Граф коммитов

333 Коммитов

Автор SHA1 Сообщение Дата
Huang Ying a3aea839e4 mm, THP, swap: support to clear swap cache flag for THP swapped out
Patch series "mm, THP, swap: Delay splitting THP after swapped out", v3.

This is the second step of THP (Transparent Huge Page) swap
optimization.  In the first step, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache.  In the second
step, the splitting is delayed further to after the swapping out
finished.  The plan is to delay splitting THP step by step, finally
avoid splitting THP for the THP swapping out and swap out/in the THP as
a whole.

In the patchset, more operations for the anonymous THP reclaiming, such
as TLB flushing, writing the THP to the swap device, removing the THP
from the swap cache are batched.  So that the performance of anonymous
THP swapping out are improved.

During the development, the following scenarios/code paths have been
checked,

 - swap out/in
 - swap off
 - write protect page fault
 - madvise_free
 - process exit
 - split huge page

With the patchset, the swap out throughput improves 42% (from about
5.81GB/s to about 8.25GB/s) in the vm-scalability swap-w-seq test case
with 16 processes.  At the same time, the IPI (reflect TLB flushing)
reduced about 78.9%.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

Below is the part of the cover letter for the first step patchset of THP
swap optimization which applies to all steps.

=========================

Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine.  Because the
performance of the storage device improved faster than that of single
logical CPU.  And it seems that the trend will not change in the near
future.  On the other hand, the THP becomes more and more popular
because of increased memory size.  So it becomes necessary to optimize
THP swap performance.

The advantages of the THP swap support include:

 - Batch the swap operations for the THP to reduce TLB flushing and lock
   acquiring/releasing, including allocating/freeing the swap space,
   adding/deleting to/from the swap cache, and writing/reading the swap
   space, etc. This will help improve the performance of the THP swap.

 - The THP swap space read/write will be 2M sequential IO. It is
   particularly helpful for the swap read, which are usually 4k random
   IO. This will improve the performance of the THP swap too.

 - It will help the memory fragmentation, especially when the THP is
   heavily used by the applications. The 2M continuous pages will be
   free up after THP swapping out.

 - It will improve the THP utilization on the system with the swap
   turned on. Because the speed for khugepaged to collapse the normal
   pages into the THP is quite slow. After the THP is split during the
   swapping out, it will take quite long time for the normal pages to
   collapse back into the THP after being swapped in. The high THP
   utilization helps the efficiency of the page based memory management
   too.

There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device.  To deal with that, the THP swap in should be turned
on only when necessary.

For example, it can be selected via "always/never/madvise" logic, to be
turned on globally, turned off globally, or turned on only for VMA with
MADV_HUGEPAGE, etc.

This patch (of 12):

Previously, swapcache_free_cluster() is used only in the error path of
shrink_page_list() to free the swap cluster just allocated if the THP
(Transparent Huge Page) is failed to be split.  In this patch, it is
enhanced to clear the swap cache flag (SWAP_HAS_CACHE) for the swap
cluster that holds the contents of THP swapped out.

This will be used in delaying splitting THP after swapping out support.
Because there is no THP swapping in as a whole support yet, after
clearing the swap cache flag, the swap cluster backing the THP swapped
out will be split.  So that the swap slots in the swap cluster can be
swapped in as normal pages later.

Link: http://lkml.kernel.org/r/20170724051840.2309-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:27 -07:00
Shaohua Li 23955622ff swap: add block io poll in swapin path
For fast flash disk, async IO could introduce overhead because of
context switch.  block-mq now supports IO poll, which improves
performance and latency a lot.  swapin is a good place to use this
technique, because the task is waiting for the swapin page to continue
execution.

In my virtual machine, directly read 4k data from a NVMe with iopoll is
about 60% better than that without poll.  With iopoll support in swapin
patch, my microbenchmark (a task does random memory write) is about
10%~25% faster.  CPU utilization increases a lot though, 2x and even 3x
CPU utilization.  This will depend on disk speed.

While iopoll in swapin isn't intended for all usage cases, it's a win
for latency sensistive workloads with high speed swap disk.  block layer
has knob to control poll in runtime.  If poll isn't enabled in block
layer, there should be no noticeable change in swapin.

I got a chance to run the same test in a NVMe with DRAM as the media.
In simple fio IO test, blkpoll boosts 50% performance in single thread
test and ~20% in 8 threads test.  So this is the base line.  In above
swap test, blkpoll boosts ~27% performance in single thread test.
blkpoll uses 2x CPU time though.

If we enable hybid polling, the performance gain has very slight drop
but CPU time is only 50% worse than that without blkpoll.  Also we can
adjust parameter of hybid poll, with it, the CPU time penality is
reduced further.  In 8 threads test, blkpoll doesn't help though.  The
performance is similar to that without blkpoll, but cpu utilization is
similar too.  There is lock contention in swap path.  The cpu time
spending on blkpoll isn't high.  So overall, blkpoll swapin isn't worse
than that without it.

The swapin readahead might read several pages in in the same time and
form a big IO request.  Since the IO will take longer time, it doesn't
make sense to do poll, so the patch only does iopoll for single page
swapin.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/070c3c3e40b711e7b1390002c991e86a-b5408f0@7511894063d3764ff01ea8111f5a004d7dd700ed078797c204a24e620ddb965c
Signed-off-by: Shaohua Li <shli@fb.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Huang Ying 155b5f88e7 mm/swapfile.c: sort swap entries before free
To reduce the lock contention of swap_info_struct->lock when freeing
swap entry.  The freed swap entries will be collected in a per-CPU
buffer firstly, and be really freed later in batch.  During the batch
freeing, if the consecutive swap entries in the per-CPU buffer belongs
to same swap device, the swap_info_struct->lock needs to be
acquired/released only once, so that the lock contention could be
reduced greatly.  But if there are multiple swap devices, it is possible
that the lock may be unnecessarily released/acquired because the swap
entries belong to the same swap device are non-consecutive in the
per-CPU buffer.

To solve the issue, the per-CPU buffer is sorted according to the swap
device before freeing the swap entries.

With the patch, the memory (some swapped out) free time reduced 11.6%
(from 2.65s to 2.35s) in the vm-scalability swap-w-rand test case with
16 processes.  The test is done on a Xeon E5 v3 system.  The swap device
used is a RAM simulated PMEM (persistent memory) device.  To test
swapping, the test case creates 16 processes, which allocate and write
to the anonymous pages until the RAM and part of the swap device is used
up, finally the memory (some swapped out) is freed before exit.

[akpm@linux-foundation.org: tweak comment]
Link: http://lkml.kernel.org/r/20170525005916.25249-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Minchan Kim 75f6d6d29a mm, THP, swap: unify swap slot free functions to put_swap_page
Now, get_swap_page takes struct page and allocates swap space according
to page size(ie, normal or THP) so it would be more cleaner to introduce
put_swap_page which is a counter function of get_swap_page.  Then, it
calls right swap slot free function depending on page's size.

[ying.huang@intel.com: minor cleanup and fix]
Link: http://lkml.kernel.org/r/20170515112522.32457-3-ying.huang@intel.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Huang Ying 38d8b4e6bd mm, THP, swap: delay splitting THP during swap out
Patch series "THP swap: Delay splitting THP during swapping out", v11.

This patchset is to optimize the performance of Transparent Huge Page
(THP) swap.

Recently, the performance of the storage devices improved so fast that
we cannot saturate the disk bandwidth with single logical CPU when do
page swap out even on a high-end server machine.  Because the
performance of the storage device improved faster than that of single
logical CPU.  And it seems that the trend will not change in the near
future.  On the other hand, the THP becomes more and more popular
because of increased memory size.  So it becomes necessary to optimize
THP swap performance.

The advantages of the THP swap support include:

 - Batch the swap operations for the THP to reduce lock
   acquiring/releasing, including allocating/freeing the swap space,
   adding/deleting to/from the swap cache, and writing/reading the swap
   space, etc. This will help improve the performance of the THP swap.

 - The THP swap space read/write will be 2M sequential IO. It is
   particularly helpful for the swap read, which are usually 4k random
   IO. This will improve the performance of the THP swap too.

 - It will help the memory fragmentation, especially when the THP is
   heavily used by the applications. The 2M continuous pages will be
   free up after THP swapping out.

 - It will improve the THP utilization on the system with the swap
   turned on. Because the speed for khugepaged to collapse the normal
   pages into the THP is quite slow. After the THP is split during the
   swapping out, it will take quite long time for the normal pages to
   collapse back into the THP after being swapped in. The high THP
   utilization helps the efficiency of the page based memory management
   too.

There are some concerns regarding THP swap in, mainly because possible
enlarged read/write IO size (for swap in/out) may put more overhead on
the storage device.  To deal with that, the THP swap in should be turned
on only when necessary.  For example, it can be selected via
"always/never/madvise" logic, to be turned on globally, turned off
globally, or turned on only for VMA with MADV_HUGEPAGE, etc.

This patchset is the first step for the THP swap support.  The plan is
to delay splitting THP step by step, finally avoid splitting THP during
the THP swapping out and swap out/in the THP as a whole.

As the first step, in this patchset, the splitting huge page is delayed
from almost the first step of swapping out to after allocating the swap
space for the THP and adding the THP into the swap cache.  This will
reduce lock acquiring/releasing for the locks used for the swap cache
management.

With the patchset, the swap out throughput improves 15.5% (from about
3.73GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

This patch (of 5):

In this patch, splitting huge page is delayed from almost the first step
of swapping out to after allocating the swap space for the THP
(Transparent Huge Page) and adding the THP into the swap cache.  This
will batch the corresponding operation, thus improve THP swap out
throughput.

This is the first step for the THP swap optimization.  The plan is to
delay splitting the THP step by step and avoid splitting the THP
finally.

In this patch, one swap cluster is used to hold the contents of each THP
swapped out.  So, the size of the swap cluster is changed to that of the
THP (Transparent Huge Page) on x86_64 architecture (512).  For other
architectures which want such THP swap optimization,
ARCH_USES_THP_SWAP_CLUSTER needs to be selected in the Kconfig file for
the architecture.  In effect, this will enlarge swap cluster size by 2
times on x86_64.  Which may make it harder to find a free cluster when
the swap space becomes fragmented.  So that, this may reduce the
continuous swap space allocation and sequential write in theory.  The
performance test in 0day shows no regressions caused by this.

In the future of THP swap optimization, some information of the swapped
out THP (such as compound map count) will be recorded in the
swap_cluster_info data structure.

The mem cgroup swap accounting functions are enhanced to support charge
or uncharge a swap cluster backing a THP as a whole.

The swap cluster allocate/free functions are added to allocate/free a
swap cluster for a THP.  A fair simple algorithm is used for swap
cluster allocation, that is, only the first swap device in priority list
will be tried to allocate the swap cluster.  The function will fail if
the trying is not successful, and the caller will fallback to allocate a
single swap slot instead.  This works good enough for normal cases.  If
the difference of the number of the free swap clusters among multiple
swap devices is significant, it is possible that some THPs are split
earlier than necessary.  For example, this could be caused by big size
difference among multiple swap devices.

The swap cache functions is enhanced to support add/delete THP to/from
the swap cache as a set of (HPAGE_PMD_NR) sub-pages.  This may be
enhanced in the future with multi-order radix tree.  But because we will
split the THP soon during swapping out, that optimization doesn't make
much sense for this first step.

The THP splitting functions are enhanced to support to split THP in swap
cache during swapping out.  The page lock will be held during allocating
the swap cluster, adding the THP into the swap cache and splitting the
THP.  So in the code path other than swapping out, if the THP need to be
split, the PageSwapCache(THP) will be always false.

The swap cluster is only available for SSD, so the THP swap optimization
in this patchset has no effect for HDD.

[ying.huang@intel.com: fix two issues in THP optimize patch]
  Link: http://lkml.kernel.org/r/87k25ed8zo.fsf@yhuang-dev.intel.com
[hannes@cmpxchg.org: extensive cleanups and simplifications, reduce code size]
Link: http://lkml.kernel.org/r/20170515112522.32457-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org> [for config option]
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for changes in huge_memory.c and huge_mm.h]
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Huang Ying 54f180d3c1 mm, swap: use kvzalloc to allocate some swap data structures
Now vzalloc() is used in swap code to allocate various data structures,
such as swap cache, swap slots cache, cluster info, etc.  Because the
size may be too large on some system, so that normal kzalloc() may fail.
But using kzalloc() has some advantages, for example, less memory
fragmentation, less TLB pressure, etc.  So change the data structure
allocation in swap code to use kvzalloc() which will try kzalloc()
firstly, and fallback to vzalloc() if kzalloc() failed.

In general, although kmalloc() will reduce the number of high-order
pages in short term, vmalloc() will cause more pain for memory
fragmentation in the long term.  And the swap data structure allocation
that is changed in this patch is expected to be long term allocation.

From Dave Hansen:
 "for example, we have a two-page data structure. vmalloc() takes two
  effectively random order-0 pages, probably from two different 2M pages
  and pins them. That "kills" two 2M pages. kmalloc(), allocating two
  *contiguous* pages, will not cross a 2M boundary. That means it will
  only "kill" the possibility of a single 2M page. More 2M pages == less
  fragmentation.

The allocation in this patch occurs during swap on time, which is
usually done during system boot, so usually we have high opportunity to
allocate the contiguous pages successfully.

The allocation for swap_map[] in struct swap_info_struct is not changed,
because that is usually quite large and vmalloc_to_page() is used for
it.  That makes it a little harder to change.

Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:13 -07:00
Huang Ying 0ccfece6ed mm/swapfile.c: fix swap space leak in error path of swap_free_entries()
In swapcache_free_entries(), if swap_info_get_cont() returns NULL,
something wrong occurs for the swap entry.  But we should still continue
to free the following swap entries in the array instead of skip them to
avoid swap space leak.  This is just problem in error path, where system
may be in an inconsistent state, but it is still good to fix it.

Link: http://lkml.kernel.org/r/20170421124739.24534-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:12 -07:00
Huang Ying 2872bb2d0a mm, swap: avoid lock swap_avail_lock when held cluster lock
Cluster lock is used to protect the swap_cluster_info and corresponding
elements in swap_info_struct->swap_map[].  But it is found that now in
scan_swap_map_slots(), swap_avail_lock may be acquired when cluster lock
is held.  This does no good except making the locking more complex and
improving the potential locking contention, because the
swap_info_struct->lock is used to protect the data structure operated in
the code already.  Fix this via moving the corresponding operations in
scan_swap_map_slots() out of cluster lock.

Link: http://lkml.kernel.org/r/20170317064635.12792-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Huang Ying 0ef017d117 mm, swap: improve readability via make spin_lock/unlock balanced
This is just a cleanup patch, no functionality change.

In cluster_list_add_tail(), spin_lock_nested() is used to lock the
cluster, while unlock_cluster() is used to unlock the cluster.  To
improve the code readability, use spin_unlock() directly to unlock the
cluster.

Link: http://lkml.kernel.org/r/20170317064635.12792-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Huang Ying 322b8afe4a mm, swap: Fix a race in free_swap_and_cache()
Before using cluster lock in free_swap_and_cache(), the
swap_info_struct->lock will be held during freeing the swap entry and
acquiring page lock, so the page swap count will not change when testing
page information later.  But after using cluster lock, the cluster lock
(or swap_info_struct->lock) will be held only during freeing the swap
entry.  So before acquiring the page lock, the page swap count may be
changed in another thread.  If the page swap count is not 0, we should
not delete the page from the swap cache.  This is fixed via checking
page swap count again after acquiring the page lock.

I found the race when I review the code, so I didn't trigger the race
via a test program.  If the race occurs for an anonymous page shared by
multiple processes via fork, multiple pages will be allocated and
swapped in from the swap device for the previously shared one page.
That is, the user-visible runtime effect is more memory will be used and
the access latency for the page will be higher, that is, the performance
regression.

Link: http://lkml.kernel.org/r/20170301143905.12846-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Kirill A. Shutemov c2febafc67 mm: convert generic code to 5-level paging
Convert all non-architecture-specific code to 5-level paging.

It's mostly mechanical adding handling one more page table level in
places where we deal with pud_t.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-03-09 11:48:47 -08:00
Ingo Molnar 299300258d sched/headers: Prepare for new header dependencies before moving code to <linux/sched/task.h>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:35 +01:00
Ingo Molnar 6e84f31522 sched/headers: Prepare for new header dependencies before moving code to <linux/sched/mm.h>
We are going to split <linux/sched/mm.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.

Create a trivial placeholder <linux/sched/mm.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.

The APIs that are going to be moved first are:

   mm_alloc()
   __mmdrop()
   mmdrop()
   mmdrop_async_fn()
   mmdrop_async()
   mmget_not_zero()
   mmput()
   mmput_async()
   get_task_mm()
   mm_access()
   mm_release()

Include the new header in the files that are going to need it.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:28 +01:00
Vegard Nossum 388f793455 mm: use mmget_not_zero() helper
We already have the helper, we can convert the rest of the kernel
mechanically using:

  git grep -l 'atomic_inc_not_zero.*mm_users' | xargs sed -i 's/atomic_inc_not_zero(&\(.*\)->mm_users)/mmget_not_zero\(\1\)/'

This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.

Link: http://lkml.kernel.org/r/20161218123229.22952-3-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-27 18:43:48 -08:00
Vegard Nossum 3fce371bfa mm: add new mmget() helper
Apart from adding the helper function itself, the rest of the kernel is
converted mechanically using:

  git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)->mm_users);/mmget\(\1\);/'
  git grep -l 'atomic_inc.*mm_users' | xargs sed -i 's/atomic_inc(&\(.*\)\.mm_users);/mmget\(\&\1\);/'

This is needed for a later patch that hooks into the helper, but might
be a worthwhile cleanup on its own.

(Michal Hocko provided most of the kerneldoc comment.)

Link: http://lkml.kernel.org/r/20161218123229.22952-2-vegard.nossum@oracle.com
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-27 18:43:48 -08:00
Tim Chen 039939a650 mm/swap: enable swap slots cache usage
Initialize swap slots cache and enable it on swap on.  Drain all swap
slots on swap off.

Link: http://lkml.kernel.org/r/07cbc94882fa95d4ac3cfc50b8dce0b1ec231b93.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen 67afa38e01 mm/swap: add cache for swap slots allocation
We add per cpu caches for swap slots that can be allocated and freed
quickly without the need to touch the swap info lock.

Two separate caches are maintained for swap slots allocated and swap
slots returned.  This is to allow the swap slots to be returned to the
global pool in a batch so they will have a chance to be coaelesced with
other slots in a cluster.  We do not reuse the slots that are returned
right away, as it may increase fragmentation of the slots.

The swap allocation cache is protected by a mutex as we may sleep when
searching for empty slots in cache.  The swap free cache is protected by
a spin lock as we cannot sleep in the free path.

We refill the swap slots cache when we run out of slots, and we disable
the swap slots cache and drain the slots if the global number of slots
fall below a low watermark threshold.  We re-enable the cache agian when
the slots available are above a high watermark.

[ying.huang@intel.com: use raw_cpu_ptr over this_cpu_ptr for swap slots access]
[tim.c.chen@linux.intel.com: add comments on locks in swap_slots.h]
  Link: http://lkml.kernel.org/r/20170118180327.GA24225@linux.intel.com
Link: http://lkml.kernel.org/r/35de301a4eaa8daa2977de6e987f2c154385eb66.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen 7c00bafee8 mm/swap: free swap slots in batch
Add new functions that free unused swap slots in batches without the
need to reacquire swap info lock.  This improves scalability and reduce
lock contention.

Link: http://lkml.kernel.org/r/c25e0fcdfd237ec4ca7db91631d3b9f6ed23824e.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen 36005bae20 mm/swap: allocate swap slots in batches
Currently, the swap slots are allocated one page at a time, causing
contention to the swap_info lock protecting the swap partition on every
page being swapped.

This patch adds new functions get_swap_pages and scan_swap_map_slots to
request multiple swap slots at once.  This will reduces the lock
contention on the swap_info lock.  Also scan_swap_map_slots can operate
more efficiently as swap slots often occurs in clusters close to each
other on a swap device and it is quicker to allocate them together.

Link: http://lkml.kernel.org/r/9fec2845544371f62c3763d43510045e33d286a6.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Tim Chen e8c26ab605 mm/swap: skip readahead for unreferenced swap slots
We can avoid needlessly allocating page for swap slots that are not used
by anyone.  No pages have to be read in for these slots.

Link: http://lkml.kernel.org/r/0784b3f20b9bd3aa5552219624cb78dc4ae710c9.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Huang, Ying 4b3ef9daa4 mm/swap: split swap cache into 64MB trunks
The patch is to improve the scalability of the swap out/in via using
fine grained locks for the swap cache.  In current kernel, one address
space will be used for each swap device.  And in the common
configuration, the number of the swap device is very small (one is
typical).  This causes the heavy lock contention on the radix tree of
the address space if multiple tasks swap out/in concurrently.

But in fact, there is no dependency between pages in the swap cache.  So
that, we can split the one shared address space for each swap device
into several address spaces to reduce the lock contention.  In the
patch, the shared address space is split into 64MB trunks.  64MB is
chosen to balance the memory space usage and effect of lock contention
reduction.

The size of struct address_space on x86_64 architecture is 408B, so with
the patch, 6528B more memory will be used for every 1GB swap space on
x86_64 architecture.

One address space is still shared for the swap entries in the same 64M
trunks.  To avoid lock contention for the first round of swap space
allocation, the order of the swap clusters in the initial free clusters
list is changed.  The swap space distance between the consecutive swap
clusters in the free cluster list is at least 64M.  After the first
round of allocation, the swap clusters are expected to be freed
randomly, so the lock contention should be reduced effectively.

Link: http://lkml.kernel.org/r/735bab895e64c930581ffb0a05b661e01da82bc5.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Huang, Ying 235b621767 mm/swap: add cluster lock
This patch is to reduce the lock contention of swap_info_struct->lock
via using a more fine grained lock in swap_cluster_info for some swap
operations.  swap_info_struct->lock is heavily contended if multiple
processes reclaim pages simultaneously.  Because there is only one lock
for each swap device.  While in common configuration, there is only one
or several swap devices in the system.  The lock protects almost all
swap related operations.

In fact, many swap operations only access one element of
swap_info_struct->swap_map array.  And there is no dependency between
different elements of swap_info_struct->swap_map.  So a fine grained
lock can be used to allow parallel access to the different elements of
swap_info_struct->swap_map.

In this patch, a spinlock is added to swap_cluster_info to protect the
elements of swap_info_struct->swap_map in the swap cluster and the
fields of swap_cluster_info.  This reduced locking contention for
swap_info_struct->swap_map access greatly.

Because of the added spinlock, the size of swap_cluster_info increases
from 4 bytes to 8 bytes on the 64 bit and 32 bit system.  This will use
additional 4k RAM for every 1G swap space.

Because the size of swap_cluster_info is much smaller than the size of
the cache line (8 vs 64 on x86_64 architecture), there may be false
cache line sharing between spinlocks in swap_cluster_info.  To avoid the
false sharing in the first round of the swap cluster allocation, the
order of the swap clusters in the free clusters list is changed.  So
that, the swap_cluster_info sharing the same cache line will be placed
as far as possible.  After the first round of allocation, the order of
the clusters in free clusters list is expected to be random.  So the
false sharing should be not serious.

Compared with a previous implementation using bit_spin_lock, the
sequential swap out throughput improved about 3.2%.  Test was done on a
Xeon E5 v3 system.  The swap device used is a RAM simulated PMEM
(persistent memory) device.  To test the sequential swapping out, the
test case created 32 processes, which sequentially allocate and write to
the anonymous pages until the RAM and part of the swap device is used.

[ying.huang@intel.com: v5]
  Link: http://lkml.kernel.org/r/878tqeuuic.fsf_-_@yhuang-dev.intel.com
[minchan@kernel.org: initialize spinlock for swap_cluster_info]
  Link: http://lkml.kernel.org/r/1486434945-29753-1-git-send-email-minchan@kernel.org
[hughd@google.com: annotate nested locking for cluster lock]
  Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1702161050540.21773@eggly.anvils
Link: http://lkml.kernel.org/r/dbb860bbd825b1aaba18988015e8963f263c3f0d.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Huang, Ying 6a991fc72d mm/swap: fix kernel message in swap_info_get()
Patch series "mm/swap: Regular page swap optimizations", v5.

Times have changed.  Coming generation of Solid state Block device
latencies are getting down to sub 100 usec, which is within an order of
magnitude of DRAM, and their performance is orders of magnitude higher
than the single- spindle rotational media we've swapped to historically.

This could benefit many usage scenearios.  For example cloud providers
who overcommit their memory (as VM don't use all the memory
provisioned).  Having a fast swap will allow them to be more aggressive
in memory overcommit and fit more VMs to a platform.

In our testing [see footnote], the median latency that the kernel adds
to a page fault is 15 usec, which comes quite close to the amount that
will be contributed by the underlying I/O devices.

The software latency comes mostly from contentions on the locks
protecting the radix tree of the swap cache and also the locks
protecting the individual swap devices.  The lock contentions already
consumed 35% of cpu cycles in our test.  In the very near future,
software latency will become the bottleneck to swap performnace as block
device I/O latency gets within the shouting distance of DRAM speed.

This patch set, reduced the median page fault latency from 15 usec to 4
usec (375% reduction) for DRAM based pmem block device.

This patch (of 9):

swap_info_get() is used not only in swap free code path but also in
page_swapcount(), etc.  So the original kernel message in swap_info_get()
is not correct now.  Fix it via replacing "swap_free" to "swap_info_get"
in the message.

Link: http://lkml.kernel.org/r/9b5f8bd6266f9da978c373f2384c8044df5e262c.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:30 -08:00
Minchan Kim f05714293a mm: support anonymous stable page
During developemnt for zram-swap asynchronous writeback, I found strange
corruption of compressed page, resulting in:

  Modules linked in: zram(E)
  CPU: 3 PID: 1520 Comm: zramd-1 Tainted: G            E   4.8.0-mm1-00320-ge0d4894c9c38-dirty 
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  task: ffff88007620b840 task.stack: ffff880078090000
  RIP: set_freeobj.part.43+0x1c/0x1f
  RSP: 0018:ffff880078093ca8  EFLAGS: 00010246
  RAX: 0000000000000018 RBX: ffff880076798d88 RCX: ffffffff81c408c8
  RDX: 0000000000000018 RSI: 0000000000000000 RDI: 0000000000000246
  RBP: ffff880078093cb0 R08: 0000000000000000 R09: 0000000000000000
  R10: ffff88005bc43030 R11: 0000000000001df3 R12: ffff880076798d88
  R13: 000000000005bc43 R14: ffff88007819d1b8 R15: 0000000000000001
  FS:  0000000000000000(0000) GS:ffff88007e380000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007fc934048f20 CR3: 0000000077b01000 CR4: 00000000000406e0
  Call Trace:
    obj_malloc+0x22b/0x260
    zs_malloc+0x1e4/0x580
    zram_bvec_rw+0x4cd/0x830 [zram]
    page_requests_rw+0x9c/0x130 [zram]
    zram_thread+0xe6/0x173 [zram]
    kthread+0xca/0xe0
    ret_from_fork+0x25/0x30

With investigation, it reveals currently stable page doesn't support
anonymous page.  IOW, reuse_swap_page can reuse the page without waiting
writeback completion so it can overwrite page zram is compressing.

Unfortunately, zram has used per-cpu stream feature from v4.7.
It aims for increasing cache hit ratio of scratch buffer for
compressing. Downside of that approach is that zram should ask
memory space for compressed page in per-cpu context which requires
stricted gfp flag which could be failed. If so, it retries to
allocate memory space out of per-cpu context so it could get memory
this time and compress the data again, copies it to the memory space.

In this scenario, zram assumes the data should never be changed
but it is not true unless stable page supports. So, If the data is
changed under us, zram can make buffer overrun because second
compression size could be bigger than one we got in previous trial
and blindly, copy bigger size object to smaller buffer which is
buffer overrun. The overrun breaks zsmalloc free object chaining
so system goes crash like above.

I think below is same problem.
https://bugzilla.suse.com/show_bug.cgi?id=997574

Unfortunately, reuse_swap_page should be atomic so that we cannot wait on
writeback in there so the approach in this patch is simply return false if
we found it needs stable page.  Although it increases memory footprint
temporarily, it happens rarely and it should be reclaimed easily althoug
it happened.  Also, It would be better than waiting of IO completion,
which is critial path for application latency.

Fixes: da9556a236 ("zram: user per-cpu compression streams")
Link: http://lkml.kernel.org/r/20161120233015.GA14113@bbox
Link: http://lkml.kernel.org/r/1482366980-3782-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Hyeoncheol Lee <cheol.lee@lge.com>
Cc: <yjay.kim@lge.com>
Cc: Sangseok Lee <sangseok.lee@lge.com>
Cc: <stable@vger.kernel.org> [4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10 18:31:55 -08:00
Hugh Dickins dc644a0737 mm: add three more cond_resched() in swapoff
Add a cond_resched() in the unuse_pmd_range() loop (so as to call it
even when pmd none or trans_huge, like zap_pmd_range() does); and in the
unuse_mm() loop (since that might skip over many vmas).  shmem_unuse()
and radix_tree_locate_item() look good enough already.

Those were the obvious places, but in fact the stalls came from
find_next_to_unuse(), which sometimes scans through many unused entries.
Apply scan_swap_map()'s LATENCY_LIMIT of 256 there too; and only go off
to test frontswap_map when a used entry is found.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052155140.13021@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Eric Dumazet <edumazet@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Jann Horn dd111be691 swapfile: fix memory corruption via malformed swapfile
When root activates a swap partition whose header has the wrong
endianness, nr_badpages elements of badpages are swabbed before
nr_badpages has been checked, leading to a buffer overrun of up to 8GB.

This normally is not a security issue because it can only be exploited
by root (more specifically, a process with CAP_SYS_ADMIN or the ability
to modify a swap file/partition), and such a process can already e.g.
modify swapped-out memory of any other userspace process on the system.

Link: http://lkml.kernel.org/r/1477949533-2509-1-git-send-email-jann@thejh.net
Signed-off-by: Jann Horn <jann@thejh.net>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-11-11 08:12:37 -08:00
Huang Ying f6ab1f7f6b mm, swap: use offset of swap entry as key of swap cache
This patch is to improve the performance of swap cache operations when
the type of the swap device is not 0.  Originally, the whole swap entry
value is used as the key of the swap cache, even though there is one
radix tree for each swap device.  If the type of the swap device is not
0, the height of the radix tree of the swap cache will be increased
unnecessary, especially on 64bit architecture.  For example, for a 1GB
swap device on the x86_64 architecture, the height of the radix tree of
the swap cache is 11.  But if the offset of the swap entry is used as
the key of the swap cache, the height of the radix tree of the swap
cache is 4.  The increased height causes unnecessary radix tree
descending and increased cache footprint.

This patch reduces the height of the radix tree of the swap cache via
using the offset of the swap entry instead of the whole swap entry value
as the key of the swap cache.  In 32 processes sequential swap out test
case on a Xeon E5 v3 system with RAM disk as swap, the lock contention
for the spinlock of the swap cache is reduced from 20.15% to 12.19%,
when the type of the swap device is 1.

Use the whole swap entry as key,

  perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 10.37,
  perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 9.78,

Use the swap offset as key,

  perf-profile.calltrace.cycles-pp._raw_spin_lock_irq.__add_to_swap_cache.add_to_swap_cache.add_to_swap.shrink_page_list: 6.25,
  perf-profile.calltrace.cycles-pp._raw_spin_lock_irqsave.__remove_mapping.shrink_page_list.shrink_inactive_list.shrink_node_memcg: 5.94,

Link: http://lkml.kernel.org/r/1473270649-27229-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Huang Ying 6b53491598 mm, swap: add swap_cluster_list
This is a code clean up patch without functionality changes.  The
swap_cluster_list data structure and its operations are introduced to
provide some better encapsulation for the free cluster and discard
cluster list operations.  This avoid some code duplication, improved the
code readability, and reduced the total line number.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1472067356-16004-1-git-send-email-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Santosh Shilimkar c8de641b1e mm: fix the page_swap_info() BUG_ON check
Commit 62c230bc17 ("mm: add support for a filesystem to activate
swap files and use direct_IO for writing swap pages") replaced the
swap_aops dirty hook from __set_page_dirty_no_writeback() with
swap_set_page_dirty().

For normal cases without these special SWP flags code path falls back to
__set_page_dirty_no_writeback() so the behaviour is expected to be the
same as before.

But swap_set_page_dirty() makes use of the page_swap_info() helper to
get the swap_info_struct to check for the flags like SWP_FILE,
SWP_BLKDEV etc as desired for those features.  This helper has
BUG_ON(!PageSwapCache(page)) which is racy and safe only for the
set_page_dirty_lock() path.

For the set_page_dirty() path which is often needed for cases to be
called from irq context, kswapd() can toggle the flag behind the back
while the call is getting executed when system is low on memory and
heavy swapping is ongoing.

This ends up with undesired kernel panic.

This patch just moves the check outside the helper to its users
appropriately to fix kernel panic for the described path.  Couple of
users of helpers already take care of SwapCache condition so I skipped
them.

Link: http://lkml.kernel.org/r/1473460718-31013-1-git-send-email-santosh.shilimkar@oracle.com
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joe Perches <joe@perches.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Jens Axboe <axboe@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>	[4.7.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-19 15:36:17 -07:00
Vlastimil Babka 8ea1d2a198 mm, frontswap: convert frontswap_enabled to static key
I have noticed that frontswap.h first declares "frontswap_enabled" as
extern bool variable, and then overrides it with "#define
frontswap_enabled (1)" for CONFIG_FRONTSWAP=Y or (0) when disabled.  The
bool variable isn't actually instantiated anywhere.

This all looks like an unfinished attempt to make frontswap_enabled
reflect whether a backend is instantiated.  But in the current state,
all frontswap hooks call unconditionally into frontswap.c just to check
if frontswap_ops is non-NULL.  This should at least be checked inline,
but we can further eliminate the overhead when CONFIG_FRONTSWAP is
enabled and no backend registered, using a static key that is initially
disabled, and gets enabled only upon first backend registration.

Thus, checks for "frontswap_enabled" are replaced with
"frontswap_enabled()" wrapping the static key check.  There are two
exceptions:

- xen's selfballoon_process() was testing frontswap_enabled in code guarded
  by #ifdef CONFIG_FRONTSWAP, which was effectively always true when reachable.
  The patch just removes this check. Using frontswap_enabled() does not sound
  correct here, as this can be true even without xen's own backend being
  registered.

- in SYSCALL_DEFINE2(swapon), change the check to IS_ENABLED(CONFIG_FRONTSWAP)
  as it seems the bitmap allocation cannot currently be postponed until a
  backend is registered. This means that frontswap will still have some
  memory overhead by being configured, but without a backend.

After the patch, we can expect that some functions in frontswap.c are
called only when frontswap_ops is non-NULL.  Change the checks there to
VM_BUG_ONs.  While at it, convert other BUG_ONs to VM_BUG_ONs as
frontswap has been stable for some time.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1463152235-9717-1-git-send-email-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Andrea Arcangeli 6d0a07edd1 mm: thp: calculate the mapcount correctly for THP pages during WP faults
This will provide fully accuracy to the mapcount calculation in the
write protect faults, so page pinning will not get broken by false
positive copy-on-writes.

total_mapcount() isn't the right calculation needed in
reuse_swap_page(), so this introduces a page_trans_huge_mapcount()
that is effectively the full accurate return value for page_mapcount()
if dealing with Transparent Hugepages, however we only use the
page_trans_huge_mapcount() during COW faults where it strictly needed,
due to its higher runtime cost.

This also provide at practical zero cost the total_mapcount
information which is needed to know if we can still relocate the page
anon_vma to the local vma. If page_trans_huge_mapcount() returns 1 we
can reuse the page no matter if it's a pte or a pmd_trans_huge
triggering the fault, but we can only relocate the page anon_vma to
the local vma->anon_vma if we're sure it's only this "vma" mapping the
whole THP physical range.

Kirill A. Shutemov discovered the problem with moving the page
anon_vma to the local vma->anon_vma in a previous version of this
patch and another problem in the way page_move_anon_rmap() was called.

Andrew Morton discovered that CONFIG_SWAP=n wouldn't build in a
previous version, because reuse_swap_page must be a macro to call
page_trans_huge_mapcount from swap.h, so this uses a macro again
instead of an inline function. With this change at least it's a less
dangerous usage than it was before, because "page" is used only once
now, while with the previous code reuse_swap_page(page++) would have
called page_mapcount on page+1 and it would have increased page twice
instead of just once.

Dean Luick noticed an uninitialized variable that could result in a
rmap inefficiency for the non-THP case in a previous version.

Mike Marciniszyn said:

: Our RDMA tests are seeing an issue with memory locking that bisects to
: commit 61f5d698cc ("mm: re-enable THP")
:
: The test program registers two rather large MRs (512M) and RDMA
: writes data to a passive peer using the first and RDMA reads it back
: into the second MR and compares that data.  The sizes are chosen randomly
: between 0 and 1024 bytes.
:
: The test will get through a few (<= 4 iterations) and then gets a
: compare error.
:
: Tracing indicates the kernel logical addresses associated with the individual
: pages at registration ARE correct , the data in the "RDMA read response only"
: packets ARE correct.
:
: The "corruption" occurs when the packet crosse two pages that are not physically
: contiguous.   The second page reads back as zero in the program.
:
: It looks like the user VA at the point of the compare error no longer points to
: the same physical address as was registered.
:
: This patch totally resolves the issue!

Link: http://lkml.kernel.org/r/1462547040-1737-2-git-send-email-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Reviewed-by: Dean Luick <dean.luick@intel.com>
Tested-by: Alex Williamson <alex.williamson@redhat.com>
Tested-by: Mike Marciniszyn <mike.marciniszyn@intel.com>
Tested-by: Josh Collier <josh.d.collier@intel.com>
Cc: Marc Haber <mh+linux-kernel@zugschlus.de>
Cc: <stable@vger.kernel.org>	[4.5]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-12 15:52:50 -07:00
Kirill A. Shutemov 09cbfeaf1a mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time
ago with promise that one day it will be possible to implement page
cache with bigger chunks than PAGE_SIZE.

This promise never materialized.  And unlikely will.

We have many places where PAGE_CACHE_SIZE assumed to be equal to
PAGE_SIZE.  And it's constant source of confusion on whether
PAGE_CACHE_* or PAGE_* constant should be used in a particular case,
especially on the border between fs and mm.

Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much
breakage to be doable.

Let's stop pretending that pages in page cache are special.  They are
not.

The changes are pretty straight-forward:

 - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>;

 - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN};

 - page_cache_get() -> get_page();

 - page_cache_release() -> put_page();

This patch contains automated changes generated with coccinelle using
script below.  For some reason, coccinelle doesn't patch header files.
I've called spatch for them manually.

The only adjustment after coccinelle is revert of changes to
PAGE_CAHCE_ALIGN definition: we are going to drop it later.

There are few places in the code where coccinelle didn't reach.  I'll
fix them manually in a separate patch.  Comments and documentation also
will be addressed with the separate patch.

virtual patch

@@
expression E;
@@
- E << (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
expression E;
@@
- E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT)
+ E

@@
@@
- PAGE_CACHE_SHIFT
+ PAGE_SHIFT

@@
@@
- PAGE_CACHE_SIZE
+ PAGE_SIZE

@@
@@
- PAGE_CACHE_MASK
+ PAGE_MASK

@@
expression E;
@@
- PAGE_CACHE_ALIGN(E)
+ PAGE_ALIGN(E)

@@
expression E;
@@
- page_cache_get(E)
+ get_page(E)

@@
expression E;
@@
- page_cache_release(E)
+ put_page(E)

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-04 10:41:08 -07:00
Linus Torvalds 266c73b777 Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
Pull drm updates from Dave Airlie:
 "This is the main drm pull request for 4.6 kernel.

  Overall the coolest thing here for me is the nouveau maxwell signed
  firmware support from NVidia, it's taken a long while to extract this
  from them.

  I also wish the ARM vendors just designed one set of display IP, ARM
  display block proliferation is definitely increasing.

  Core:
     - drm_event cleanups
     - Internal API cleanup making mode_fixup optional.
     - Apple GMUX vga switcheroo support.
     - DP AUX testing interface

  Panel:
     - Refactoring of DSI core for use over more transports.

  New driver:
     - ARM hdlcd driver

  i915:
     - FBC/PSR (framebuffer compression, panel self refresh) enabled by default.
     - Ongoing atomic display support work
     - Ongoing runtime PM work
     - Pixel clock limit checks
     - VBT DSI description support
     - GEM fixes
     - GuC firmware scheduler enhancements

  amdkfd:
     - Deferred probing fixes to avoid make file or link ordering.

  amdgpu/radeon:
     - ACP support for i2s audio support.
     - Command Submission/GPU scheduler/GPUVM optimisations
     - Initial GPU reset support for amdgpu

  vmwgfx:
     - Support for DX10 gen mipmaps
     - Pageflipping and other fixes.

  exynos:
     - Exynos5420 SoC support for FIMD
     - Exynos5422 SoC support for MIPI-DSI

  nouveau:
     - GM20x secure boot support - adds acceleration for Maxwell GPUs.
     - GM200 support
     - GM20B clock driver support
     - Power sensors work

  etnaviv:
     - Correctness fixes for GPU cache flushing
     - Better support for i.MX6 systems.

  imx-drm:
     - VBlank IRQ support
     - Fence support
     - OF endpoint support

  msm:
     - HDMI support for 8996 (snapdragon 820)
     - Adreno 430 support
     - Timestamp queries support

  virtio-gpu:
     - Fixes for Android support.

  rockchip:
     - Add support for Innosilicion HDMI

  rcar-du:
     - Support for 4 crtcs
     - R8A7795 support
     - RCar Gen 3 support

  omapdrm:
     - HDMI interlace output support
     - dma-buf import support
     - Refactoring to remove a lot of legacy code.

  tilcdc:
     - Rewrite of pageflipping code
     - dma-buf support
     - pinctrl support

  vc4:
     - HDMI modesetting bug fixes
     - Significant 3D performance improvement.

  fsl-dcu (FreeScale):
     - Lots of fixes

  tegra:
     - Two small fixes

  sti:
     - Atomic support for planes
     - Improved HDMI support"

* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (1063 commits)
  drm/amdgpu: release_pages requires linux/pagemap.h
  drm/sti: restore mode_fixup callback
  drm/amdgpu/gfx7: add MTYPE definition
  drm/amdgpu: removing BO_VAs shouldn't be interruptible
  drm/amd/powerplay: show uvd/vce power gate enablement for tonga.
  drm/amd/powerplay: show uvd/vce power gate info for fiji
  drm/amdgpu: use sched fence if possible
  drm/amdgpu: move ib.fence to job.fence
  drm/amdgpu: give a fence param to ib_free
  drm/amdgpu: include the right version of gmc header files for iceland
  drm/radeon: fix indentation.
  drm/amd/powerplay: add uvd/vce dpm enabling flag to fix the performance issue for CZ
  drm/amdgpu: switch back to 32bit hw fences v2
  drm/amdgpu: remove amdgpu_fence_is_signaled
  drm/amdgpu: drop the extra fence range check v2
  drm/amdgpu: signal fences directly in amdgpu_fence_process
  drm/amdgpu: cleanup amdgpu_fence_wait_empty v2
  drm/amdgpu: keep all fences in an RCU protected array v2
  drm/amdgpu: add number of hardware submissions to amdgpu_fence_driver_init_ring
  drm/amdgpu: RCU protected amd_sched_fence_release
  ...
2016-03-21 13:48:00 -07:00
Joe Perches 756a025f00 mm: coalesce split strings
Kernel style prefers a single string over split strings when the string is
'user-visible'.

Miscellanea:

 - Add a missing newline
 - Realign arguments

Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Tejun Heo <tj@kernel.org>	[percpu]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Dave Airlie b039d6d025 Merge tag 'drm-intel-next-2016-01-24' of git://anongit.freedesktop.org/drm-intel into drm-next
- support for v3 vbt dsi blocks (Jani)
- improve mmio debug checks (Mika Kuoppala)
- reorg the ddi port translation table entries and related code (Ville)
- reorg gen8 interrupt handling for future platforms (Tvrtko)
- refactor tile width/height computations for framebuffers (Ville)
- kerneldoc integration for intel_pm.c (Jani)
- move default context from engines to device-global dev_priv (Dave Gordon)
- make seqno/irq ordering coherent with execlist (Chris)
- decouple internal engine number from UABI (Chris&Tvrtko)
- tons of small fixes all over, as usual

* tag 'drm-intel-next-2016-01-24' of git://anongit.freedesktop.org/drm-intel: (148 commits)
  drm/i915: Update DRIVER_DATE to 20160124
  drm/i915: Seal busy-ioctl uABI and prevent leaking of internal ids
  drm/i915: Decouple execbuf uAPI from internal implementation
  drm/i915: Use ordered seqno write interrupt generation on gen8+ execlists
  drm/i915: Limit the auto arming of mmio debugs on vlv/chv
  drm/i915: Tune down "GT register while GT waking disabled" message
  drm/i915: tidy up a few leftovers
  drm/i915: abolish separate per-ring default_context pointers
  drm/i915: simplify allocation of driver-internal requests
  drm/i915: Fix NULL plane->fb oops on SKL
  drm/i915: Do not put big intel_crtc_state on the stack
  Revert "drm/i915: Add two-stage ILK-style watermark programming (v10)"
  drm/i915: add DOC: headline to RC6 kernel-doc
  drm/i915: turn some bogus kernel-doc comments to normal comments
  drm/i915/sdvo: revert bogus kernel-doc comments to normal comments
  drm/i915/gen9: Correct max save/restore register count during gpu reset with GuC
  drm/i915: Demote user facing DMC firmware load failure message
  drm/i915: use hlist_for_each_entry
  drm/i915: skl_update_scaler() wants a rotation bitmask instead of bit number
  drm/i915: Don't reject primary plane windowing with color keying enabled on SKL+
  ...
2016-02-09 10:27:41 +10:00
Al Viro 5955102c99 wrappers for ->i_mutex access
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).

Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-01-22 18:04:28 -05:00
Vladimir Davydov 5ccc5abaaf mm: free swap cache aggressively if memcg swap is full
Swap cache pages are freed aggressively if swap is nearly full (>50%
currently), because otherwise we are likely to stop scanning anonymous
when we near the swap limit even if there is plenty of freeable swap cache
pages.  We should follow the same trend in case of memory cgroup, which
has its own swap limit.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov 37e8435119 mm: memcontrol: charge swap to cgroup2
This patchset introduces swap accounting to cgroup2.

This patch (of 7):

In the legacy hierarchy we charge memsw, which is dubious, because:

 - memsw.limit must be >= memory.limit, so it is impossible to limit
   swap usage less than memory usage. Taking into account the fact that
   the primary limiting mechanism in the unified hierarchy is
   memory.high while memory.limit is either left unset or set to a very
   large value, moving memsw.limit knob to the unified hierarchy would
   effectively make it impossible to limit swap usage according to the
   user preference.

 - memsw.usage != memory.usage + swap.usage, because a page occupying
   both swap entry and a swap cache page is charged only once to memsw
   counter. As a result, it is possible to effectively eat up to
   memory.limit of memory pages *and* memsw.limit of swap entries, which
   looks unexpected.

That said, we should provide a different swap limiting mechanism for
cgroup2.

This patch adds mem_cgroup->swap counter, which charges the actual number
of swap entries used by a cgroup.  It is only charged in the unified
hierarchy, while the legacy hierarchy memsw logic is left intact.

The swap usage can be monitored using new memory.swap.current file and
limited using memory.swap.max.

Note, to charge swap resource properly in the unified hierarchy, we have
to make swap_entry_free uncharge swap only when ->usage reaches zero, not
just ->count, i.e.  when all references to a swap entry, including the one
taken by swap cache, are gone.  This is necessary, because otherwise
swap-in could result in uncharging swap even if the page is still in swap
cache and hence still occupies a swap entry.  At the same time, this
shouldn't break memsw counter logic, where a page is never charged twice
for using both memory and swap, because in case of legacy hierarchy we
uncharge swap on commit (see mem_cgroup_commit_charge).

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Hugh Dickins 9f8bdb3f3d mm: make swapoff more robust against soft dirty
Both s390 and powerpc have hit the issue of swapoff hanging, when
CONFIG_HAVE_ARCH_SOFT_DIRTY and CONFIG_MEM_SOFT_DIRTY ifdefs were not
quite as x86_64 had them.  I think it would be much clearer if
HAVE_ARCH_SOFT_DIRTY was just a Kconfig option set by architectures to
determine whether the MEM_SOFT_DIRTY option should be offered, and the
actual code depend upon CONFIG_MEM_SOFT_DIRTY alone.

But won't embark on that change myself: instead make swapoff more
robust, by using pte_swp_clear_soft_dirty() on each pte it encounters,
without an explicit #ifdef CONFIG_MEM_SOFT_DIRTY.  That being a no-op,
whether the bit in question is defined as 0 or the asm-generic fallback
is used, unless soft dirty is fully turned on.

Why "maybe" in maybe_same_pte()? Rename it pte_same_as_swp().

Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov 1f25fe20a7 mm, thp: adjust conditions when we can reuse the page on WP fault
With new refcounting we will be able map the same compound page with
PTEs and PMDs.  It requires adjustment to conditions when we can reuse
the page on write-protection fault.

For PTE fault we can't reuse the page if it's part of huge page.

For PMD we can only reuse the page if nobody else maps the huge page or
it's part.  We can do it by checking page_mapcount() on each sub-page,
but it's expensive.

The cheaper way is to check page_count() to be equal 1: every mapcount
takes page reference, so this way we can guarantee, that the PMD is the
only mapping.

This approach can give false negative if somebody pinned the page, but
that doesn't affect correctness.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov f627c2f537 memcg: adjust to support new THP refcounting
As with rmap, with new refcounting we cannot rely on PageTransHuge() to
check if we need to charge size of huge page form the cgroup.  We need
to get information from caller to know whether it was mapped with PMD or
PTE.

We do uncharge when last reference on the page gone.  At that point if
we see PageTransHuge() it means we need to unchange whole huge page.

The tricky part is partial unmap -- when we try to unmap part of huge
page.  We don't do a special handing of this situation, meaning we don't
uncharge the part of huge page unless last user is gone or
split_huge_page() is triggered.  In case of cgroup memory pressure
happens the partial unmapped page will be split through shrinker.  This
should be good enough.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov d281ee6145 rmap: add argument to charge compound page
We're going to allow mapping of individual 4k pages of THP compound
page.  It means we cannot rely on PageTransHuge() check to decide if
map/unmap small page or THP.

The patch adds new argument to rmap functions to indicate whether we
want to operate on whole compound page or only the small page.

[n-horiguchi@ah.jp.nec.com: fix mapcount mismatch in hugepage migration]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Geliang Tang 0d576d20cc mm/swapfile.c: use list_for_each_entry_safe in free_swap_count_continuations
Use list_for_each_entry_safe() instead of list_for_each_safe() to
simplify the code.

Signed-off-by: Geliang Tang <geliangtang@163.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Geliang Tang a8ae499170 mm/swapfile.c: use list_{next,first}_entry
To make the intention clearer, use list_{next,first}_entry instead of
list_entry().

Signed-off-by: Geliang Tang <geliangtang@163.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Chris Wilson fb0fec501f mm: Export nr_swap_pages
Some modules, like i915.ko, use swappable objects and may try to swap
them out under memory pressure (via the shrinker). Before doing so, they
want to check using get_nr_swap_pages() to see if any swap space is
available as otherwise they will waste time purging the object from the
device without recovering any memory for the system. This requires the
nr_swap_pages counter to be exported to the modules.

Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: "Goel, Akash" <akash.goel@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: linux-mm@kvack.org
Link: http://patchwork.freedesktop.org/patch/msgid/1449244734-25733-1-git-send-email-chris@chris-wilson.co.uk
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2016-01-05 11:02:18 +01:00
Minchan Kim 8334b96221 mm: /proc/pid/smaps:: show proportional swap share of the mapping
We want to know per-process workingset size for smart memory management
on userland and we use swap(ex, zram) heavily to maximize memory
efficiency so workingset includes swap as well as RSS.

On such system, if there are lots of shared anonymous pages, it's really
hard to figure out exactly how many each process consumes memory(ie, rss
+ wap) if the system has lots of shared anonymous memory(e.g, android).

This patch introduces SwapPss field on /proc/<pid>/smaps so we can get
more exact workingset size per process.

Bongkyu tested it. Result is below.

1. 50M used swap
SwapTotal: 461976 kB
SwapFree: 411192 kB

$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
48236
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
141184

2. 240M used swap
SwapTotal: 461976 kB
SwapFree: 216808 kB

$ adb shell cat /proc/*/smaps | grep "SwapPss:" | awk '{sum += $2} END {print sum}';
230315
$ adb shell cat /proc/*/smaps | grep "Swap:" | awk '{sum += $2} END {print sum}';
1387744

[akpm@linux-foundation.org: simplify kunmap_atomic() call]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Bongkyu Kim <bongkyu.kim@lge.com>
Tested-by: Bongkyu Kim <bongkyu.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Hugh Dickins 6f179af88f mm: fix potential data race in SyS_swapon
While running KernelThreadSanitizer (ktsan) on upstream kernel with
trinity, we got a few reports from SyS_swapon, here is one of them:

Read of size 8 by thread T307 (K7621):
 [<     inlined    >] SyS_swapon+0x3c0/0x1850 SYSC_swapon mm/swapfile.c:2395
 [<ffffffff812242c0>] SyS_swapon+0x3c0/0x1850 mm/swapfile.c:2345
 [<ffffffff81e97c8a>] ia32_do_call+0x1b/0x25

Looks like the swap_lock should be taken when iterating through the
swap_info array on lines 2392 - 2401: q->swap_file may be reset to
NULL by another thread before it is dereferenced for f_mapping.

But why is that iteration needed at all?  Doesn't the claim_swapfile()
which follows do all that is needed to check for a duplicate entry -
FMODE_EXCL on a bdev, testing IS_SWAPFILE under i_mutex on a regfile?

Well, not quite: bd_may_claim() allows the same "holder" to claim the
bdev again, so we do need to use a different holder than "sys_swapon";
and we should not replace appropriate -EBUSY by inappropriate -EINVAL.

Index i was reused in a cpu loop further down: renamed cpu there.

Reported-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-08-21 02:33:07 -04:00
Miklos Szeredi 2726d56620 vfs: add seq_file_path() helper
Turn
	seq_path(..., &file->f_path, ...);
into
	seq_file_path(..., file, ...);

Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-06-23 18:01:07 -04:00
Jason Low 4db0c3c298 mm: remove rest of ACCESS_ONCE() usages
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.

This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses.  This makes things cleaner, instead
of using separate/multiple sets of APIs.

Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:18 -07:00
Johannes Weiner 5d1ea48bdd mm: page_cgroup: rename file to mm/swap_cgroup.c
Now that the external page_cgroup data structure and its lookup is gone,
the only code remaining in there is swap slot accounting.

Rename it and move the conditional compilation into mm/Makefile.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:09 -08:00
Johannes Weiner 0a31bc97c8 mm: memcontrol: rewrite uncharge API
The memcg uncharging code that is involved towards the end of a page's
lifetime - truncation, reclaim, swapout, migration - is impressively
complicated and fragile.

Because anonymous and file pages were always charged before they had their
page->mapping established, uncharges had to happen when the page type
could still be known from the context; as in unmap for anonymous, page
cache removal for file and shmem pages, and swap cache truncation for swap
pages.  However, these operations happen well before the page is actually
freed, and so a lot of synchronization is necessary:

- Charging, uncharging, page migration, and charge migration all need
  to take a per-page bit spinlock as they could race with uncharging.

- Swap cache truncation happens during both swap-in and swap-out, and
  possibly repeatedly before the page is actually freed.  This means
  that the memcg swapout code is called from many contexts that make
  no sense and it has to figure out the direction from page state to
  make sure memory and memory+swap are always correctly charged.

- On page migration, the old page might be unmapped but then reused,
  so memcg code has to prevent untimely uncharging in that case.
  Because this code - which should be a simple charge transfer - is so
  special-cased, it is not reusable for replace_page_cache().

But now that charged pages always have a page->mapping, introduce
mem_cgroup_uncharge(), which is called after the final put_page(), when we
know for sure that nobody is looking at the page anymore.

For page migration, introduce mem_cgroup_migrate(), which is called after
the migration is successful and the new page is fully rmapped.  Because
the old page is no longer uncharged after migration, prevent double
charges by decoupling the page's memcg association (PCG_USED and
pc->mem_cgroup) from the page holding an actual charge.  The new bits
PCG_MEM and PCG_MEMSW represent the respective charges and are transferred
to the new page during migration.

mem_cgroup_migrate() is suitable for replace_page_cache() as well,
which gets rid of mem_cgroup_replace_page_cache().  However, care
needs to be taken because both the source and the target page can
already be charged and on the LRU when fuse is splicing: grab the page
lock on the charge moving side to prevent changing pc->mem_cgroup of a
page under migration.  Also, the lruvecs of both pages change as we
uncharge the old and charge the new during migration, and putback may
race with us, so grab the lru lock and isolate the pages iff on LRU to
prevent races and ensure the pages are on the right lruvec afterward.

Swap accounting is massively simplified: because the page is no longer
uncharged as early as swap cache deletion, a new mem_cgroup_swapout() can
transfer the page's memory+swap charge (PCG_MEMSW) to the swap entry
before the final put_page() in page reclaim.

Finally, page_cgroup changes are now protected by whatever protection the
page itself offers: anonymous pages are charged under the page table lock,
whereas page cache insertions, swapin, and migration hold the page lock.
Uncharging happens under full exclusion with no outstanding references.
Charging and uncharging also ensure that the page is off-LRU, which
serializes against charge migration.  Remove the very costly page_cgroup
lock and set pc->flags non-atomically.

[mhocko@suse.cz: mem_cgroup_charge_statistics needs preempt_disable]
[vdavydov@parallels.com: fix flags definition]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Tested-by: Jet Chen <jet.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Felipe Balbi <balbi@ti.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Johannes Weiner 00501b531c mm: memcontrol: rewrite charge API
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages.  This drastically simplifies the code and
reduces charging and uncharging overhead.  The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.

Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
 executing in the root memcg).  Before:

    15.36%              cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.31%              cat  [kernel.kallsyms]   [k] memset
    11.48%              cat  [kernel.kallsyms]   [k] do_mpage_readpage
     4.23%              cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.38%              cat  [kernel.kallsyms]   [k] put_page
     2.32%              cat  [kernel.kallsyms]   [k] __mem_cgroup_commit_charge
     2.18%          kswapd0  [kernel.kallsyms]   [k] __mem_cgroup_uncharge_common
     1.92%          kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.86%              cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.62%              cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn

After:

    15.67%           cat  [kernel.kallsyms]   [k] copy_user_generic_string
    13.48%           cat  [kernel.kallsyms]   [k] memset
    11.42%           cat  [kernel.kallsyms]   [k] do_mpage_readpage
     3.98%           cat  [kernel.kallsyms]   [k] get_page_from_freelist
     2.46%           cat  [kernel.kallsyms]   [k] put_page
     2.13%       kswapd0  [kernel.kallsyms]   [k] shrink_page_list
     1.88%           cat  [kernel.kallsyms]   [k] __radix_tree_lookup
     1.67%           cat  [kernel.kallsyms]   [k] __pagevec_lru_add_fn
     1.39%       kswapd0  [kernel.kallsyms]   [k] free_pcppages_bulk
     1.30%           cat  [kernel.kallsyms]   [k] kfree

As you can see, the memcg footprint has shrunk quite a bit.

   text    data     bss     dec     hex filename
  37970    9892     400   48262    bc86 mm/memcontrol.o.old
  35239    9892     400   45531    b1db mm/memcontrol.o

This patch (of 4):

The memcg charge API charges pages before they are rmapped - i.e.  have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on.  Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.

Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:

  mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
  pages from the memcg if necessary.

  mem_cgroup_commit_charge() commits the page to the charge once it
  has a valid page->mapping and PageAnon() reliably tells the type.

  mem_cgroup_cancel_charge() aborts the transaction.

This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.

As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again.  Revive lru_cache_add_active_or_unevictable().

[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-08-08 15:57:17 -07:00
Chen Yucong 50088c4409 mm/swapfile.c: delete the "last_in_cluster < scan_base" loop in the body of scan_swap_map()
Via commit ebc2a1a691 ("swap: make cluster allocation per-cpu"), we
can find that all SWP_SOLIDSTATE "seek is cheap"(SSD case) has already
gone to si->cluster_info scan_swap_map_try_ssd_cluster() route.  So that
the "last_in_cluster < scan_base" loop in the body of scan_swap_map()
has already become a dead code snippet, and it should have been deleted.

This patch is to delete the redundant loop as Hugh and Shaohua
suggested.

[hughd@google.com: fix comment, simplify code]
Signed-off-by: Chen Yucong <slaoub@gmail.com>
Cc: Shaohua Li <shli@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:12 -07:00
Dan Streetman 18ab4d4ced swap: change swap_list_head to plist, add swap_avail_head
Originally get_swap_page() started iterating through the singly-linked
list of swap_info_structs using swap_list.next or highest_priority_index,
which both were intended to point to the highest priority active swap
target that was not full.  The first patch in this series changed the
singly-linked list to a doubly-linked list, and removed the logic to start
at the highest priority non-full entry; it starts scanning at the highest
priority entry each time, even if the entry is full.

Replace the manually ordered swap_list_head with a plist, swap_active_head.
Add a new plist, swap_avail_head.  The original swap_active_head plist
contains all active swap_info_structs, as before, while the new
swap_avail_head plist contains only swap_info_structs that are active and
available, i.e. not full.  Add a new spinlock, swap_avail_lock, to protect
the swap_avail_head list.

Mel Gorman suggested using plists since they internally handle ordering
the list entries based on priority, which is exactly what swap was doing
manually.  All the ordering code is now removed, and swap_info_struct
entries and simply added to their corresponding plist and automatically
ordered correctly.

Using a new plist for available swap_info_structs simplifies and
optimizes get_swap_page(), which no longer has to iterate over full
swap_info_structs.  Using a new spinlock for swap_avail_head plist
allows each swap_info_struct to add or remove themselves from the
plist when they become full or not-full; previously they could not
do so because the swap_info_struct->lock is held when they change
from full<->not-full, and the swap_lock protecting the main
swap_active_head must be ordered before any swap_info_struct->lock.

Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Cc: Weijie Yang <weijieut@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:07 -07:00
Dan Streetman adfab836f4 swap: change swap_info singly-linked list to list_head
The logic controlling the singly-linked list of swap_info_struct entries
for all active, i.e.  swapon'ed, swap targets is rather complex, because:

 - it stores the entries in priority order
 - there is a pointer to the highest priority entry
 - there is a pointer to the highest priority not-full entry
 - there is a highest_priority_index variable set outside the swap_lock
 - swap entries of equal priority should be used equally

this complexity leads to bugs such as: https://lkml.org/lkml/2014/2/13/181
where different priority swap targets are incorrectly used equally.

That bug probably could be solved with the existing singly-linked lists,
but I think it would only add more complexity to the already difficult to
understand get_swap_page() swap_list iteration logic.

The first patch changes from a singly-linked list to a doubly-linked list
using list_heads; the highest_priority_index and related code are removed
and get_swap_page() starts each iteration at the highest priority
swap_info entry, even if it's full.  While this does introduce unnecessary
list iteration (i.e.  Schlemiel the painter's algorithm) in the case where
one or more of the highest priority entries are full, the iteration and
manipulation code is much simpler and behaves correctly re: the above bug;
and the fourth patch removes the unnecessary iteration.

The second patch adds some minor plist helper functions; nothing new
really, just functions to match existing regular list functions.  These
are used by the next two patches.

The third patch adds plist_requeue(), which is used by get_swap_page() in
the next patch - it performs the requeueing of same-priority entries
(which moves the entry to the end of its priority in the plist), so that
all equal-priority swap_info_structs get used equally.

The fourth patch converts the main list into a plist, and adds a new plist
that contains only swap_info entries that are both active and not full.
As Mel suggested using plists allows removing all the ordering code from
swap - plists handle ordering automatically.  The list naming is also
clarified now that there are two lists, with the original list changed
from swap_list_head to swap_active_head and the new list named
swap_avail_head.  A new spinlock is also added for the new list, so
swap_info entries can be added or removed from the new list immediately as
they become full or not full.

This patch (of 4):

Replace the singly-linked list tracking active, i.e.  swapon'ed,
swap_info_struct entries with a doubly-linked list using struct
list_heads.  Simplify the logic iterating and manipulating the list of
entries, especially get_swap_page(), by using standard list_head
functions, and removing the highest priority iteration logic.

The change fixes the bug:
https://lkml.org/lkml/2014/2/13/181
in which different priority swap entries after the highest priority entry
are incorrectly used equally in pairs.  The swap behavior is now as
advertised, i.e. different priority swap entries are used in order, and
equal priority swap targets are used concurrently.

Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Cc: Weijie Yang <weijieut@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:07 -07:00
Weijie Yang f893ab41e4 mm/swap: fix race on swap_info reuse between swapoff and swapon
swapoff clear swap_info's SWP_USED flag prematurely and free its
resources after that.  A concurrent swapon will reuse this swap_info
while its previous resources are not cleared completely.

These late freed resources are:
 - p->percpu_cluster
 - swap_cgroup_ctrl[type]
 - block_device setting
 - inode->i_flags &= ~S_SWAPFILE

This patch clears the SWP_USED flag after all its resources are freed,
so that swapon can reuse this swap_info by alloc_swap_info() safely.

[akpm@linux-foundation.org: tidy up code comment]
Signed-off-by: Weijie Yang <weijie.yang@samsung.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-02-06 13:48:51 -08:00
Jamie Liu a5998061da mm/swapfile.c: do not skip lowest_bit in scan_swap_map() scan loop
In the second half of scan_swap_map()'s scan loop, offset is set to
si->lowest_bit and then incremented before entering the loop for the
first time, causing si->swap_map[si->lowest_bit] to be skipped.

Signed-off-by: Jamie Liu <jamieliu@google.com>
Cc: Shaohua Li <shli@fusionio.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Sasha Levin 309381feae mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
Most of the VM_BUG_ON assertions are performed on a page.  Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.

I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.

This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.

[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Krzysztof Kozlowski 58e97ba6b1 frontswap: enable call to invalidate area on swapoff
During swapoff the frontswap_map was NULL-ified before calling
frontswap_invalidate_area().  However the frontswap_invalidate_area()
exits early if frontswap_map is NULL.  Invalidate was never called
during swapoff.

This patch moves frontswap_map_set() in swapoff just after calling
frontswap_invalidate_area() so outside of locks (swap_lock and
swap_info_struct->lock).  This shouldn't be a problem as during swapon
the frontswap_map_set() is called also outside of any locks.

Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Reviewed-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:07 +09:00
Seth Jennings 2de1a7e40a mm/swapfile.c: fix comment typos
Signed-off-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:07 +09:00
Krzysztof Kozlowski 5b808a2300 swap: fix set_blocksize race during swapon/swapoff
Fix race between swapoff and swapon.  Swapoff used old_block_size from
swap_info outside of swapon_mutex so it could be overwritten by
concurrent swapon.

The race has visible effect only if more than one swap block device
exists with different block sizes (e.g.  /dev/sda1 with block size 4096
and /dev/sdb1 with 512).  In such case it leads to setting the blocksize
of swapped off device with wrong blocksize.

The bug can be triggered with multiple concurrent swapoff and swapon:
0. Swap for some device is on.
1. swapoff:
First the swapoff is called on this device and "struct swap_info_struct
*p" is assigned. This is done under swap_lock however this lock is
released for the call try_to_unuse().

2. swapon:
After the assignment above (and before acquiring swapon_mutex &
swap_lock by swapoff) the swapon is called on the same device.
The p->old_block_size is assigned to the value of block_size the device.
This block size should be the same as previous but sometimes it is not.
The swapon ends successfully.

3. swapoff:
Swapoff resumes, grabs the locks and mutex and continues to disable this
swap device. Now it sets the block size to value taken from swap_info
which was overwritten by swapon in 2.

Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Reported-by: Weijie Yang <weijie.yang.kh@gmail.com>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-16 21:35:53 -07:00
Shaohua Li ebc2a1a691 swap: make cluster allocation per-cpu
swap cluster allocation is to get better request merge to improve
performance.  But the cluster is shared globally, if multiple tasks are
doing swap, this will cause interleave disk access.  While multiple tasks
swap is quite common, for example, each numa node has a kswapd thread
doing swap and multiple threads/processes doing direct page reclaim.

ioscheduler can't help too much here, because tasks don't send swapout IO
down to block layer in the meantime.  Block layer does merge some IOs, but
a lot not, depending on how many tasks are doing swapout concurrently.  In
practice, I've seen a lot of small size IO in swapout workloads.

We makes the cluster allocation per-cpu here.  The interleave disk access
issue goes away.  All tasks swapout to their own cluster, so swapout will
become sequential, which can be easily merged to big size IO.  If one CPU
can't get its per-cpu cluster (for example, there is no free cluster
anymore in the swap), it will fallback to scan swap_map.  The CPU can
still continue swap.  We don't need recycle free swap entries of other
CPUs.

In my test (swap to a 2-disk raid0 partition), this improves around 10%
swapout throughput, and request size is increased significantly.

How does this impact swap readahead is uncertain though.  On one side,
page reclaim always isolates and swaps several adjancent pages, this will
make page reclaim write the pages sequentially and benefit readahead.  On
the other side, several CPU write pages interleave means the pages don't
live _sequentially_ but relatively _near_.  In the per-cpu allocation
case, if adjancent pages are written by different cpus, they will live
relatively _far_.  So how this impacts swap readahead depends on how many
pages page reclaim isolates and swaps one time.  If the number is big,
this patch will benefit swap readahead.  Of course, this is about
sequential access pattern.  The patch has no impact for random access
pattern, because the new cluster allocation algorithm is just for SSD.

Alternative solution is organizing swap layout to be per-mm instead of
this per-cpu approach.  In the per-mm layout, we allocate a disk range for
each mm, so pages of one mm live in swap disk adjacently.  per-mm layout
has potential issues of lock contention if multiple reclaimers are swap
pages from one mm.  For a sequential workload, per-mm layout is better to
implement swap readahead, because pages from the mm are adjacent in disk.
But per-cpu layout isn't very bad in this workload, as page reclaim always
isolates and swaps several pages one time, such pages will still live in
disk sequentially and readahead can utilize this.  For a random workload,
per-mm layout isn't beneficial of request merge, because it's quite
possible pages from different mm are swapout in the meantime and IO can't
be merged in per-mm layout.  while with per-cpu layout we can merge
requests from any mm.  Considering random workload is more popular in
workloads with swap (and per-cpu approach isn't too bad for sequential
workload too), I'm choosing per-cpu layout.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:17 -07:00
Shaohua Li edfe23dac3 swap: fix races exposed by swap discard
The previous patch can expose races, according to Hugh:

swapoff was sometimes failing with "Cannot allocate memory", coming from
try_to_unuse()'s -ENOMEM: it needs to allow for swap_duplicate() failing
on a free entry temporarily SWAP_MAP_BAD while being discarded.

We should use ACCESS_ONCE() there, and whenever accessing swap_map
locklessly; but rather than peppering it throughout try_to_unuse(), just
declare *swap_map with volatile.

try_to_unuse() is accustomed to *swap_map going down racily, but not
necessarily to it jumping up from 0 to SWAP_MAP_BAD: we'll be safer to
prevent that transition once SWP_WRITEOK is switched off, when it's a
waste of time to issue discards anyway (swapon can do a whole discard).

Another issue is:

In swapin_readahead(), read_swap_cache_async() can read a bad swap entry,
because we don't check if readahead swap entry is bad.  This doesn't break
anything but such swapin page is wasteful and can only be freed at page
reclaim.  We should avoid read such swap entry.  And in discard, we mark
swap entry SWAP_MAP_BAD and then switch it to normal when discard is
finished.  If readahead reads such swap entry, we have the same issue, so
we much check if swap entry is bad too.

Thanks Hugh to inspire swapin_readahead could use bad swap entry.

[include Hugh's patch 'swap: fix swapoff ENOMEMs from discard']
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:16 -07:00
Shaohua Li 815c2c543d swap: make swap discard async
swap can do cluster discard for SSD, which is good, but there are some
problems here:

1. swap do the discard just before page reclaim gets a swap entry and
   writes the disk sectors.  This is useless for high end SSD, because an
   overwrite to a sector implies a discard to original sector too.  A
   discard + overwrite == overwrite.

2. the purpose of doing discard is to improve SSD firmware garbage
   collection.  Idealy we should send discard as early as possible, so
   firmware can do something smart.  Sending discard just after swap entry
   is freed is considered early compared to sending discard before write.
   Of course, if workload is already bound to gc speed, sending discard
   earlier or later doesn't make

3. block discard is a sync API, which will delay scan_swap_map()
   significantly.

4. Write and discard command can be executed parallel in PCIe SSD.
   Making swap discard async can make execution more efficiently.

This patch makes swap discard async and moves discard to where swap entry
is freed.  Discard and write have no dependence now, so above issues can
be avoided.  Idealy we should do discard for any freed sectors, but some
SSD discard is very slow.  This patch still does discard for a whole
cluster.

My test does a several round of 'mmap, write, unmap', which will trigger a
lot of swap discard.  In a fusionio card, with this patch, the test
runtime is reduced to 18% of the time without it, so around 5.5x faster.

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:15 -07:00
Shaohua Li 2a8f944934 swap: change block allocation algorithm for SSD
I'm using a fast SSD to do swap.  scan_swap_map() sometimes uses up to
20~30% CPU time (when cluster is hard to find, the CPU time can be up to
80%), which becomes a bottleneck.  scan_swap_map() scans a byte array to
search a 256 page cluster, which is very slow.

Here I introduced a simple algorithm to search cluster.  Since we only
care about 256 pages cluster, we can just use a counter to track if a
cluster is free.  Every 256 pages use one int to store the counter.  If
the counter of a cluster is 0, the cluster is free.  All free clusters
will be added to a list, so searching cluster is very efficient.  With
this, scap_swap_map() overhead disappears.

This might help low end SD card swap too.  Because if the cluster is
aligned, SD firmware can do flash erase more efficiently.

We only enable the algorithm for SSD.  Hard disk swap isn't fast enough
and has downside with the algorithm which might introduce regression (see
below).

The patch slightly changes which cluster is choosen.  It always adds free
cluster to list tail.  This can help wear leveling for low end SSD too.
And if no cluster found, the scan_swap_map() will do search from the end
of last cluster.  So if no cluster found, the scan_swap_map() will do
search from the end of last free cluster, which is random.  For SSD, this
isn't a problem at all.

Another downside is the cluster must be aligned to 256 pages, which will
reduce the chance to find a cluster.  I would expect this isn't a big
problem for SSD because of the non-seek penality.  (And this is the reason
I only enable the algorithm for SSD).

Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kyungmin Park <kmpark@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:15 -07:00
Andrew Morton 465c47fd8d mm/swapfile.c: convert to pr_foo()
A few 80-col gymnastics were cleaned up as a result.

Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:03 -07:00
Raymond Jennings d6bbbd29b1 swap: warn when a swap area overflows the maximum size
It is possible to swapon a swap area that is too big for the pte width
to handle.

Presently this failure happens silently.

Instead, emit a diagnostic to warn the user.

Testing results, root prompt commands and kernel log messages:

# lvresize /dev/system/swap --size 16G
# mkswap /dev/system/swap
# swapon /dev/system/swap

Jul  7 04:27:22 warfang kernel: Adding 16777212k swap
on /dev/mapper/system-swap.  Priority:-1 extents:1 across:16777212k

# lvresize /dev/system/swap --size 64G
# mkswap /dev/system/swap
# swapon /dev/system/swap

Jul  7 04:27:22 warfang kernel: Truncating oversized swap area, only
using 33554432k out of 67108860k
Jul  7 04:27:22 warfang kernel: Adding 33554428k swap
on /dev/mapper/system-swap.  Priority:-1 extents:1 across:33554428k

[akpm@linux-foundation.org: fix warning]
Signed-off-by: Raymond Jennings <shentino@gmail.com>
Acked-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:00 -07:00
Cyrill Gorcunov 179ef71cbc mm: save soft-dirty bits on swapped pages
Andy Lutomirski reported that if a page with _PAGE_SOFT_DIRTY bit set
get swapped out, the bit is getting lost and no longer available when
pte read back.

To resolve this we introduce _PTE_SWP_SOFT_DIRTY bit which is saved in
pte entry for the page being swapped out.  When such page is to be read
back from a swap cache we check for bit presence and if it's there we
clear it and restore the former _PAGE_SOFT_DIRTY bit back.

One of the problem was to find a place in pte entry where we can save
the _PTE_SWP_SOFT_DIRTY bit while page is in swap.  The _PAGE_PSE was
chosen for that, it doesn't intersect with swap entry format stored in
pte.

Reported-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-13 17:57:47 -07:00
Rafael Aquini dcf6b7ddd7 swap: discard while swapping only if SWAP_FLAG_DISCARD_PAGES
Considering the use cases where the swap device supports discard:
a) and can do it quickly;
b) but it's slow to do in small granularities (or concurrent with other
   I/O);
c) but the implementation is so horrendous that you don't even want to
   send one down;

And assuming that the sysadmin considers it useful to send the discards down
at all, we would (probably) want the following solutions:

  i. do the fine-grained discards for freed swap pages, if device is
     capable of doing so optimally;
 ii. do single-time (batched) swap area discards, either at swapon
     or via something like fstrim (not implemented yet);
iii. allow doing both single-time and fine-grained discards; or
 iv. turn it off completely (default behavior)

As implemented today, one can only enable/disable discards for swap, but
one cannot select, for instance, solution (ii) on a swap device like (b)
even though the single-time discard is regarded to be interesting, or
necessary to the workload because it would imply (1), and the device is
not capable of performing it optimally.

This patch addresses the scenario depicted above by introducing a way to
ensure the (probably) wanted solutions (i, ii, iii and iv) can be flexibly
flagged through swapon(8) to allow a sysadmin to select the best suitable
swap discard policy accordingly to system constraints.

This patch introduces SWAP_FLAG_DISCARD_PAGES and SWAP_FLAG_DISCARD_ONCE
new flags to allow more flexibe swap discard policies being flagged
through swapon(8).  The default behavior is to keep both single-time, or
batched, area discards (SWAP_FLAG_DISCARD_ONCE) and fine-grained discards
for page-clusters (SWAP_FLAG_DISCARD_PAGES) enabled, in order to keep
consistentcy with older kernel behavior, as well as maintain compatibility
with older swapon(8).  However, through the new introduced flags the best
suitable discard policy can be selected accordingly to any given swap
device constraint.

[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Karel Zak <kzak@redhat.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03 16:07:32 -07:00
Akinobu Mita 7b57976da4 frontswap: fix incorrect zeroing and allocation size for frontswap_map
The bitmap accessed by bitops must have enough size to hold the required
numbers of bits rounded up to a multiple of BITS_PER_LONG.  And the
bitmap must not be zeroed by memset() if the number of bits cleared is
not a multiple of BITS_PER_LONG.

This fixes incorrect zeroing and allocation size for frontswap_map.  The
incorrect zeroing part doesn't cause any problem because frontswap_map
is freed just after zeroing.  But the wrongly calculated allocation size
may cause the problem.

For 32bit systems, the allocation size of frontswap_map is about twice
as large as required size.  For 64bit systems, the allocation size is
smaller than requeired if the number of bits is not a multiple of
BITS_PER_LONG.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-06-12 16:29:46 -07:00
Minchan Kim 4f89849da2 frontswap: get rid of swap_lock dependency
Frontswap initialization routine depends on swap_lock, which want to be
atomic about frontswap's first appearance.  IOW, frontswap is not present
and will fail all calls OR frontswap is fully functional but if new
swap_info_struct isn't registered by enable_swap_info, swap subsystem
doesn't start I/O so there is no race between init procedure and page I/O
working on frontswap.

So let's remove unnecessary swap_lock dependency.

Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
[v1: Rebased on my branch, reworked to work with backends loading late]
[v2: Added a check for !map]
[v3: Made the invalidate path follow the init path]
[v4: Address comments by Wanpeng Li <liwanp@linux.vnet.ibm.com>]
Signed-off-by: Konrad Rzeszutek Wilk <konrad@darnok.org>
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Andor Daam <andor.daam@googlemail.com>
Cc: Florian Schmaus <fschmaus@gmail.com>
Cc: Stefan Hengelein <ilendir@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-30 17:04:00 -07:00
Akinobu Mita d3d30417d3 mm/: rename random32() to prandom_u32()
Use preferable function name which implies using a pseudo-random
number generator.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 18:28:42 -07:00
Linus Torvalds d895cb1af1 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs pile (part one) from Al Viro:
 "Assorted stuff - cleaning namei.c up a bit, fixing ->d_name/->d_parent
  locking violations, etc.

  The most visible changes here are death of FS_REVAL_DOT (replaced with
  "has ->d_weak_revalidate()") and a new helper getting from struct file
  to inode.  Some bits of preparation to xattr method interface changes.

  Misc patches by various people sent this cycle *and* ocfs2 fixes from
  several cycles ago that should've been upstream right then.

  PS: the next vfs pile will be xattr stuff."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (46 commits)
  saner proc_get_inode() calling conventions
  proc: avoid extra pde_put() in proc_fill_super()
  fs: change return values from -EACCES to -EPERM
  fs/exec.c: make bprm_mm_init() static
  ocfs2/dlm: use GFP_ATOMIC inside a spin_lock
  ocfs2: fix possible use-after-free with AIO
  ocfs2: Fix oops in ocfs2_fast_symlink_readpage() code path
  get_empty_filp()/alloc_file() leave both ->f_pos and ->f_version zero
  target: writev() on single-element vector is pointless
  export kernel_write(), convert open-coded instances
  fs: encode_fh: return FILEID_INVALID if invalid fid_type
  kill f_vfsmnt
  vfs: kill FS_REVAL_DOT by adding a d_weak_revalidate dentry op
  nfsd: handle vfs_getattr errors in acl protocol
  switch vfs_getattr() to struct path
  default SET_PERSONALITY() in linux/elf.h
  ceph: prepopulate inodes only when request is aborted
  d_hash_and_lookup(): export, switch open-coded instances
  9p: switch v9fs_set_create_acl() to inode+fid, do it before d_instantiate()
  9p: split dropping the acls from v9fs_set_create_acl()
  ...
2013-02-26 20:16:07 -08:00
Hugh Dickins 9e16b7fb1d mm,ksm: swapoff might need to copy
Before establishing that KSM page migration was the cause of my
WARN_ON_ONCE(page_mapped(page))s, I suspected that they came from the
lack of a ksm_might_need_to_copy() in swapoff's unuse_pte() - which in
many respects is equivalent to faulting in a page.

In fact I've never caught that as the cause: but in theory it does at
least need the KSM_RUN_UNMERGE check in ksm_might_need_to_copy(), to
avoid bringing a KSM page back in when it's not supposed to be.

I intended to copy how it's done in do_swap_page(), but have a strong
aversion to how "swapcache" ends up being used there: rework it with
"page != swapcache".

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:23 -08:00
Shaohua Li ec8acf20af swap: add per-partition lock for swapfile
swap_lock is heavily contended when I test swap to 3 fast SSD (even
slightly slower than swap to 2 such SSD).  The main contention comes
from swap_info_get().  This patch tries to fix the gap with adding a new
per-partition lock.

Global data like nr_swapfiles, total_swap_pages, least_priority and
swap_list are still protected by swap_lock.

nr_swap_pages is an atomic now, it can be changed without swap_lock.  In
theory, it's possible get_swap_page() finds no swap pages but actually
there are free swap pages.  But sounds not a big problem.

Accessing partition specific data (like scan_swap_map and so on) is only
protected by swap_info_struct.lock.

Changing swap_info_struct.flags need hold swap_lock and
swap_info_struct.lock, because scan_scan_map() will check it.  read the
flags is ok with either the locks hold.

If both swap_lock and swap_info_struct.lock must be hold, we always hold
the former first to avoid deadlock.

swap_entry_free() can change swap_list.  To delete that code, we add a
new highest_priority_index.  Whenever get_swap_page() is called, we
check it.  If it's valid, we use it.

It's a pity get_swap_page() still holds swap_lock().  But in practice,
swap_lock() isn't heavily contended in my test with this patch (or I can
say there are other much more heavier bottlenecks like TLB flush).  And
BTW, looks get_swap_page() doesn't really need the lock.  We never free
swap_info[] and we check SWAP_WRITEOK flag.  The only risk without the
lock is we could swapout to some low priority swap, but we can quickly
recover after several rounds of swap, so sounds not a big deal to me.
But I'd prefer to fix this if it's a real problem.

"swap: make each swap partition have one address_space" improved the
swapout speed from 1.7G/s to 2G/s.  This patch further improves the
speed to 2.3G/s, so around 15% improvement.  It's a multi-process test,
so TLB flush isn't the biggest bottleneck before the patches.

[arnd@arndb.de: fix it for nommu]
[hughd@google.com: add missing unlock]
[minchan@kernel.org: get rid of lockdep whinge on sys_swapon]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:17 -08:00
Shaohua Li 33806f06da swap: make each swap partition have one address_space
When I use several fast SSD to do swap, swapper_space.tree_lock is
heavily contended.  This makes each swap partition have one
address_space to reduce the lock contention.  There is an array of
address_space for swap.  The swap entry type is the index to the array.

In my test with 3 SSD, this increases the swapout throughput 20%.

[akpm@linux-foundation.org: revert unneeded change to  __add_to_swap_cache]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:17 -08:00
Al Viro 496ad9aa8e new helper: file_inode(file)
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2013-02-22 23:31:31 -05:00
David Rientjes e1e12d2f31 mm, oom: fix race when specifying a thread as the oom origin
test_set_oom_score_adj() and compare_swap_oom_score_adj() are used to
specify that current should be killed first if an oom condition occurs in
between the two calls.

The usage is

	short oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
	...
	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);

to store the thread's oom_score_adj, temporarily change it to the maximum
score possible, and then restore the old value if it is still the same.

This happens to still be racy, however, if the user writes
OOM_SCORE_ADJ_MAX to /proc/pid/oom_score_adj in between the two calls.
The compare_swap_oom_score_adj() will then incorrectly reset the old value
prior to the write of OOM_SCORE_ADJ_MAX.

To fix this, introduce a new oom_flags_t member in struct signal_struct
that will be used for per-thread oom killer flags.  KSM and swapoff can
now use a bit in this member to specify that threads should be killed
first in oom conditions without playing around with oom_score_adj.

This also allows the correct oom_score_adj to always be shown when reading
/proc/pid/oom_score.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:27 -08:00
David Rientjes a9c58b907d mm, oom: change type of oom_score_adj to short
The maximum oom_score_adj is 1000 and the minimum oom_score_adj is -1000,
so this range can be represented by the signed short type with no
functional change.  The extra space this frees up in struct signal_struct
will be used for per-thread oom kill flags in the next patch.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Anton Vorontsov <anton.vorontsov@linaro.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:27 -08:00
Cesar Eduardo Barros 6555bc0357 mm: do not call frontswap_init() during swapoff
The call to frontswap_init() was added within enable_swap_info(), which
was called not only during sys_swapon, but also to reinsert the swap_info
into the swap_list in case of failure of try_to_unuse() within
sys_swapoff.  This means that frontswap_init() might be called more than
once for the same swap area.

While as far as I could see no frontswap implementation has any problem
with it (and in fact, all the ones I found ignore the parameter passed to
frontswap_init), this could change in the future.

To prevent future problems, move the call to frontswap_init() to outside
the code shared between sys_swapon and sys_swapoff.

Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:24 -08:00
Cesar Eduardo Barros cf0cac0a09 mm: refactor reinsert of swap_info in sys_swapoff()
The block within sys_swapoff() which re-inserts the swap_info into the
swap_list in case of failure of try_to_unuse() reads a few values outside
the swap_lock.  While this is safe at that point, it is subtle code.

Simplify the code by moving the reading of these values to a separate
function, refactoring it a bit so they are read from within the swap_lock.
 This is easier to understand, and matches better the way it worked before
I unified the insertion of the swap_info from both sys_swapon and
sys_swapoff.

This change should make no functional difference.  The only real change is
moving the read of two or three structure fields to within the lock
(frontswap_map_get() is nothing more than a read of p->frontswap_map).

Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Dan Magenheimer <dan.magenheimer@oracle.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:24 -08:00
Xiaotian Feng f58b59c1df swapfile: fix name leak in swapoff
There's a name leak introduced by commit 91a27b2a75 ("vfs: define
struct filename and have getname() return it").  Add the missing
putname.

[akpm@linux-foundation.org: cleanup]
Signed-off-by: Xiaotian Feng <dannyfeng@tencent.com>
Reviewed-by: Jeff Layton <jlayton@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-11-16 14:33:04 -08:00
Jeff Layton 669abf4e55 vfs: make path_openat take a struct filename pointer
...and fix up the callers. For do_file_open_root, just declare a
struct filename on the stack and fill out the .name field. For
do_filp_open, make it also take a struct filename pointer, and fix up its
callers to call it appropriately.

For filp_open, add a variant that takes a struct filename pointer and turn
filp_open into a wrapper around it.

Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-10-12 20:15:09 -04:00
Jeff Layton 91a27b2a75 vfs: define struct filename and have getname() return it
getname() is intended to copy pathname strings from userspace into a
kernel buffer. The result is just a string in kernel space. It would
however be quite helpful to be able to attach some ancillary info to
the string.

For instance, we could attach some audit-related info to reduce the
amount of audit-related processing needed. When auditing is enabled,
we could also call getname() on the string more than once and not
need to recopy it from userspace.

This patchset converts the getname()/putname() interfaces to return
a struct instead of a string. For now, the struct just tracks the
string in kernel space and the original userland pointer for it.

Later, we'll add other information to the struct as it becomes
convenient.

Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2012-10-12 20:14:55 -04:00
Johannes Weiner 5d84c7766e mm: swapfile: clean up unuse_pte race handling
The conditional mem_cgroup_cancel_charge_swapin() is a leftover from when
the function would continue to reestablish the page even after
mem_cgroup_try_charge_swapin() failed.  After 85d9fc8 "memcg: fix refcnt
handling at swapoff", the condition is always true when this code is
reached.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:48 -07:00
Mel Gorman 7374492362 swapfile: avoid dereferencing bd_disk during swap_entry_free for network storage
Commit b3a27d ("swap: Add swap slot free callback to
block_device_operations") dereferences p->bdev->bd_disk but this is a NULL
dereference if using swap-over-NFS.  This patch checks SWP_BLKDEV on the
swap_info_struct before dereferencing.

With reference to this callback, Christoph Hellwig stated "Please just
remove the callback entirely.  It has no user outside the staging tree and
was added clearly against the rules for that staging tree".  This would
also be my preference but there was not an obvious way of keeping zram in
staging/ happy.

Signed-off-by: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:48 -07:00
Mel Gorman a509bc1a9e mm: swap: implement generic handler for swap_activate
The version of swap_activate introduced is sufficient for swap-over-NFS
but would not provide enough information to implement a generic handler.
This patch shuffles things slightly to ensure the same information is
available for aops->swap_activate() as is available to the core.

No functionality change.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:47 -07:00
Mel Gorman 62c230bc17 mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages
Currently swapfiles are managed entirely by the core VM by using ->bmap to
allocate space and write to the blocks directly.  This effectively ensures
that the underlying blocks are allocated and avoids the need for the swap
subsystem to locate what physical blocks store offsets within a file.

If the swap subsystem is to use the filesystem information to locate the
blocks, it is critical that information such as block groups, block
bitmaps and the block descriptor table that map the swap file were
resident in memory.  This patch adds address_space_operations that the VM
can call when activating or deactivating swap backed by a file.

  int swap_activate(struct file *);
  int swap_deactivate(struct file *);

The ->swap_activate() method is used to communicate to the file that the
VM relies on it, and the address_space should take adequate measures such
as reserving space in the underlying device, reserving memory for mempools
and pinning information such as the block descriptor table in memory.  The
->swap_deactivate() method is called on sys_swapoff() if ->swap_activate()
returned success.

After a successful swapfile ->swap_activate, the swapfile is marked
SWP_FILE and swapper_space.a_ops will proxy to
sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache
pages and ->readpage to read.

It is perfectly possible that direct_IO be used to read the swap pages but
it is an unnecessary complication.  Similarly, it is possible that
->writepage be used instead of direct_io to write the pages but filesystem
developers have stated that calling writepage from the VM is undesirable
for a variety of reasons and using direct_IO opens up the possibility of
writing back batches of swap pages in the future.

[a.p.zijlstra@chello.nl: Original patch]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:47 -07:00
Mel Gorman f981c5950f mm: methods for teaching filesystems about PG_swapcache pages
In order to teach filesystems to handle swap cache pages, three new page
functions are introduced:

  pgoff_t page_file_index(struct page *);
  loff_t page_file_offset(struct page *);
  struct address_space *page_file_mapping(struct page *);

page_file_index() - gives the offset of this page in the file in
PAGE_CACHE_SIZE blocks.  Like page->index is for mapped pages, this
function also gives the correct index for PG_swapcache pages.

page_file_offset() - uses page_file_index(), so that it will give the
expected result, even for PG_swapcache pages.

page_file_mapping() - gives the mapping backing the actual page; that is
for swap cache pages it will give swap_file->f_mapping.

Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Paris <eparis@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Neil Brown <neilb@suse.de>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Xiaotian Feng <dfeng@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:47 -07:00
Hugh Dickins 9b15b817f3 swap: fix shmem swapping when more than 8 areas
Minchan Kim reports that when a system has many swap areas, and tmpfs
swaps out to the ninth or more, shmem_getpage_gfp()'s attempts to read
back the page cannot locate it, and the read fails with -ENOMEM.

Whoops.  Yes, I blindly followed read_swap_header()'s pte_to_swp_entry(
swp_entry_to_pte()) technique for determining maximum usable swap
offset, without stopping to realize that that actually depends upon the
pte swap encoding shifting swap offset to the higher bits and truncating
it there.  Whereas our radix_tree swap encoding leaves offset in the
lower bits: it's swap "type" (that is, index of swap area) that was
truncated.

Fix it by reducing the SWP_TYPE_SHIFT() in swapops.h, and removing the
broken radix_to_swp_entry(swp_to_radix_entry()) from read_swap_header().

This does not reduce the usable size of a swap area any further, it
leaves it as claimed when making the original commit: no change from 3.0
on x86_64, nor on i386 without PAE; but 3.0's 512GB is reduced to 128GB
per swapfile on i386 with PAE.  It's not a change I would have risked
five years ago, but with x86_64 supported for ten years, I believe it's
appropriate now.

Hmm, and what if some architecture implements its swap pte with offset
encoded below type? That would equally break the maximum usable swap
offset check.  Happily, they all follow the same tradition of encoding
offset above type, but I'll prepare a check on that for next.

Reported-and-Reviewed-and-Tested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org [3.1, 3.2, 3.3, 3.4]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-15 21:48:14 -07:00
Linus Torvalds a3fe778c78 Frontswap provides a "transcendent memory" interface for swap pages.
In some environments, dramatic performance savings may be obtained because
 swapped pages are saved in RAM (or a RAM-like device) instead of a swap disk.
 This tag provides the basic infrastructure along with some changes to the
 existing backends.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1.4.12 (GNU/Linux)
 
 iQEcBAABAgAGBQJPsorBAAoJEFjIrFwIi8fJcz8H/RBXCtFo0kiJmRked3nMAIDO
 /2zN/q/Qawsg9aeoGlP7G8hQi9PMipbhQj3ixHyCTMv0zMbH988GXbBce+gIcg6e
 TOQi7xXAuPEwLizmSpiTv84XzN5bMgu1oJXEqIXw0EIpuZAmp+9m/o3WBwEAtyxi
 B+hvjE7eZM8f75K3lxs6sOtmIcERj9zqmT933Y8+i9iiuRyGMey2SyKtvVLbYZ+j
 HroFMUi0so5TzxT/cpkRiHu0U75c651o+LV00zh7InMqbwyRsWlKTf53k8Q/q2WP
 I7dVmfItwN/TpOrYTfxglYFlbYuUP35ziFvZ2trd6hcs9RK8OuKw+OmBLReHTtc=
 =x9Vp
 -----END PGP SIGNATURE-----

Merge tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm

Pull frontswap feature from Konrad Rzeszutek Wilk:
 "Frontswap provides a "transcendent memory" interface for swap pages.
  In some environments, dramatic performance savings may be obtained
  because swapped pages are saved in RAM (or a RAM-like device) instead
  of a swap disk.  This tag provides the basic infrastructure along with
  some changes to the existing backends."

Fix up trivial conflict in mm/Makefile due to removal of swap token code
changing a line next to the new frontswap entry.

This pull request came in before the merge window even opened, it got
delayed to after the merge window by me just wanting to make sure it had
actual users.  Apparently IBM is using this on their embedded side, and
Jan Beulich says that it's already made available for SLES and OpenSUSE
users.

Also acked by Rik van Riel, and Konrad points to other people liking it
too.  So in it goes.

By Dan Magenheimer (4) and Konrad Rzeszutek Wilk (2)
via Konrad Rzeszutek Wilk
* tag 'stable/frontswap.v16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/mm:
  frontswap: s/put_page/store/g s/get_page/load
  MAINTAINER: Add myself for the frontswap API
  mm: frontswap: config and doc files
  mm: frontswap: core frontswap functionality
  mm: frontswap: core swap subsystem hooks and headers
  mm: frontswap: add frontswap header file
2012-06-04 12:28:45 -07:00
KAMEZAWA Hiroyuki 4b91355e9d memcg: fix/change behavior of shared anon at moving task
This patch changes memcg's behavior at task_move().

At task_move(), the kernel scans a task's page table and move the changes
for mapped pages from source cgroup to target cgroup.  There has been a
bug at handling shared anonymous pages for a long time.

Before patch:
  - The spec says 'shared anonymous pages are not moved.'
  - The implementation was 'shared anonymoys pages may be moved'.
    If page_mapcount <=2, shared anonymous pages's charge were moved.

After patch:
  - The spec says 'all anonymous pages are moved'.
  - The implementation is 'all anonymous pages are moved'.

Considering usage of memcg, this will not affect user's experience.
'shared anonymous' pages only exists between a tree of processes which
don't do exec().  Moving one of process without exec() seems not sane.
For example, libcgroup will not be affected by this change.  (Anyway, no
one noticed the implementation for a long time...)

Below is a discussion log:

 - current spec/implementation are complex
 - Now, shared file caches are moved
 - It adds unclear check as page_mapcount(). To do correct check,
   we should check swap users, etc.
 - No one notice this implementation behavior. So, no one get benefit
   from the design.
 - In general, once task is moved to a cgroup for running, it will not
   be moved....
 - Finally, we have control knob as memory.move_charge_at_immigrate.

Here is a patch to allow moving shared pages, completely. This makes
memcg simpler and fix current broken code.

Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:24 -07:00
Hugh Dickins bde05d1ccd shmem: replace page if mapping excludes its zone
The GMA500 GPU driver uses GEM shmem objects, but with a new twist: the
backing RAM has to be below 4GB.  Not a problem while the boards
supported only 4GB: but now Intel's D2700MUD boards support 8GB, and
their GMA3600 is managed by the GMA500 driver.

shmem/tmpfs has never pretended to support hardware restrictions on the
backing memory, but it might have appeared to do so before v3.1, and
even now it works fine until a page is swapped out then back in.  When
read_cache_page_gfp() supplied a freshly allocated page for copy, that
compensated for whatever choice might have been made by earlier swapin
readahead; but swapoff was likely to destroy the illusion.

We'd like to continue to support GMA500, so now add a new
shmem_should_replace_page() check on the zone when about to move a page
from swapcache to filecache (in swapin and swapoff cases), with
shmem_replace_page() to allocate and substitute a suitable page (given
gma500/gem.c's mapping_set_gfp_mask GFP_KERNEL | __GFP_DMA32).

This does involve a minor extension to mem_cgroup_replace_page_cache()
(the page may or may not have already been charged); and I've removed a
comment and call to mem_cgroup_uncharge_cache_page(), which in fact is
always a no-op while PageSwapCache.

Also removed optimization of an unlikely path in shmem_getpage_gfp(),
now that we need to check PageSwapCache more carefully (a racing caller
might already have made the copy).  And at one point shmem_unuse_inode()
needs to use the hitherto private page_swapcount(), to guard against
racing with inode eviction.

It would make sense to extend shmem_should_replace_page(), to cover
cpuset and NUMA mempolicy restrictions too, but set that aside for now:
needs a cleanup of shmem mempolicy handling, and more testing, and ought
to handle swap faults in do_swap_page() as well as shmem.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Stephane Marchesin <marcheu@chromium.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Rob Clark <rob.clark@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:22 -07:00
Dan Magenheimer 38b5faf4b1 mm: frontswap: core swap subsystem hooks and headers
This patch, 2of4, contains the changes to the core swap subsystem.
This includes:

(1) makes available core swap data structures (swap_lock, swap_list and
swap_info) that are needed by frontswap.c but we don't need to expose them
to the dozens of files that include swap.h so we create a new swapfile.h
just to extern-ify these and modify their declarations to non-static

(2) adds frontswap-related elements to swap_info_struct.  Frontswap_map
points to vzalloc'ed one-bit-per-swap-page metadata that indicates
whether the swap page is in frontswap or in the device and frontswap_pages
counts how many pages are in frontswap.

(3) adds hooks in the swap subsystem and extends try_to_unuse so that
frontswap_shrink can do a "partial swapoff".

Note that a failed frontswap_map allocation is safe... failure is noted
by lack of "FS" in the subsequent printk.

---

[v14: rebase to 3.4-rc2]
[v10: no change]
[v9: akpm@linux-foundation.org: mark some statics __read_mostly]
[v9: akpm@linux-foundation.org: add clarifying comments]
[v9: akpm@linux-foundation.org: no need to loop repeating try_to_unuse]
[v9: error27@gmail.com: remove superfluous check for NULL]
[v8: rebase to 3.0-rc4]
[v8: kamezawa.hiroyu@jp.fujitsu.com: change counter to atomic_t to avoid races]
[v8: kamezawa.hiroyu@jp.fujitsu.com: comment to clarify informational counters]
[v7: rebase to 3.0-rc3]
[v7: JBeulich@novell.com: add new swap struct elements only if config'd]
[v6: rebase to 3.0-rc1]
[v6: lliubbo@gmail.com: fix null pointer deref if vzalloc fails]
[v6: konrad.wilk@oracl.com: various checks and code clarifications/comments]
[v5: no change from v4]
[v4: rebase to 2.6.39]
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Reviewed-by: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Jan Beulich <JBeulich@novell.com>
Acked-by: Seth Jennings <sjenning@linux.vnet.ibm.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Rik Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
[v11: Rebased, fixed mm/swapfile.c context change]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-05-15 11:33:58 -04:00
Hugh Dickins d15cab9754 swapon: check validity of swap_flags
Most system calls taking flags first check that the flags passed in are
valid, and that helps userspace to detect when new flags are supported.

But swapon never did so: start checking now, to help if we ever want to
support more swap_flags in future.

It's difficult to get stray bits set in an int, and swapon is not widely
used, so this is most unlikely to break any userspace; but we can just
revert if it turns out to do so.

Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-28 17:14:35 -07:00
Linus Torvalds 95211279c5 Merge branch 'akpm' (Andrew's patch-bomb)
Merge first batch of patches from Andrew Morton:
 "A few misc things and all the MM queue"

* emailed from Andrew Morton <akpm@linux-foundation.org>: (92 commits)
  memcg: avoid THP split in task migration
  thp: add HPAGE_PMD_* definitions for !CONFIG_TRANSPARENT_HUGEPAGE
  memcg: clean up existing move charge code
  mm/memcontrol.c: remove unnecessary 'break' in mem_cgroup_read()
  mm/memcontrol.c: remove redundant BUG_ON() in mem_cgroup_usage_unregister_event()
  mm/memcontrol.c: s/stealed/stolen/
  memcg: fix performance of mem_cgroup_begin_update_page_stat()
  memcg: remove PCG_FILE_MAPPED
  memcg: use new logic for page stat accounting
  memcg: remove PCG_MOVE_LOCK flag from page_cgroup
  memcg: simplify move_account() check
  memcg: remove EXPORT_SYMBOL(mem_cgroup_update_page_stat)
  memcg: kill dead prev_priority stubs
  memcg: remove PCG_CACHE page_cgroup flag
  memcg: let css_get_next() rely upon rcu_read_lock()
  cgroup: revert ss_id_lock to spinlock
  idr: make idr_get_next() good for rcu_read_lock()
  memcg: remove unnecessary thp check in page stat accounting
  memcg: remove redundant returns
  memcg: enum lru_list lru
  ...
2012-03-22 09:04:48 -07:00
Shaohua Li 052b1987fa swap: don't do discard if no discard option added
When swapon() was not passed the SWAP_FLAG_DISCARD option, sys_swapon()
will still perform a discard operation.  This can cause problems if
discard is slow or buggy.

Reverse the order of the check so that a discard operation is performed
only if the sys_swapon() caller is attempting to enable discard.

Signed-off-by: Shaohua Li <shli@fusionio.com>
Reported-by: Holger Kiehl <Holger.Kiehl@dwd.de>
Tested-by: Holger Kiehl <Holger.Kiehl@dwd.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:55:00 -07:00
Rik van Riel 67f96aa252 mm: make swapin readahead skip over holes
Ever since abandoning the virtual scan of processes, for scalability
reasons, swap space has been a little more fragmented than before.  This
can lead to the situation where a large memory user is killed, swap space
ends up full of "holes" and swapin readahead is totally ineffective.

On my home system, after killing a leaky firefox it took over an hour to
page just under 2GB of memory back in, slowing the virtual machines down
to a crawl.

This patch makes swapin readahead simply skip over holes, instead of
stopping at them.  This allows the system to swap things back in at rates
of several MB/second, instead of a few hundred kB/second.

The checks done in valid_swaphandles are already done in
read_swap_cache_async as well, allowing us to remove a fair amount of
code.

[akpm@linux-foundation.org: fix it for page_cluster >= 32]
Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Adrian Drzewiecki <z@drze.net>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Andrea Arcangeli 1a5a9906d4 mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read mode
In some cases it may happen that pmd_none_or_clear_bad() is called with
the mmap_sem hold in read mode.  In those cases the huge page faults can
allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a
false positive from pmd_bad() that will not like to see a pmd
materializing as trans huge.

It's not khugepaged causing the problem, khugepaged holds the mmap_sem
in write mode (and all those sites must hold the mmap_sem in read mode
to prevent pagetables to go away from under them, during code review it
seems vm86 mode on 32bit kernels requires that too unless it's
restricted to 1 thread per process or UP builds).  The race is only with
the huge pagefaults that can convert a pmd_none() into a
pmd_trans_huge().

Effectively all these pmd_none_or_clear_bad() sites running with
mmap_sem in read mode are somewhat speculative with the page faults, and
the result is always undefined when they run simultaneously.  This is
probably why it wasn't common to run into this.  For example if the
madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page
fault, the hugepage will not be zapped, if the page fault runs first it
will be zapped.

Altering pmd_bad() not to error out if it finds hugepmds won't be enough
to fix this, because zap_pmd_range would then proceed to call
zap_pte_range (which would be incorrect if the pmd become a
pmd_trans_huge()).

The simplest way to fix this is to read the pmd in the local stack
(regardless of what we read, no need of actual CPU barriers, only
compiler barrier needed), and be sure it is not changing under the code
that computes its value.  Even if the real pmd is changing under the
value we hold on the stack, we don't care.  If we actually end up in
zap_pte_range it means the pmd was not none already and it was not huge,
and it can't become huge from under us (khugepaged locking explained
above).

All we need is to enforce that there is no way anymore that in a code
path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad
can run into a hugepmd.  The overhead of a barrier() is just a compiler
tweak and should not be measurable (I only added it for THP builds).  I
don't exclude different compiler versions may have prevented the race
too by caching the value of *pmd on the stack (that hasn't been
verified, but it wouldn't be impossible considering
pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines
and there's no external function called in between pmd_trans_huge and
pmd_none_or_clear_bad).

		if (pmd_trans_huge(*pmd)) {
			if (next-addr != HPAGE_PMD_SIZE) {
				VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
				split_huge_page_pmd(vma->vm_mm, pmd);
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
				continue;
			/* fall through */
		}
		if (pmd_none_or_clear_bad(pmd))

Because this race condition could be exercised without special
privileges this was reported in CVE-2012-1179.

The race was identified and fully explained by Ulrich who debugged it.
I'm quoting his accurate explanation below, for reference.

====== start quote =======
      mapcount 0 page_mapcount 1
      kernel BUG at mm/huge_memory.c:1384!

    At some point prior to the panic, a "bad pmd ..." message similar to the
    following is logged on the console:

      mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7).

    The "bad pmd ..." message is logged by pmd_clear_bad() before it clears
    the page's PMD table entry.

        143 void pmd_clear_bad(pmd_t *pmd)
        144 {
    ->  145         pmd_ERROR(*pmd);
        146         pmd_clear(pmd);
        147 }

    After the PMD table entry has been cleared, there is an inconsistency
    between the actual number of PMD table entries that are mapping the page
    and the page's map count (_mapcount field in struct page). When the page
    is subsequently reclaimed, __split_huge_page() detects this inconsistency.

       1381         if (mapcount != page_mapcount(page))
       1382                 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
       1383                        mapcount, page_mapcount(page));
    -> 1384         BUG_ON(mapcount != page_mapcount(page));

    The root cause of the problem is a race of two threads in a multithreaded
    process. Thread B incurs a page fault on a virtual address that has never
    been accessed (PMD entry is zero) while Thread A is executing an madvise()
    system call on a virtual address within the same 2 MB (huge page) range.

               virtual address space
              .---------------------.
              |                     |
              |                     |
            .-|---------------------|
            | |                     |
            | |                     |<-- B(fault)
            | |                     |
      2 MB  | |/////////////////////|-.
      huge <  |/////////////////////|  > A(range)
      page  | |/////////////////////|-'
            | |                     |
            | |                     |
            '-|---------------------|
              |                     |
              |                     |
              '---------------------'

    - Thread A is executing an madvise(..., MADV_DONTNEED) system call
      on the virtual address range "A(range)" shown in the picture.

    sys_madvise
      // Acquire the semaphore in shared mode.
      down_read(&current->mm->mmap_sem)
      ...
      madvise_vma
        switch (behavior)
        case MADV_DONTNEED:
             madvise_dontneed
               zap_page_range
                 unmap_vmas
                   unmap_page_range
                     zap_pud_range
                       zap_pmd_range
                         //
                         // Assume that this huge page has never been accessed.
                         // I.e. content of the PMD entry is zero (not mapped).
                         //
                         if (pmd_trans_huge(*pmd)) {
                             // We don't get here due to the above assumption.
                         }
                         //
                         // Assume that Thread B incurred a page fault and
             .---------> // sneaks in here as shown below.
             |           //
             |           if (pmd_none_or_clear_bad(pmd))
             |               {
             |                 if (unlikely(pmd_bad(*pmd)))
             |                     pmd_clear_bad
             |                     {
             |                       pmd_ERROR
             |                         // Log "bad pmd ..." message here.
             |                       pmd_clear
             |                         // Clear the page's PMD entry.
             |                         // Thread B incremented the map count
             |                         // in page_add_new_anon_rmap(), but
             |                         // now the page is no longer mapped
             |                         // by a PMD entry (-> inconsistency).
             |                     }
             |               }
             |
             v
    - Thread B is handling a page fault on virtual address "B(fault)" shown
      in the picture.

    ...
    do_page_fault
      __do_page_fault
        // Acquire the semaphore in shared mode.
        down_read_trylock(&mm->mmap_sem)
        ...
        handle_mm_fault
          if (pmd_none(*pmd) && transparent_hugepage_enabled(vma))
              // We get here due to the above assumption (PMD entry is zero).
              do_huge_pmd_anonymous_page
                alloc_hugepage_vma
                  // Allocate a new transparent huge page here.
                ...
                __do_huge_pmd_anonymous_page
                  ...
                  spin_lock(&mm->page_table_lock)
                  ...
                  page_add_new_anon_rmap
                    // Here we increment the page's map count (starts at -1).
                    atomic_set(&page->_mapcount, 0)
                  set_pmd_at
                    // Here we set the page's PMD entry which will be cleared
                    // when Thread A calls pmd_clear_bad().
                  ...
                  spin_unlock(&mm->page_table_lock)

    The mmap_sem does not prevent the race because both threads are acquiring
    it in shared mode (down_read).  Thread B holds the page_table_lock while
    the page's map count and PMD table entry are updated.  However, Thread A
    does not synchronize on that lock.

====== end quote =======

[akpm@linux-foundation.org: checkpatch fixes]
Reported-by: Ulrich Obergfell <uobergfe@redhat.com>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Jones <davej@redhat.com>
Acked-by: Larry Woodman <lwoodman@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>		[2.6.38+]
Cc: Mark Salter <msalter@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:54 -07:00
Linus Torvalds 3556485f15 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security
Pull security subsystem updates for 3.4 from James Morris:
 "The main addition here is the new Yama security module from Kees Cook,
  which was discussed at the Linux Security Summit last year.  Its
  purpose is to collect miscellaneous DAC security enhancements in one
  place.  This also marks a departure in policy for LSM modules, which
  were previously limited to being standalone access control systems.
  Chromium OS is using Yama, and I believe there are plans for Ubuntu,
  at least.

  This patchset also includes maintenance updates for AppArmor, TOMOYO
  and others."

Fix trivial conflict in <net/sock.h> due to the jumo_label->static_key
rename.

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (38 commits)
  AppArmor: Fix location of const qualifier on generated string tables
  TOMOYO: Return error if fails to delete a domain
  AppArmor: add const qualifiers to string arrays
  AppArmor: Add ability to load extended policy
  TOMOYO: Return appropriate value to poll().
  AppArmor: Move path failure information into aa_get_name and rename
  AppArmor: Update dfa matching routines.
  AppArmor: Minor cleanup of d_namespace_path to consolidate error handling
  AppArmor: Retrieve the dentry_path for error reporting when path lookup fails
  AppArmor: Add const qualifiers to generated string tables
  AppArmor: Fix oops in policy unpack auditing
  AppArmor: Fix error returned when a path lookup is disconnected
  KEYS: testing wrong bit for KEY_FLAG_REVOKED
  TOMOYO: Fix mount flags checking order.
  security: fix ima kconfig warning
  AppArmor: Fix the error case for chroot relative path name lookup
  AppArmor: fix mapping of META_READ to audit and quiet flags
  AppArmor: Fix underflow in xindex calculation
  AppArmor: Fix dropping of allowed operations that are force audited
  AppArmor: Add mising end of structure test to caps unpacking
  ...
2012-03-21 13:25:04 -07:00