs code segment checks on read access
When read access is performed using a readable code segment, the "conforming"
and "non-conforming" checks should not be done.  As a result, read using
non-conforming readable code segment fails.

This is according to Intel SDM 5.6.1 ("Accessing Data in Code Segments").

The fix is not to perform the "non-conforming" checks if the access is not a
fetch; the relevant checks are already done when loading the segment.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:25 +01:00
Nadav Amit 0e8a09969a KVM: x86: Clear DR7.LE during task-switch
DR7.LE should be cleared during task-switch. This feature is poorly documented.
For reference, see:
http://pdos.csail.mit.edu/6.828/2005/readings/i386/s12_02.htm

SDM [17.2.4]:
  This feature is not supported in the P6 family processors, later IA-32
  processors, and Intel 64 processors.

AMD [2:13.1.1.4]:
  This bit is ignored by implementations of the AMD64 architecture.

Intel's formulation could mean that it isn't even zeroed, but current
hardware indeed does not behave like that.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:25 +01:00
Nadav Amit 518547b32a KVM: x86: Emulator does not calculate address correctly
In long-mode, when the address size is 4 bytes, the linear address is not
truncated as the emulator mistakenly does.  Instead, the offset within the
segment (the ea field) should be truncated according to the address size.

As Intel SDM says: "In 64-bit mode, the effective address components are added
and the effective address is truncated ... before adding the full 64-bit
segment base."

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:24 +01:00
Nadav Amit 6bdf06625d KVM: x86: DR7.GD should be cleared upon any #DB exception
Intel SDM 17.2.4 (Debug Control Register (DR7)) says: "The processor clears the
GD flag upon entering to the debug exception handler." This sentence may be
misunderstood as if it happens only on #DB due to debug-register protection,
but it happens regardless to the cause of the #DB.

Fix the behavior to match both real hardware and Bochs.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-11-03 12:07:23 +01:00