This commit adds generic support for update and delete batch ops that
can be used for almost all the bpf maps. These commands share the same
UAPI attr that lookup and lookup_and_delete batch ops use and the
syscall commands are:
BPF_MAP_UPDATE_BATCH
BPF_MAP_DELETE_BATCH
The main difference between update/delete and lookup batch ops is that
for update/delete keys/values must be specified for userspace and
because of that, neither in_batch nor out_batch are used.
Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-4-brianvv@google.com
This commit introduces generic support for the bpf_map_lookup_batch.
This implementation can be used by almost all the bpf maps since its core
implementation is relying on the existing map_get_next_key and
map_lookup_elem. The bpf syscall subcommand introduced is:
BPF_MAP_LOOKUP_BATCH
The UAPI attribute is:
struct { /* struct used by BPF_MAP_*_BATCH commands */
__aligned_u64 in_batch; /* start batch,
* NULL to start from beginning
*/
__aligned_u64 out_batch; /* output: next start batch */
__aligned_u64 keys;
__aligned_u64 values;
__u32 count; /* input/output:
* input: # of key/value
* elements
* output: # of filled elements
*/
__u32 map_fd;
__u64 elem_flags;
__u64 flags;
} batch;
in_batch/out_batch are opaque values use to communicate between
user/kernel space, in_batch/out_batch must be of key_size length.
To start iterating from the beginning in_batch must be null,
count is the # of key/value elements to retrieve. Note that the 'keys'
buffer must be a buffer of key_size * count size and the 'values' buffer
must be value_size * count, where value_size must be aligned to 8 bytes
by userspace if it's dealing with percpu maps. 'count' will contain the
number of keys/values successfully retrieved. Note that 'count' is an
input/output variable and it can contain a lower value after a call.
If there's no more entries to retrieve, ENOENT will be returned. If error
is ENOENT, count might be > 0 in case it copied some values but there were
no more entries to retrieve.
Note that if the return code is an error and not -EFAULT,
count indicates the number of elements successfully processed.
Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-3-brianvv@google.com
This commit moves reusable code from map_lookup_elem and map_update_elem
to avoid code duplication in kernel/bpf/syscall.c.
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200115184308.162644-2-brianvv@google.com
Anatoly has been fuzzing with kBdysch harness and reported a hang in one
of the outcomes:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (85) call bpf_get_socket_cookie#46
1: R0_w=invP(id=0) R10=fp0
1: (57) r0 &= 808464432
2: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
2: (14) w0 -= 810299440
3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
3: (c4) w0 s>>= 1
4: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
4: (76) if w0 s>= 0x30303030 goto pc+216
221: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
221: (95) exit
processed 6 insns (limit 1000000) [...]
Taking a closer look, the program was xlated as follows:
# ./bpftool p d x i 12
0: (85) call bpf_get_socket_cookie#7800896
1: (bf) r6 = r0
2: (57) r6 &= 808464432
3: (14) w6 -= 810299440
4: (c4) w6 s>>= 1
5: (76) if w6 s>= 0x30303030 goto pc+216
6: (05) goto pc-1
7: (05) goto pc-1
8: (05) goto pc-1
[...]
220: (05) goto pc-1
221: (05) goto pc-1
222: (95) exit
Meaning, the visible effect is very similar to f54c7898ed ("bpf: Fix
precision tracking for unbounded scalars"), that is, the fall-through
branch in the instruction 5 is considered to be never taken given the
conclusion from the min/max bounds tracking in w6, and therefore the
dead-code sanitation rewrites it as goto pc-1. However, real-life input
disagrees with verification analysis since a soft-lockup was observed.
The bug sits in the analysis of the ARSH. The definition is that we shift
the target register value right by K bits through shifting in copies of
its sign bit. In adjust_scalar_min_max_vals(), we do first coerce the
register into 32 bit mode, same happens after simulating the operation.
However, for the case of simulating the actual ARSH, we don't take the
mode into account and act as if it's always 64 bit, but location of sign
bit is different:
dst_reg->smin_value >>= umin_val;
dst_reg->smax_value >>= umin_val;
dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
Consider an unknown R0 where bpf_get_socket_cookie() (or others) would
for example return 0xffff. With the above ARSH simulation, we'd see the
following results:
[...]
1: R1=ctx(id=0,off=0,imm=0) R2_w=invP65535 R10=fp0
1: (85) call bpf_get_socket_cookie#46
2: R0_w=invP(id=0) R10=fp0
2: (57) r0 &= 808464432
-> R0_runtime = 0x3030
3: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
3: (14) w0 -= 810299440
-> R0_runtime = 0xcfb40000
4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
(0xffffffff)
4: (c4) w0 s>>= 1
-> R0_runtime = 0xe7da0000
5: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0
(0x67c00000) (0x7ffbfff8)
[...]
In insn 3, we have a runtime value of 0xcfb40000, which is '1100 1111 1011
0100 0000 0000 0000 0000', the result after the shift has 0xe7da0000 that
is '1110 0111 1101 1010 0000 0000 0000 0000', where the sign bit is correctly
retained in 32 bit mode. In insn4, the umax was 0xffffffff, and changed into
0x7ffbfff8 after the shift, that is, '0111 1111 1111 1011 1111 1111 1111 1000'
and means here that the simulation didn't retain the sign bit. With above
logic, the updates happen on the 64 bit min/max bounds and given we coerced
the register, the sign bits of the bounds are cleared as well, meaning, we
need to force the simulation into s32 space for 32 bit alu mode.
Verification after the fix below. We're first analyzing the fall-through branch
on 32 bit signed >= test eventually leading to rejection of the program in this
specific case:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r2 = 808464432
1: R1=ctx(id=0,off=0,imm=0) R2_w=invP808464432 R10=fp0
1: (85) call bpf_get_socket_cookie#46
2: R0_w=invP(id=0) R10=fp0
2: (bf) r6 = r0
3: R0_w=invP(id=0) R6_w=invP(id=0) R10=fp0
3: (57) r6 &= 808464432
4: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0
4: (14) w6 -= 810299440
5: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0
5: (c4) w6 s>>= 1
6: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
(0x67c00000) (0xfffbfff8)
6: (76) if w6 s>= 0x30303030 goto pc+216
7: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0
7: (30) r0 = *(u8 *)skb[808464432]
BPF_LD_[ABS|IND] uses reserved fields
processed 8 insns (limit 1000000) [...]
Fixes: 9cbe1f5a32 ("bpf/verifier: improve register value range tracking with ARSH")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115204733.16648-1-daniel@iogearbox.net
Instead of using bpf_struct_ops_map_lookup_elem() which is
not implemented, bpf_struct_ops_map_seq_show_elem() should
also use bpf_struct_ops_map_sys_lookup_elem() which does
an inplace update to the value. The change allocates
a value to pass to bpf_struct_ops_map_sys_lookup_elem().
[root@arch-fb-vm1 bpf]# cat /sys/fs/bpf/dctcp
{{{1}},BPF_STRUCT_OPS_STATE_INUSE,{{00000000df93eebc,00000000df93eebc},0,2, ...
Fixes: 85d33df357 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200114072647.3188298-1-kafai@fb.com
New llvm and old llvm with libbpf help produce BTF that distinguish global and
static functions. Unlike arguments of static function the arguments of global
functions cannot be removed or optimized away by llvm. The compiler has to use
exactly the arguments specified in a function prototype. The argument type
information allows the verifier validate each global function independently.
For now only supported argument types are pointer to context and scalars. In
the future pointers to structures, sizes, pointer to packet data can be
supported as well. Consider the following example:
static int f1(int ...)
{
...
}
int f3(int b);
int f2(int a)
{
f1(a) + f3(a);
}
int f3(int b)
{
...
}
int main(...)
{
f1(...) + f2(...) + f3(...);
}
The verifier will start its safety checks from the first global function f2().
It will recursively descend into f1() because it's static. Then it will check
that arguments match for the f3() invocation inside f2(). It will not descend
into f3(). It will finish f2() that has to be successfully verified for all
possible values of 'a'. Then it will proceed with f3(). That function also has
to be safe for all possible values of 'b'. Then it will start subprog 0 (which
is main() function). It will recursively descend into f1() and will skip full
check of f2() and f3(), since they are global. The order of processing global
functions doesn't affect safety, since all global functions must be proven safe
based on their arguments only.
Such function by function verification can drastically improve speed of the
verification and reduce complexity.
Note that the stack limit of 512 still applies to the call chain regardless whether
functions were static or global. The nested level of 8 also still applies. The
same recursion prevention checks are in place as well.
The type information and static/global kind is preserved after the verification
hence in the above example global function f2() and f3() can be replaced later
by equivalent functions with the same types that are loaded and verified later
without affecting safety of this main() program. Such replacement (re-linking)
of global functions is a subject of future patches.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
The ungrafting from PRIO bug fixes in net, when merged into net-next,
merge cleanly but create a build failure. The resolution used here is
from Petr Machata.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes "struct tcp_congestion_ops" to be the first user
of BPF STRUCT_OPS. It allows implementing a tcp_congestion_ops
in bpf.
The BPF implemented tcp_congestion_ops can be used like
regular kernel tcp-cc through sysctl and setsockopt. e.g.
[root@arch-fb-vm1 bpf]# sysctl -a | egrep congestion
net.ipv4.tcp_allowed_congestion_control = reno cubic bpf_cubic
net.ipv4.tcp_available_congestion_control = reno bic cubic bpf_cubic
net.ipv4.tcp_congestion_control = bpf_cubic
There has been attempt to move the TCP CC to the user space
(e.g. CCP in TCP). The common arguments are faster turn around,
get away from long-tail kernel versions in production...etc,
which are legit points.
BPF has been the continuous effort to join both kernel and
userspace upsides together (e.g. XDP to gain the performance
advantage without bypassing the kernel). The recent BPF
advancements (in particular BTF-aware verifier, BPF trampoline,
BPF CO-RE...) made implementing kernel struct ops (e.g. tcp cc)
possible in BPF. It allows a faster turnaround for testing algorithm
in the production while leveraging the existing (and continue growing)
BPF feature/framework instead of building one specifically for
userspace TCP CC.
This patch allows write access to a few fields in tcp-sock
(in bpf_tcp_ca_btf_struct_access()).
The optional "get_info" is unsupported now. It can be added
later. One possible way is to output the info with a btf-id
to describe the content.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003508.3856115-1-kafai@fb.com
The patch introduces BPF_MAP_TYPE_STRUCT_OPS. The map value
is a kernel struct with its func ptr implemented in bpf prog.
This new map is the interface to register/unregister/introspect
a bpf implemented kernel struct.
The kernel struct is actually embedded inside another new struct
(or called the "value" struct in the code). For example,
"struct tcp_congestion_ops" is embbeded in:
struct bpf_struct_ops_tcp_congestion_ops {
refcount_t refcnt;
enum bpf_struct_ops_state state;
struct tcp_congestion_ops data; /* <-- kernel subsystem struct here */
}
The map value is "struct bpf_struct_ops_tcp_congestion_ops".
The "bpftool map dump" will then be able to show the
state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g.
number of tcp_sock in the tcp_congestion_ops case). This "value" struct
is created automatically by a macro. Having a separate "value" struct
will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding
"void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some
initialization works before registering the struct_ops to the kernel
subsystem). The libbpf will take care of finding and populating the
"struct bpf_struct_ops_XYZ" from "struct XYZ".
Register a struct_ops to a kernel subsystem:
1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s)
2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id
set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the
running kernel.
Instead of reusing the attr->btf_value_type_id,
btf_vmlinux_value_type_id s added such that attr->btf_fd can still be
used as the "user" btf which could store other useful sysadmin/debug
info that may be introduced in the furture,
e.g. creation-date/compiler-details/map-creator...etc.
3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described
in the running kernel btf. Populate the value of this object.
The function ptr should be populated with the prog fds.
4. Call BPF_MAP_UPDATE with the object created in (3) as
the map value. The key is always "0".
During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's
args as an array of u64 is generated. BPF_MAP_UPDATE also allows
the specific struct_ops to do some final checks in "st_ops->init_member()"
(e.g. ensure all mandatory func ptrs are implemented).
If everything looks good, it will register this kernel struct
to the kernel subsystem. The map will not allow further update
from this point.
Unregister a struct_ops from the kernel subsystem:
BPF_MAP_DELETE with key "0".
Introspect a struct_ops:
BPF_MAP_LOOKUP_ELEM with key "0". The map value returned will
have the prog _id_ populated as the func ptr.
The map value state (enum bpf_struct_ops_state) will transit from:
INIT (map created) =>
INUSE (map updated, i.e. reg) =>
TOBEFREE (map value deleted, i.e. unreg)
The kernel subsystem needs to call bpf_struct_ops_get() and
bpf_struct_ops_put() to manage the "refcnt" in the
"struct bpf_struct_ops_XYZ". This patch uses a separate refcnt
for the purose of tracking the subsystem usage. Another approach
is to reuse the map->refcnt and then "show" (i.e. during map_lookup)
the subsystem's usage by doing map->refcnt - map->usercnt to filter out
the map-fd/pinned-map usage. However, that will also tie down the
future semantics of map->refcnt and map->usercnt.
The very first subsystem's refcnt (during reg()) holds one
count to map->refcnt. When the very last subsystem's refcnt
is gone, it will also release the map->refcnt. All bpf_prog will be
freed when the map->refcnt reaches 0 (i.e. during map_free()).
Here is how the bpftool map command will look like:
[root@arch-fb-vm1 bpf]# bpftool map show
6: struct_ops name dctcp flags 0x0
key 4B value 256B max_entries 1 memlock 4096B
btf_id 6
[root@arch-fb-vm1 bpf]# bpftool map dump id 6
[{
"value": {
"refcnt": {
"refs": {
"counter": 1
}
},
"state": 1,
"data": {
"list": {
"next": 0,
"prev": 0
},
"key": 0,
"flags": 2,
"init": 24,
"release": 0,
"ssthresh": 25,
"cong_avoid": 30,
"set_state": 27,
"cwnd_event": 28,
"in_ack_event": 26,
"undo_cwnd": 29,
"pkts_acked": 0,
"min_tso_segs": 0,
"sndbuf_expand": 0,
"cong_control": 0,
"get_info": 0,
"name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0
],
"owner": 0
}
}
}
]
Misc Notes:
* bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup.
It does an inplace update on "*value" instead returning a pointer
to syscall.c. Otherwise, it needs a separate copy of "zero" value
for the BPF_STRUCT_OPS_STATE_INIT to avoid races.
* The bpf_struct_ops_map_delete_elem() is also called without
preempt_disable() from map_delete_elem(). It is because
the "->unreg()" may requires sleepable context, e.g.
the "tcp_unregister_congestion_control()".
* "const" is added to some of the existing "struct btf_func_model *"
function arg to avoid a compiler warning caused by this patch.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com
This patch allows the kernel's struct ops (i.e. func ptr) to be
implemented in BPF. The first use case in this series is the
"struct tcp_congestion_ops" which will be introduced in a
latter patch.
This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS.
The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular
func ptr of a kernel struct. The attr->attach_btf_id is the btf id
of a kernel struct. The attr->expected_attach_type is the member
"index" of that kernel struct. The first member of a struct starts
with member index 0. That will avoid ambiguity when a kernel struct
has multiple func ptrs with the same func signature.
For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written
to implement the "init" func ptr of the "struct tcp_congestion_ops".
The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops"
of the _running_ kernel. The attr->expected_attach_type is 3.
The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved
by arch_prepare_bpf_trampoline that will be done in the next
patch when introducing BPF_MAP_TYPE_STRUCT_OPS.
"struct bpf_struct_ops" is introduced as a common interface for the kernel
struct that supports BPF_PROG_TYPE_STRUCT_OPS prog. The supporting kernel
struct will need to implement an instance of the "struct bpf_struct_ops".
The supporting kernel struct also needs to implement a bpf_verifier_ops.
During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right
bpf_verifier_ops by searching the attr->attach_btf_id.
A new "btf_struct_access" is also added to the bpf_verifier_ops such
that the supporting kernel struct can optionally provide its own specific
check on accessing the func arg (e.g. provide limited write access).
After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called
to initialize some values (e.g. the btf id of the supporting kernel
struct) and it can only be done once the btf_vmlinux is available.
The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog
if the return type of the prog->aux->attach_func_proto is "void".
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
This patch allows bitfield access as a scalar.
It checks "off + size > t->size" to avoid accessing bitfield
end up accessing beyond the struct. This check is done
outside of the loop since it is applicable to all access.
It also takes this chance to break early on the "off < moff" case.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003501.3855427-1-kafai@fb.com
It allows bpf prog (e.g. tracing) to attach
to a kernel function that takes enum argument.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003459.3855366-1-kafai@fb.com
info->btf_id expects the btf_id of a struct, so it should
store the final result after skipping modifiers (if any).
It also takes this chanace to add a missing newline in one of the
bpf_log() messages.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003456.3855176-1-kafai@fb.com
This patch makes the verifier save the PTR_TO_BTF_ID register state when
spilling to the stack.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003454.3854870-1-kafai@fb.com
Before commit 4bfc0bb2c6 ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
cgroup bpf structures were released with
corresponding cgroup structures. It guaranteed the hierarchical order
of destruction: children were always first. It preserved attached
programs from being released before their propagated copies.
But with cgroup auto-detachment there are no such guarantees anymore:
cgroup bpf is released as soon as the cgroup is offline and there are
no live associated sockets. It means that an attached program can be
detached and released, while its propagated copy is still living
in the cgroup subtree. This will obviously lead to an use-after-free
bug.
To reproduce the issue the following script can be used:
#!/bin/bash
CGROOT=/sys/fs/cgroup
mkdir -p ${CGROOT}/A ${CGROOT}/B ${CGROOT}/A/C
sleep 1
./test_cgrp2_attach ${CGROOT}/A egress &
A_PID=$!
./test_cgrp2_attach ${CGROOT}/B egress &
B_PID=$!
echo $$ > ${CGROOT}/A/C/cgroup.procs
iperf -s &
S_PID=$!
iperf -c localhost -t 100 &
C_PID=$!
sleep 1
echo $$ > ${CGROOT}/B/cgroup.procs
echo ${S_PID} > ${CGROOT}/B/cgroup.procs
echo ${C_PID} > ${CGROOT}/B/cgroup.procs
sleep 1
rmdir ${CGROOT}/A/C
rmdir ${CGROOT}/A
sleep 1
kill -9 ${S_PID} ${C_PID} ${A_PID} ${B_PID}
On the unpatched kernel the following stacktrace can be obtained:
[ 33.619799] BUG: unable to handle page fault for address: ffffbdb4801ab002
[ 33.620677] #PF: supervisor read access in kernel mode
[ 33.621293] #PF: error_code(0x0000) - not-present page
[ 33.622754] Oops: 0000 [#1] SMP NOPTI
[ 33.623202] CPU: 0 PID: 601 Comm: iperf Not tainted 5.5.0-rc2+ #23
[ 33.625545] RIP: 0010:__cgroup_bpf_run_filter_skb+0x29f/0x3d0
[ 33.635809] Call Trace:
[ 33.636118] ? __cgroup_bpf_run_filter_skb+0x2bf/0x3d0
[ 33.636728] ? __switch_to_asm+0x40/0x70
[ 33.637196] ip_finish_output+0x68/0xa0
[ 33.637654] ip_output+0x76/0xf0
[ 33.638046] ? __ip_finish_output+0x1c0/0x1c0
[ 33.638576] __ip_queue_xmit+0x157/0x410
[ 33.639049] __tcp_transmit_skb+0x535/0xaf0
[ 33.639557] tcp_write_xmit+0x378/0x1190
[ 33.640049] ? _copy_from_iter_full+0x8d/0x260
[ 33.640592] tcp_sendmsg_locked+0x2a2/0xdc0
[ 33.641098] ? sock_has_perm+0x10/0xa0
[ 33.641574] tcp_sendmsg+0x28/0x40
[ 33.641985] sock_sendmsg+0x57/0x60
[ 33.642411] sock_write_iter+0x97/0x100
[ 33.642876] new_sync_write+0x1b6/0x1d0
[ 33.643339] vfs_write+0xb6/0x1a0
[ 33.643752] ksys_write+0xa7/0xe0
[ 33.644156] do_syscall_64+0x5b/0x1b0
[ 33.644605] entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fix this by grabbing a reference to the bpf structure of each ancestor
on the initialization of the cgroup bpf structure, and dropping the
reference at the end of releasing the cgroup bpf structure.
This will restore the hierarchical order of cgroup bpf releasing,
without adding any operations on hot paths.
Thanks to Josef Bacik for the debugging and the initial analysis of
the problem.
Fixes: 4bfc0bb2c6 ("bpf: decouple the lifetime of cgroup_bpf from cgroup itself")
Reported-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-12-27
The following pull-request contains BPF updates for your *net-next* tree.
We've added 127 non-merge commits during the last 17 day(s) which contain
a total of 110 files changed, 6901 insertions(+), 2721 deletions(-).
There are three merge conflicts. Conflicts and resolution looks as follows:
1) Merge conflict in net/bpf/test_run.c:
There was a tree-wide cleanup c593642c8b ("treewide: Use sizeof_field() macro")
which gets in the way with b590cb5f80 ("bpf: Switch to offsetofend in
BPF_PROG_TEST_RUN"):
<<<<<<< HEAD
if (!range_is_zero(__skb, offsetof(struct __sk_buff, priority) +
sizeof_field(struct __sk_buff, priority),
=======
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, priority),
>>>>>>> 7c8dce4b16
There are a few occasions that look similar to this. Always take the chunk with
offsetofend(). Note that there is one where the fields differ in here:
<<<<<<< HEAD
if (!range_is_zero(__skb, offsetof(struct __sk_buff, tstamp) +
sizeof_field(struct __sk_buff, tstamp),
=======
if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_segs),
>>>>>>> 7c8dce4b16
Just take the one with offsetofend() /and/ gso_segs. Latter is correct due to
850a88cc40 ("bpf: Expose __sk_buff wire_len/gso_segs to BPF_PROG_TEST_RUN").
2) Merge conflict in arch/riscv/net/bpf_jit_comp.c:
(I'm keeping Bjorn in Cc here for a double-check in case I got it wrong.)
<<<<<<< HEAD
if (is_13b_check(off, insn))
return -1;
emit(rv_blt(tcc, RV_REG_ZERO, off >> 1), ctx);
=======
emit_branch(BPF_JSLT, RV_REG_T1, RV_REG_ZERO, off, ctx);
>>>>>>> 7c8dce4b16
Result should look like:
emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx);
3) Merge conflict in arch/riscv/include/asm/pgtable.h:
<<<<<<< HEAD
=======
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
#define VMALLOC_END (PAGE_OFFSET - 1)
#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
#define BPF_JIT_REGION_SIZE (SZ_128M)
#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (VMALLOC_END)
/*
* Roughly size the vmemmap space to be large enough to fit enough
* struct pages to map half the virtual address space. Then
* position vmemmap directly below the VMALLOC region.
*/
#define VMEMMAP_SHIFT \
(CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
#define VMEMMAP_END (VMALLOC_START - 1)
#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
#define vmemmap ((struct page *)VMEMMAP_START)
>>>>>>> 7c8dce4b16
Only take the BPF_* defines from there and move them higher up in the
same file. Remove the rest from the chunk. The VMALLOC_* etc defines
got moved via 01f52e16b8 ("riscv: define vmemmap before pfn_to_page
calls"). Result:
[...]
#define __S101 PAGE_READ_EXEC
#define __S110 PAGE_SHARED_EXEC
#define __S111 PAGE_SHARED_EXEC
#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
#define VMALLOC_END (PAGE_OFFSET - 1)
#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
#define BPF_JIT_REGION_SIZE (SZ_128M)
#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
#define BPF_JIT_REGION_END (VMALLOC_END)
/*
* Roughly size the vmemmap space to be large enough to fit enough
* struct pages to map half the virtual address space. Then
* position vmemmap directly below the VMALLOC region.
*/
#define VMEMMAP_SHIFT \
(CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
#define VMEMMAP_END (VMALLOC_START - 1)
#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
[...]
Let me know if there are any other issues.
Anyway, the main changes are:
1) Extend bpftool to produce a struct (aka "skeleton") tailored and specific
to a provided BPF object file. This provides an alternative, simplified API
compared to standard libbpf interaction. Also, add libbpf extern variable
resolution for .kconfig section to import Kconfig data, from Andrii Nakryiko.
2) Add BPF dispatcher for XDP which is a mechanism to avoid indirect calls by
generating a branch funnel as discussed back in bpfconf'19 at LSF/MM. Also,
add various BPF riscv JIT improvements, from Björn Töpel.
3) Extend bpftool to allow matching BPF programs and maps by name,
from Paul Chaignon.
4) Support for replacing cgroup BPF programs attached with BPF_F_ALLOW_MULTI
flag for allowing updates without service interruption, from Andrey Ignatov.
5) Cleanup and simplification of ring access functions for AF_XDP with a
bonus of 0-5% performance improvement, from Magnus Karlsson.
6) Enable BPF JITs for x86-64 and arm64 by default. Also, final version of
audit support for BPF, from Daniel Borkmann and latter with Jiri Olsa.
7) Move and extend test_select_reuseport into BPF program tests under
BPF selftests, from Jakub Sitnicki.
8) Various BPF sample improvements for xdpsock for customizing parameters
to set up and benchmark AF_XDP, from Jay Jayatheerthan.
9) Improve libbpf to provide a ulimit hint on permission denied errors.
Also change XDP sample programs to attach in driver mode by default,
from Toke Høiland-Jørgensen.
10) Extend BPF test infrastructure to allow changing skb mark from tc BPF
programs, from Nikita V. Shirokov.
11) Optimize prologue code sequence in BPF arm32 JIT, from Russell King.
12) Fix xdp_redirect_cpu BPF sample to manually attach to tracepoints after
libbpf conversion, from Jesper Dangaard Brouer.
13) Minor misc improvements from various others.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Anatoly has been fuzzing with kBdysch harness and reported a hang in one
of the outcomes. Upon closer analysis, it turns out that precise scalar
value tracking is missing a few precision markings for unknown scalars:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (35) if r0 >= 0xf72e goto pc+0
--> only follow fallthrough
2: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (35) if r0 >= 0x80fe0000 goto pc+0
--> only follow fallthrough
3: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
3: (14) w0 -= -536870912
4: R0_w=invP536870912 R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (0f) r1 += r0
5: R0_w=invP536870912 R1_w=inv(id=0) R10=fp0
5: (55) if r1 != 0x104c1500 goto pc+0
--> push other branch for later analysis
R0_w=invP536870912 R1_w=inv273421568 R10=fp0
6: R0_w=invP536870912 R1_w=inv273421568 R10=fp0
6: (b7) r0 = 0
7: R0=invP0 R1=inv273421568 R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
--> only follow goto
11: R0=invP0 R1=inv273421568 R10=fp0
11: (95) exit
6: R0_w=invP536870912 R1_w=inv(id=0) R10=fp0
6: (b7) r0 = 0
propagating r0
7: safe
processed 11 insns [...]
In the analysis of the second path coming after the successful exit above,
the path is being pruned at line 7. Pruning analysis found that both r0 are
precise P0 and both R1 are non-precise scalars and given prior path with
R1 as non-precise scalar succeeded, this one is therefore safe as well.
However, problem is that given condition at insn 7 in the first run, we only
followed goto and didn't push the other branch for later analysis, we've
never walked the few insns in there and therefore dead-code sanitation
rewrites it as goto pc-1, causing the hang depending on the skb address
hitting these conditions. The issue is that R1 should have been marked as
precise as well such that pruning enforces range check and conluded that new
R1 is not in range of old R1. In insn 4, we mark R1 (skb) as unknown scalar
via __mark_reg_unbounded() but not mark_reg_unbounded() and therefore
regs->precise remains as false.
Back in b5dc0163d8 ("bpf: precise scalar_value tracking"), this was not
the case since marking out of __mark_reg_unbounded() had this covered as well.
Once in both are set as precise in 4 as they should have been, we conclude
that given R1 was in prior fall-through path 0x104c1500 and now is completely
unknown, the check at insn 7 concludes that we need to continue walking.
Analysis after the fix:
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
0: (b7) r0 = 0
1: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
1: (35) if r0 >= 0xf72e goto pc+0
2: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
2: (35) if r0 >= 0x80fe0000 goto pc+0
3: R0_w=invP0 R1=ctx(id=0,off=0,imm=0) R10=fp0
3: (14) w0 -= -536870912
4: R0_w=invP536870912 R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (0f) r1 += r0
5: R0_w=invP536870912 R1_w=invP(id=0) R10=fp0
5: (55) if r1 != 0x104c1500 goto pc+0
R0_w=invP536870912 R1_w=invP273421568 R10=fp0
6: R0_w=invP536870912 R1_w=invP273421568 R10=fp0
6: (b7) r0 = 0
7: R0=invP0 R1=invP273421568 R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
11: R0=invP0 R1=invP273421568 R10=fp0
11: (95) exit
6: R0_w=invP536870912 R1_w=invP(id=0) R10=fp0
6: (b7) r0 = 0
7: R0_w=invP0 R1_w=invP(id=0) R10=fp0
7: (76) if w1 s>= 0xffffff00 goto pc+3
R0_w=invP0 R1_w=invP(id=0) R10=fp0
8: R0_w=invP0 R1_w=invP(id=0) R10=fp0
8: (a5) if r0 < 0x2007002a goto pc+0
9: R0_w=invP0 R1_w=invP(id=0) R10=fp0
9: (57) r0 &= -16316416
10: R0_w=invP0 R1_w=invP(id=0) R10=fp0
10: (a6) if w0 < 0x1201 goto pc+0
11: R0_w=invP0 R1_w=invP(id=0) R10=fp0
11: (95) exit
11: R0=invP0 R1=invP(id=0) R10=fp0
11: (95) exit
processed 16 insns [...]
Fixes: 6754172c20 ("bpf: fix precision tracking in presence of bpf2bpf calls")
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191222223740.25297-1-daniel@iogearbox.net
Pull networking fixes from David Miller:
1) Several nf_flow_table_offload fixes from Pablo Neira Ayuso,
including adding a missing ipv6 match description.
2) Several heap overflow fixes in mwifiex from qize wang and Ganapathi
Bhat.
3) Fix uninit value in bond_neigh_init(), from Eric Dumazet.
4) Fix non-ACPI probing of nxp-nci, from Stephan Gerhold.
5) Fix use after free in tipc_disc_rcv(), from Tuong Lien.
6) Enforce limit of 33 tail calls in mips and riscv JIT, from Paul
Chaignon.
7) Multicast MAC limit test is off by one in qede, from Manish Chopra.
8) Fix established socket lookup race when socket goes from
TCP_ESTABLISHED to TCP_LISTEN, because there lacks an intervening
RCU grace period. From Eric Dumazet.
9) Don't send empty SKBs from tcp_write_xmit(), also from Eric Dumazet.
10) Fix active backup transition after link failure in bonding, from
Mahesh Bandewar.
11) Avoid zero sized hash table in gtp driver, from Taehee Yoo.
12) Fix wrong interface passed to ->mac_link_up(), from Russell King.
13) Fix DSA egress flooding settings in b53, from Florian Fainelli.
14) Memory leak in gmac_setup_txqs(), from Navid Emamdoost.
15) Fix double free in dpaa2-ptp code, from Ioana Ciornei.
16) Reject invalid MTU values in stmmac, from Jose Abreu.
17) Fix refcount leak in error path of u32 classifier, from Davide
Caratti.
18) Fix regression causing iwlwifi firmware crashes on boot, from Anders
Kaseorg.
19) Fix inverted return value logic in llc2 code, from Chan Shu Tak.
20) Disable hardware GRO when XDP is attached to qede, frm Manish
Chopra.
21) Since we encode state in the low pointer bits, dst metrics must be
at least 4 byte aligned, which is not necessarily true on m68k. Add
annotations to fix this, from Geert Uytterhoeven.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (160 commits)
sfc: Include XDP packet headroom in buffer step size.
sfc: fix channel allocation with brute force
net: dst: Force 4-byte alignment of dst_metrics
selftests: pmtu: fix init mtu value in description
hv_netvsc: Fix unwanted rx_table reset
net: phy: ensure that phy IDs are correctly typed
mod_devicetable: fix PHY module format
qede: Disable hardware gro when xdp prog is installed
net: ena: fix issues in setting interrupt moderation params in ethtool
net: ena: fix default tx interrupt moderation interval
net/smc: unregister ib devices in reboot_event
net: stmmac: platform: Fix MDIO init for platforms without PHY
llc2: Fix return statement of llc_stat_ev_rx_null_dsap_xid_c (and _test_c)
net: hisilicon: Fix a BUG trigered by wrong bytes_compl
net: dsa: ksz: use common define for tag len
s390/qeth: don't return -ENOTSUPP to userspace
s390/qeth: fix promiscuous mode after reset
s390/qeth: handle error due to unsupported transport mode
cxgb4: fix refcount init for TC-MQPRIO offload
tc-testing: initial tdc selftests for cls_u32
...
The common use-case in production is to have multiple cgroup-bpf
programs per attach type that cover multiple use-cases. Such programs
are attached with BPF_F_ALLOW_MULTI and can be maintained by different
people.
Order of programs usually matters, for example imagine two egress
programs: the first one drops packets and the second one counts packets.
If they're swapped the result of counting program will be different.
It brings operational challenges with updating cgroup-bpf program(s)
attached with BPF_F_ALLOW_MULTI since there is no way to replace a
program:
* One way to update is to detach all programs first and then attach the
new version(s) again in the right order. This introduces an
interruption in the work a program is doing and may not be acceptable
(e.g. if it's egress firewall);
* Another way is attach the new version of a program first and only then
detach the old version. This introduces the time interval when two
versions of same program are working, what may not be acceptable if a
program is not idempotent. It also imposes additional burden on
program developers to make sure that two versions of their program can
co-exist.
Solve the problem by introducing a "replace" mode in BPF_PROG_ATTACH
command for cgroup-bpf programs being attached with BPF_F_ALLOW_MULTI
flag. This mode is enabled by newly introduced BPF_F_REPLACE attach flag
and bpf_attr.replace_bpf_fd attribute to pass fd of the old program to
replace
That way user can replace any program among those attached with
BPF_F_ALLOW_MULTI flag without the problems described above.
Details of the new API:
* If BPF_F_REPLACE is set but replace_bpf_fd doesn't have valid
descriptor of BPF program, BPF_PROG_ATTACH will return corresponding
error (EINVAL or EBADF).
* If replace_bpf_fd has valid descriptor of BPF program but such a
program is not attached to specified cgroup, BPF_PROG_ATTACH will
return ENOENT.
BPF_F_REPLACE is introduced to make the user intent clear, since
replace_bpf_fd alone can't be used for this (its default value, 0, is a
valid fd). BPF_F_REPLACE also makes it possible to extend the API in the
future (e.g. add BPF_F_BEFORE and BPF_F_AFTER if needed).
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Narkyiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/30cd850044a0057bdfcaaf154b7d2f39850ba813.1576741281.git.rdna@fb.com
__cgroup_bpf_attach has a lot of identical code to handle two scenarios:
BPF_F_ALLOW_MULTI is set and unset.
Simplify it by splitting the two main steps:
* First, the decision is made whether a new bpf_prog_list entry should
be allocated or existing entry should be reused for the new program.
This decision is saved in replace_pl pointer;
* Next, replace_pl pointer is used to handle both possible states of
BPF_F_ALLOW_MULTI flag (set / unset) instead of doing similar work for
them separately.
This splitting, in turn, allows to make further simplifications:
* The check for attaching same program twice in BPF_F_ALLOW_MULTI mode
can be done before allocating cgroup storage, so that if user tries to
attach same program twice no alloc/free happens as it was before;
* pl_was_allocated becomes redundant so it's removed.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/c6193db6fe630797110b0d3ff06c125d093b834c.1576741281.git.rdna@fb.com
The cpumap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all devmaps, which simplifies __cpu_map_flush()
and cpu_map_alloc().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-7-bjorn.topel@gmail.com
The devmap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all devmaps, which simplifies __dev_map_flush()
and dev_map_init_map().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-6-bjorn.topel@gmail.com
The xskmap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all xskmaps, which simplifies __xsk_map_flush()
and xsk_map_alloc().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-5-bjorn.topel@gmail.com
After the RCU flavor consolidation [1], call_rcu() and
synchronize_rcu() waits for preempt-disable regions (NAPI) in addition
to the read-side critical sections. As a result of this, the cleanup
code in cpumap can be simplified
* There is no longer a need to flush in __cpu_map_entry_free, since we
know that this has been done when the call_rcu() callback is
triggered.
* When freeing the map, there is no need to explicitly wait for a
flush. It's guaranteed to be done after the synchronize_rcu() call
in cpu_map_free().
[1] https://lwn.net/Articles/777036/
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-3-bjorn.topel@gmail.com
After the RCU flavor consolidation [1], call_rcu() and
synchronize_rcu() waits for preempt-disable regions (NAPI) in addition
to the read-side critical sections. As a result of this, the cleanup
code in devmap can be simplified
* There is no longer a need to flush in __dev_map_entry_free, since we
know that this has been done when the call_rcu() callback is
triggered.
* When freeing the map, there is no need to explicitly wait for a
flush. It's guaranteed to be done after the synchronize_rcu() call
in dev_map_free(). The rcu_barrier() is still needed, so that the
map is not freed prior the elements.
[1] https://lwn.net/Articles/777036/
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-2-bjorn.topel@gmail.com
While testing Cilium with /unreleased/ Linus' tree under BPF-based NodePort
implementation, I noticed a strange BPF SNAT engine behavior from time to
time. In some cases it would do the correct SNAT/DNAT service translation,
but at a random point in time it would just stop and perform an unexpected
translation after SYN, SYN/ACK and stack would send a RST back. While initially
assuming that there is some sort of a race condition in BPF code, adding
trace_printk()s for debugging purposes at some point seemed to have resolved
the issue auto-magically.
Digging deeper on this Heisenbug and reducing the trace_printk() calls to
an absolute minimum, it turns out that a single call would suffice to
trigger / not trigger the seen RST issue, even though the logic of the
program itself remains unchanged. Turns out the single call changed verifier
pruning behavior to get everything to work. Reconstructing a minimal test
case, the incorrect JIT dump looked as follows:
# bpftool p d j i 11346
0xffffffffc0cba96c:
[...]
21: movzbq 0x30(%rdi),%rax
26: cmp $0xd,%rax
2a: je 0x000000000000003a
2c: xor %edx,%edx
2e: movabs $0xffff89cc74e85800,%rsi
38: jmp 0x0000000000000049
3a: mov $0x2,%edx
3f: movabs $0xffff89cc74e85800,%rsi
49: mov -0x224(%rbp),%eax
4f: cmp $0x20,%eax
52: ja 0x0000000000000062
54: add $0x1,%eax
57: mov %eax,-0x224(%rbp)
5d: jmpq 0xffffffffffff6911
62: mov $0x1,%eax
[...]
Hence, unexpectedly, JIT emitted a direct jump even though retpoline based
one would have been needed since in line 2c and 3a we have different slot
keys in BPF reg r3. Verifier log of the test case reveals what happened:
0: (b7) r0 = 14
1: (73) *(u8 *)(r1 +48) = r0
2: (71) r0 = *(u8 *)(r1 +48)
3: (15) if r0 == 0xd goto pc+4
R0_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff)) R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (b7) r3 = 0
5: (18) r2 = 0xffff89cc74d54a00
7: (05) goto pc+3
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
from 3 to 8: R0_w=inv13 R1=ctx(id=0,off=0,imm=0) R10=fp0
8: (b7) r3 = 2
9: (18) r2 = 0xffff89cc74d54a00
11: safe
processed 13 insns (limit 1000000) [...]
Second branch is pruned by verifier since considered safe, but issue is that
record_func_key() couldn't have seen the index in line 3a and therefore
decided that emitting a direct jump at this location was okay.
Fix this by reusing our backtracking logic for precise scalar verification
in order to prevent pruning on the slot key. This means verifier will track
content of r3 all the way backwards and only prune if both scalars were
unknown in state equivalence check and therefore poisoned in the first place
in record_func_key(). The range is [x,x] in record_func_key() case since
the slot always would have to be constant immediate. Correct verification
after fix:
0: (b7) r0 = 14
1: (73) *(u8 *)(r1 +48) = r0
2: (71) r0 = *(u8 *)(r1 +48)
3: (15) if r0 == 0xd goto pc+4
R0_w=invP(id=0,umax_value=255,var_off=(0x0; 0xff)) R1=ctx(id=0,off=0,imm=0) R10=fp0
4: (b7) r3 = 0
5: (18) r2 = 0x0
7: (05) goto pc+3
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
from 3 to 8: R0_w=invP13 R1=ctx(id=0,off=0,imm=0) R10=fp0
8: (b7) r3 = 2
9: (18) r2 = 0x0
11: (85) call bpf_tail_call#12
12: (b7) r0 = 1
13: (95) exit
processed 15 insns (limit 1000000) [...]
And correct corresponding JIT dump:
# bpftool p d j i 11
0xffffffffc0dc34c4:
[...]
21: movzbq 0x30(%rdi),%rax
26: cmp $0xd,%rax
2a: je 0x000000000000003a
2c: xor %edx,%edx
2e: movabs $0xffff9928b4c02200,%rsi
38: jmp 0x0000000000000049
3a: mov $0x2,%edx
3f: movabs $0xffff9928b4c02200,%rsi
49: cmp $0x4,%rdx
4d: jae 0x0000000000000093
4f: and $0x3,%edx
52: mov %edx,%edx
54: cmp %edx,0x24(%rsi)
57: jbe 0x0000000000000093
59: mov -0x224(%rbp),%eax
5f: cmp $0x20,%eax
62: ja 0x0000000000000093
64: add $0x1,%eax
67: mov %eax,-0x224(%rbp)
6d: mov 0x110(%rsi,%rdx,8),%rax
75: test %rax,%rax
78: je 0x0000000000000093
7a: mov 0x30(%rax),%rax
7e: add $0x19,%rax
82: callq 0x000000000000008e
87: pause
89: lfence
8c: jmp 0x0000000000000087
8e: mov %rax,(%rsp)
92: retq
93: mov $0x1,%eax
[...]
Also explicitly adding explicit env->allow_ptr_leaks to fixup_bpf_calls() since
backtracking is enabled under former (direct jumps as well, but use different
test). In case of only tracking different map pointers as in c93552c443 ("bpf:
properly enforce index mask to prevent out-of-bounds speculation"), pruning
cannot make such short-cuts, neither if there are paths with scalar and non-scalar
types as r3. mark_chain_precision() is only needed after we know that
register_is_const(). If it was not the case, we already poison the key on first
path and non-const key in later paths are not matching the scalar range in regsafe()
either. Cilium NodePort testing passes fine as well now. Note, released kernels
not affected.
Fixes: d2e4c1e6c2 ("bpf: Constant map key tracking for prog array pokes")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/ac43ffdeb7386c5bd688761ed266f3722bb39823.1576789878.git.daniel@iogearbox.net
The two callers of bpf_prog_realloc - bpf_patch_insn_single and
bpf_migrate_filter dereference the struct fp_old, before passing
it to the function. Thus assertion to check fp_old is unnecessary
and can be removed.
Signed-off-by: Aditya Pakki <pakki001@umn.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191219175735.19231-1-pakki001@umn.edu
Recently noticed that we're tracking programs related to local storage maps
through their prog pointer. This is a wrong assumption since the prog pointer
can still change throughout the verification process, for example, whenever
bpf_patch_insn_single() is called.
Therefore, the prog pointer that was assigned via bpf_cgroup_storage_assign()
is not guaranteed to be the same as we pass in bpf_cgroup_storage_release()
and the map would therefore remain in busy state forever. Fix this by using
the prog's aux pointer which is stable throughout verification and beyond.
Fixes: de9cbbaadb ("bpf: introduce cgroup storage maps")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/1471c69eca3022218666f909bc927a92388fd09e.1576580332.git.daniel@iogearbox.net
Commit da765a2f59 ("bpf: Add poke dependency tracking for prog array
maps") wrongly assumed that in case of prog load errors, we're cleaning
up all program tracking via bpf_free_used_maps().
However, it can happen that we're still at the point where we didn't copy
map pointers into the prog's aux section such that env->prog->aux->used_maps
is still zero, running into a UAF. In such case, the verifier has similar
release_maps() helper that drops references to used maps from its env.
Consolidate the release code into __bpf_free_used_maps() and call it from
all sides to fix it.
Fixes: da765a2f59 ("bpf: Add poke dependency tracking for prog array maps")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/1c2909484ca524ae9f55109b06f22b6213e76376.1576514756.git.daniel@iogearbox.net
This commit adds a BPF dispatcher for XDP. The dispatcher is updated
from the XDP control-path, dev_xdp_install(), and used when an XDP
program is run via bpf_prog_run_xdp().
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-4-bjorn.topel@gmail.com
The BPF dispatcher is a multi-way branch code generator, mainly
targeted for XDP programs. When an XDP program is executed via the
bpf_prog_run_xdp(), it is invoked via an indirect call. The indirect
call has a substantial performance impact, when retpolines are
enabled. The dispatcher transform indirect calls to direct calls, and
therefore avoids the retpoline. The dispatcher is generated using the
BPF JIT, and relies on text poking provided by bpf_arch_text_poke().
The dispatcher hijacks a trampoline function it via the __fentry__ nop
of the trampoline. One dispatcher instance currently supports up to 64
dispatch points. A user creates a dispatcher with its corresponding
trampoline with the DEFINE_BPF_DISPATCHER macro.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-3-bjorn.topel@gmail.com
Refactor the image allocation in the BPF trampoline code into a
separate function, so it can be shared with the BPF dispatcher in
upcoming commits.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-2-bjorn.topel@gmail.com
After Spectre 2 fix via 290af86629 ("bpf: introduce BPF_JIT_ALWAYS_ON
config") most major distros use BPF_JIT_ALWAYS_ON configuration these days
which compiles out the BPF interpreter entirely and always enables the
JIT. Also given recent fix in e1608f3fa8 ("bpf: Avoid setting bpf insns
pages read-only when prog is jited"), we additionally avoid fragmenting
the direct map for the BPF insns pages sitting in the general data heap
since they are not used during execution. Latter is only needed when run
through the interpreter.
Since both x86 and arm64 JITs have seen a lot of exposure over the years,
are generally most up to date and maintained, there is more downside in
!BPF_JIT_ALWAYS_ON configurations to have the interpreter enabled by default
rather than the JIT. Add a ARCH_WANT_DEFAULT_BPF_JIT config which archs can
use to set the bpf_jit_{enable,kallsyms} to 1. Back in the days the
bpf_jit_kallsyms knob was set to 0 by default since major distros still
had /proc/kallsyms addresses exposed to unprivileged user space which is
not the case anymore. Hence both knobs are set via BPF_JIT_DEFAULT_ON which
is set to 'y' in case of BPF_JIT_ALWAYS_ON or ARCH_WANT_DEFAULT_BPF_JIT.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/f78ad24795c2966efcc2ee19025fa3459f622185.1575903816.git.daniel@iogearbox.net
Make BPF trampoline attach its generated assembly code to kernel functions via
register_ftrace_direct() API. It helps ftrace-based tracers co-exist with BPF
trampoline on the same kernel function. It also switches attaching logic from
arch specific text_poke to generic ftrace that is available on many
architectures. text_poke is still necessary for bpf-to-bpf attach and for
bpf_tail_call optimization.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191209000114.1876138-3-ast@kernel.org
Allow for audit messages to be emitted upon BPF program load and
unload for having a timeline of events. The load itself is in
syscall context, so additional info about the process initiating
the BPF prog creation can be logged and later directly correlated
to the unload event.
The only info really needed from BPF side is the globally unique
prog ID where then audit user space tooling can query / dump all
info needed about the specific BPF program right upon load event
and enrich the record, thus these changes needed here can be kept
small and non-intrusive to the core.
Raw example output:
# auditctl -D
# auditctl -a always,exit -F arch=x86_64 -S bpf
# ausearch --start recent -m 1334
...
----
time->Wed Nov 27 16:04:13 2019
type=PROCTITLE msg=audit(1574867053.120:84664): proctitle="./bpf"
type=SYSCALL msg=audit(1574867053.120:84664): arch=c000003e syscall=321 \
success=yes exit=3 a0=5 a1=7ffea484fbe0 a2=70 a3=0 items=0 ppid=7477 \
pid=12698 auid=1001 uid=1001 gid=1001 euid=1001 suid=1001 fsuid=1001 \
egid=1001 sgid=1001 fsgid=1001 tty=pts2 ses=4 comm="bpf" \
exe="/home/jolsa/auditd/audit-testsuite/tests/bpf/bpf" \
subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)
type=UNKNOWN[1334] msg=audit(1574867053.120:84664): prog-id=76 op=LOAD
----
time->Wed Nov 27 16:04:13 2019
type=UNKNOWN[1334] msg=audit(1574867053.120:84665): prog-id=76 op=UNLOAD
...
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Co-developed-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Paul Moore <paul@paul-moore.com>
Link: https://lore.kernel.org/bpf/20191206214934.11319-1-jolsa@kernel.org
Building with -Werror showed another failure:
kernel/bpf/btf.c: In function 'btf_get_prog_ctx_type.isra.31':
kernel/bpf/btf.c:3508:63: error: array subscript 0 is above array bounds of 'u8[0]' {aka 'unsigned char[0]'} [-Werror=array-bounds]
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
I don't actually understand why the array is empty, but a similar
fix has addressed a related problem, so I suppose we can do the
same thing here.
Fixes: ce27709b81 ("bpf: Fix build in minimal configurations")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191210203553.2941035-1-arnd@arndb.de
Replace all the occurrences of FIELD_SIZEOF() with sizeof_field() except
at places where these are defined. Later patches will remove the unused
definition of FIELD_SIZEOF().
This patch is generated using following script:
EXCLUDE_FILES="include/linux/stddef.h|include/linux/kernel.h"
git grep -l -e "\bFIELD_SIZEOF\b" | while read file;
do
if [[ "$file" =~ $EXCLUDE_FILES ]]; then
continue
fi
sed -i -e 's/\bFIELD_SIZEOF\b/sizeof_field/g' $file;
done
Signed-off-by: Pankaj Bharadiya <pankaj.laxminarayan.bharadiya@intel.com>
Link: https://lore.kernel.org/r/20190924105839.110713-3-pankaj.laxminarayan.bharadiya@intel.com
Co-developed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: David Miller <davem@davemloft.net> # for net
ns_get_path() and ns_get_path_cb() only ever return either NULL or an
ERR_PTR. It is far more idiomatic to simply return an integer, and it
makes all of the callers of ns_get_path() more straightforward to read.
Fixes: e149ed2b80 ("take the targets of /proc/*/ns/* symlinks to separate fs")
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull networking fixes from David Miller:
1) More jumbo frame fixes in r8169, from Heiner Kallweit.
2) Fix bpf build in minimal configuration, from Alexei Starovoitov.
3) Use after free in slcan driver, from Jouni Hogander.
4) Flower classifier port ranges don't work properly in the HW offload
case, from Yoshiki Komachi.
5) Use after free in hns3_nic_maybe_stop_tx(), from Yunsheng Lin.
6) Out of bounds access in mqprio_dump(), from Vladyslav Tarasiuk.
7) Fix flow dissection in dsa TX path, from Alexander Lobakin.
8) Stale syncookie timestampe fixes from Guillaume Nault.
[ Did an evil merge to silence a warning introduced by this pull - Linus ]
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (84 commits)
r8169: fix rtl_hw_jumbo_disable for RTL8168evl
net_sched: validate TCA_KIND attribute in tc_chain_tmplt_add()
r8169: add missing RX enabling for WoL on RTL8125
vhost/vsock: accept only packets with the right dst_cid
net: phy: dp83867: fix hfs boot in rgmii mode
net: ethernet: ti: cpsw: fix extra rx interrupt
inet: protect against too small mtu values.
gre: refetch erspan header from skb->data after pskb_may_pull()
pppoe: remove redundant BUG_ON() check in pppoe_pernet
tcp: Protect accesses to .ts_recent_stamp with {READ,WRITE}_ONCE()
tcp: tighten acceptance of ACKs not matching a child socket
tcp: fix rejected syncookies due to stale timestamps
lpc_eth: kernel BUG on remove
tcp: md5: fix potential overestimation of TCP option space
net: sched: allow indirect blocks to bind to clsact in TC
net: core: rename indirect block ingress cb function
net-sysfs: Call dev_hold always in netdev_queue_add_kobject
net: dsa: fix flow dissection on Tx path
net/tls: Fix return values to avoid ENOTSUPP
net: avoid an indirect call in ____sys_recvmsg()
...
For jited bpf program, if the subprogram count is 1, i.e.,
there is no callees in the program, prog->aux->func will be NULL
and prog->bpf_func points to image address of the program.
If there is more than one subprogram, prog->aux->func is populated,
and subprogram 0 can be accessed through either prog->bpf_func or
prog->aux->func[0]. Other subprograms should be accessed through
prog->aux->func[subprog_id].
This patch fixed a bug in check_attach_btf_id(), where
prog->aux->func[subprog_id] is used to access any subprogram which
caused a segfault like below:
[79162.619208] BUG: kernel NULL pointer dereference, address:
0000000000000000
......
[79162.634255] Call Trace:
[79162.634974] ? _cond_resched+0x15/0x30
[79162.635686] ? kmem_cache_alloc_trace+0x162/0x220
[79162.636398] ? selinux_bpf_prog_alloc+0x1f/0x60
[79162.637111] bpf_prog_load+0x3de/0x690
[79162.637809] __do_sys_bpf+0x105/0x1740
[79162.638488] do_syscall_64+0x5b/0x180
[79162.639147] entry_SYSCALL_64_after_hwframe+0x44/0xa9
......
Fixes: 5b92a28aae ("bpf: Support attaching tracing BPF program to other BPF programs")
Reported-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191205010606.177774-1-yhs@fb.com
Pull irq updates from Ingo Molnar:
"Most of the IRQ subsystem changes in this cycle were irq-chip driver
updates:
- Qualcomm PDC wakeup interrupt support
- Layerscape external IRQ support
- Broadcom bcm7038 PM and wakeup support
- Ingenic driver cleanup and modernization
- GICv3 ITS preparation for GICv4.1 updates
- GICv4 fixes
There's also the series from Frederic Weisbecker that fixes memory
ordering bugs for the irq-work logic, whose primary fix is to turn
work->irq_work.flags into an atomic variable and then convert the
complex (and buggy) atomic_cmpxchg() loop in irq_work_claim() into a
much simpler atomic_fetch_or() call.
There are also various smaller cleanups"
* 'irq-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
pinctrl/sdm845: Add PDC wakeup interrupt map for GPIOs
pinctrl/msm: Setup GPIO chip in hierarchy
irqchip/qcom-pdc: Add irqchip set/get state calls
irqchip/qcom-pdc: Add irqdomain for wakeup capable GPIOs
irqchip/qcom-pdc: Do not toggle IRQ_ENABLE during mask/unmask
irqchip/qcom-pdc: Update max PDC interrupts
of/irq: Document properties for wakeup interrupt parent
genirq: Introduce irq_chip_get/set_parent_state calls
irqdomain: Add bus token DOMAIN_BUS_WAKEUP
genirq: Fix function documentation of __irq_alloc_descs()
irq_work: Fix IRQ_WORK_BUSY bit clearing
irqchip/ti-sci-inta: Use ERR_CAST inlined function instead of ERR_PTR(PTR_ERR(...))
irq_work: Slightly simplify IRQ_WORK_PENDING clearing
irq_work: Fix irq_work_claim() memory ordering
irq_work: Convert flags to atomic_t
irqchip: Ingenic: Add process for more than one irq at the same time.
irqchip: ingenic: Alloc generic chips from IRQ domain
irqchip: ingenic: Get virq number from IRQ domain
irqchip: ingenic: Error out if IRQ domain creation failed
irqchip: ingenic: Drop redundant irq_suspend / irq_resume functions
...
Daniel Borkmann says:
====================
pull-request: bpf 2019-12-02
The following pull-request contains BPF updates for your *net* tree.
We've added 10 non-merge commits during the last 6 day(s) which contain
a total of 10 files changed, 60 insertions(+), 51 deletions(-).
The main changes are:
1) Fix vmlinux BTF generation for binutils pre v2.25, from Stanislav Fomichev.
2) Fix libbpf global variable relocation to take symbol's st_value offset
into account, from Andrii Nakryiko.
3) Fix libbpf build on powerpc where check_abi target fails due to different
readelf output format, from Aurelien Jarno.
4) Don't set BPF insns RO for the case when they are JITed in order to avoid
fragmenting the direct map, from Daniel Borkmann.
5) Fix static checker warning in btf_distill_func_proto() as well as a build
error due to empty enum when BPF is compiled out, from Alexei Starovoitov.
6) Fix up generation of bpf_helper_defs.h for perf, from Arnaldo Carvalho de Melo.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Some kconfigs can have BPF enabled without a single valid program type.
In such configurations the build will fail with:
./kernel/bpf/btf.c:3466:1: error: empty enum is invalid
Fix it by adding unused value to the enum.
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org> # build-tested
Link: https://lore.kernel.org/bpf/20191128043508.2346723-1-ast@kernel.org
kernel/bpf/btf.c:4023 btf_distill_func_proto()
error: potentially dereferencing uninitialized 't'.
kernel/bpf/btf.c
4012 nargs = btf_type_vlen(func);
4013 if (nargs >= MAX_BPF_FUNC_ARGS) {
4014 bpf_log(log,
4015 "The function %s has %d arguments. Too many.\n",
4016 tname, nargs);
4017 return -EINVAL;
4018 }
4019 ret = __get_type_size(btf, func->type, &t);
^^
t isn't initialized for the first -EINVAL return
This is unlikely path, since BTF should have been validated at this point.
Fix it by returning 'void' BTF.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191126230106.237179-1-ast@kernel.org
Pull locking updates from Ingo Molnar:
"The main changes in this cycle were:
- A comprehensive rewrite of the robust/PI futex code's exit handling
to fix various exit races. (Thomas Gleixner et al)
- Rework the generic REFCOUNT_FULL implementation using
atomic_fetch_* operations so that the performance impact of the
cmpxchg() loops is mitigated for common refcount operations.
With these performance improvements the generic implementation of
refcount_t should be good enough for everybody - and this got
confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
REFCOUNT_FULL entirely, leaving the generic implementation enabled
unconditionally. (Will Deacon)
- Other misc changes, fixes, cleanups"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
lkdtm: Remove references to CONFIG_REFCOUNT_FULL
locking/refcount: Remove unused 'refcount_error_report()' function
locking/refcount: Consolidate implementations of refcount_t
locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
locking/refcount: Move saturation warnings out of line
locking/refcount: Improve performance of generic REFCOUNT_FULL code
locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
locking/refcount: Remove unused refcount_*_checked() variants
locking/refcount: Ensure integer operands are treated as signed
locking/refcount: Define constants for saturation and max refcount values
futex: Prevent exit livelock
futex: Provide distinct return value when owner is exiting
futex: Add mutex around futex exit
futex: Provide state handling for exec() as well
futex: Sanitize exit state handling
futex: Mark the begin of futex exit explicitly
futex: Set task::futex_state to DEAD right after handling futex exit
futex: Split futex_mm_release() for exit/exec
exit/exec: Seperate mm_release()
futex: Replace PF_EXITPIDONE with a state
...
Pull RCU updates from Ingo Molnar:
"The main changes in this cycle were:
- Dynamic tick (nohz) updates, perhaps most notably changes to force
the tick on when needed due to lengthy in-kernel execution on CPUs
on which RCU is waiting.
- Linux-kernel memory consistency model updates.
- Replace rcu_swap_protected() with rcu_prepace_pointer().
- Torture-test updates.
- Documentation updates.
- Miscellaneous fixes"
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (51 commits)
security/safesetid: Replace rcu_swap_protected() with rcu_replace_pointer()
net/sched: Replace rcu_swap_protected() with rcu_replace_pointer()
net/netfilter: Replace rcu_swap_protected() with rcu_replace_pointer()
net/core: Replace rcu_swap_protected() with rcu_replace_pointer()
bpf/cgroup: Replace rcu_swap_protected() with rcu_replace_pointer()
fs/afs: Replace rcu_swap_protected() with rcu_replace_pointer()
drivers/scsi: Replace rcu_swap_protected() with rcu_replace_pointer()
drm/i915: Replace rcu_swap_protected() with rcu_replace_pointer()
x86/kvm/pmu: Replace rcu_swap_protected() with rcu_replace_pointer()
rcu: Upgrade rcu_swap_protected() to rcu_replace_pointer()
rcu: Suppress levelspread uninitialized messages
rcu: Fix uninitialized variable in nocb_gp_wait()
rcu: Update descriptions for rcu_future_grace_period tracepoint
rcu: Update descriptions for rcu_nocb_wake tracepoint
rcu: Remove obsolete descriptions for rcu_barrier tracepoint
rcu: Ensure that ->rcu_urgent_qs is set before resched IPI
workqueue: Convert for_each_wq to use built-in list check
rcu: Several rcu_segcblist functions can be static
rcu: Remove unused function hlist_bl_del_init_rcu()
Documentation: Rename rcu_node_context_switch() to rcu_note_context_switch()
...
Pull networking updates from David Miller:
"Another merge window, another pull full of stuff:
1) Support alternative names for network devices, from Jiri Pirko.
2) Introduce per-netns netdev notifiers, also from Jiri Pirko.
3) Support MSG_PEEK in vsock/virtio, from Matias Ezequiel Vara
Larsen.
4) Allow compiling out the TLS TOE code, from Jakub Kicinski.
5) Add several new tracepoints to the kTLS code, also from Jakub.
6) Support set channels ethtool callback in ena driver, from Sameeh
Jubran.
7) New SCTP events SCTP_ADDR_ADDED, SCTP_ADDR_REMOVED,
SCTP_ADDR_MADE_PRIM, and SCTP_SEND_FAILED_EVENT. From Xin Long.
8) Add XDP support to mvneta driver, from Lorenzo Bianconi.
9) Lots of netfilter hw offload fixes, cleanups and enhancements,
from Pablo Neira Ayuso.
10) PTP support for aquantia chips, from Egor Pomozov.
11) Add UDP segmentation offload support to igb, ixgbe, and i40e. From
Josh Hunt.
12) Add smart nagle to tipc, from Jon Maloy.
13) Support L2 field rewrite by TC offloads in bnxt_en, from Venkat
Duvvuru.
14) Add a flow mask cache to OVS, from Tonghao Zhang.
15) Add XDP support to ice driver, from Maciej Fijalkowski.
16) Add AF_XDP support to ice driver, from Krzysztof Kazimierczak.
17) Support UDP GSO offload in atlantic driver, from Igor Russkikh.
18) Support it in stmmac driver too, from Jose Abreu.
19) Support TIPC encryption and auth, from Tuong Lien.
20) Introduce BPF trampolines, from Alexei Starovoitov.
21) Make page_pool API more numa friendly, from Saeed Mahameed.
22) Introduce route hints to ipv4 and ipv6, from Paolo Abeni.
23) Add UDP segmentation offload to cxgb4, Rahul Lakkireddy"
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (1857 commits)
libbpf: Fix usage of u32 in userspace code
mm: Implement no-MMU variant of vmalloc_user_node_flags
slip: Fix use-after-free Read in slip_open
net: dsa: sja1105: fix sja1105_parse_rgmii_delays()
macvlan: schedule bc_work even if error
enetc: add support Credit Based Shaper(CBS) for hardware offload
net: phy: add helpers phy_(un)lock_mdio_bus
mdio_bus: don't use managed reset-controller
ax88179_178a: add ethtool_op_get_ts_info()
mlxsw: spectrum_router: Fix use of uninitialized adjacency index
mlxsw: spectrum_router: After underlay moves, demote conflicting tunnels
bpf: Simplify __bpf_arch_text_poke poke type handling
bpf: Introduce BPF_TRACE_x helper for the tracing tests
bpf: Add bpf_jit_blinding_enabled for !CONFIG_BPF_JIT
bpf, testing: Add various tail call test cases
bpf, x86: Emit patchable direct jump as tail call
bpf: Constant map key tracking for prog array pokes
bpf: Add poke dependency tracking for prog array maps
bpf: Add initial poke descriptor table for jit images
bpf: Move owner type, jited info into array auxiliary data
...
Pull cgroup updates from Tejun Heo:
"There are several notable changes here:
- Single thread migrating itself has been optimized so that it
doesn't need threadgroup rwsem anymore.
- Freezer optimization to avoid unnecessary frozen state changes.
- cgroup ID unification so that cgroup fs ino is the only unique ID
used for the cgroup and can be used to directly look up live
cgroups through filehandle interface on 64bit ino archs. On 32bit
archs, cgroup fs ino is still the only ID in use but it is only
unique when combined with gen.
- selftest and other changes"
* 'for-5.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (24 commits)
writeback: fix -Wformat compilation warnings
docs: cgroup: mm: Fix spelling of "list"
cgroup: fix incorrect WARN_ON_ONCE() in cgroup_setup_root()
cgroup: use cgrp->kn->id as the cgroup ID
kernfs: use 64bit inos if ino_t is 64bit
kernfs: implement custom exportfs ops and fid type
kernfs: combine ino/id lookup functions into kernfs_find_and_get_node_by_id()
kernfs: convert kernfs_node->id from union kernfs_node_id to u64
kernfs: kernfs_find_and_get_node_by_ino() should only look up activated nodes
kernfs: use dumber locking for kernfs_find_and_get_node_by_ino()
netprio: use css ID instead of cgroup ID
writeback: use ino_t for inodes in tracepoints
kernfs: fix ino wrap-around detection
kselftests: cgroup: Avoid the reuse of fd after it is deallocated
cgroup: freezer: don't change task and cgroups status unnecessarily
cgroup: use cgroup->last_bstat instead of cgroup->bstat_pending for consistency
cgroup: remove cgroup_enable_task_cg_lists() optimization
cgroup: pids: use atomic64_t for pids->limit
selftests: cgroup: Run test_core under interfering stress
selftests: cgroup: Add task migration tests
...
Given that we have BPF_MOD_NOP_TO_{CALL,JUMP}, BPF_MOD_{CALL,JUMP}_TO_NOP
and BPF_MOD_{CALL,JUMP}_TO_{CALL,JUMP} poke types and that we also pass in
old_addr as well as new_addr, it's a bit redundant and unnecessarily
complicates __bpf_arch_text_poke() itself since we can derive the same from
the *_addr that were passed in. Hence simplify and use BPF_MOD_{CALL,JUMP}
as types which also allows to clean up call-sites.
In addition to that, __bpf_arch_text_poke() currently verifies that text
matches expected old_insn before we invoke text_poke_bp(). Also add a check
on new_insn and skip rewrite if it already matches. Reason why this is rather
useful is that it avoids making any special casing in prog_array_map_poke_run()
when old and new prog were NULL and has the benefit that also for this case
we perform a check on text whether it really matches our expectations.
Suggested-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/fcb00a2b0b288d6c73de4ef58116a821c8fe8f2f.1574555798.git.daniel@iogearbox.net
Add tracking of constant keys into tail call maps. The signature of
bpf_tail_call_proto is that arg1 is ctx, arg2 map pointer and arg3
is a index key. The direct call approach for tail calls can be enabled
if the verifier asserted that for all branches leading to the tail call
helper invocation, the map pointer and index key were both constant
and the same.
Tracking of map pointers we already do from prior work via c93552c443
("bpf: properly enforce index mask to prevent out-of-bounds speculation")
and 09772d92cd ("bpf: avoid retpoline for lookup/update/ delete calls
on maps").
Given the tail call map index key is not on stack but directly in the
register, we can add similar tracking approach and later in fixup_bpf_calls()
add a poke descriptor to the progs poke_tab with the relevant information
for the JITing phase.
We internally reuse insn->imm for the rewritten BPF_JMP | BPF_TAIL_CALL
instruction in order to point into the prog's poke_tab, and keep insn->imm
as 0 as indicator that current indirect tail call emission must be used.
Note that publishing to the tracker must happen at the end of fixup_bpf_calls()
since adding elements to the poke_tab reallocates its memory, so we need
to wait until its in final state.
Future work can generalize and add similar approach to optimize plain
array map lookups. Difference there is that we need to look into the key
value that sits on stack. For clarity in bpf_insn_aux_data, map_state
has been renamed into map_ptr_state, so we get map_{ptr,key}_state as
trackers.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/e8db37f6b2ae60402fa40216c96738ee9b316c32.1574452833.git.daniel@iogearbox.net
This work adds program tracking to prog array maps. This is needed such
that upon prog array updates/deletions we can fix up all programs which
make use of this tail call map. We add ops->map_poke_{un,}track()
helpers to maps to maintain the list of programs and ops->map_poke_run()
for triggering the actual update.
bpf_array_aux is extended to contain the list head and poke_mutex in
order to serialize program patching during updates/deletions.
bpf_free_used_maps() will untrack the program shortly before dropping
the reference to the map. For clearing out the prog array once all urefs
are dropped we need to use schedule_work() to have a sleepable context.
The prog_array_map_poke_run() is triggered during updates/deletions and
walks the maintained prog list. It checks in their poke_tabs whether the
map and key is matching and runs the actual bpf_arch_text_poke() for
patching in the nop or new jmp location. Depending on the type of update,
we use one of BPF_MOD_{NOP_TO_JUMP,JUMP_TO_NOP,JUMP_TO_JUMP}.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/1fb364bb3c565b3e415d5ea348f036ff379e779d.1574452833.git.daniel@iogearbox.net
Add initial poke table data structures and management to the BPF
prog that can later be used by JITs. Also add an instance of poke
specific data for tail call maps; plan for later work is to extend
this also for BPF static keys.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/1db285ec2ea4207ee0455b3f8e191a4fc58b9ade.1574452833.git.daniel@iogearbox.net
We're going to extend this with further information which is only
relevant for prog array at this point. Given this info is not used
in critical path, move it into its own structure such that the main
array map structure can be kept on diet.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/b9ddccdb0f6f7026489ee955f16c96381e1e7238.1574452833.git.daniel@iogearbox.net
We later on are going to need a sleepable context as opposed to plain
RCU callback in order to untrack programs we need to poke at runtime
and tracking as well as image update is performed under mutex.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/09823b1d5262876e9b83a8e75df04cf0467357a4.1574452833.git.daniel@iogearbox.net
With latest llvm (trunk https://github.com/llvm/llvm-project),
test_progs, which has +alu32 enabled, failed for strobemeta.o.
The verifier output looks like below with edit to replace large
decimal numbers with hex ones.
193: (85) call bpf_probe_read_user_str#114
R0=inv(id=0)
194: (26) if w0 > 0x1 goto pc+4
R0_w=inv(id=0,umax_value=0xffffffff00000001)
195: (6b) *(u16 *)(r7 +80) = r0
196: (bc) w6 = w0
R6_w=inv(id=0,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
197: (67) r6 <<= 32
R6_w=inv(id=0,smax_value=0x7fffffff00000000,umax_value=0xffffffff00000000,
var_off=(0x0; 0xffffffff00000000))
198: (77) r6 >>= 32
R6=inv(id=0,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
...
201: (79) r8 = *(u64 *)(r10 -416)
R8_w=map_value(id=0,off=40,ks=4,vs=13872,imm=0)
202: (0f) r8 += r6
R8_w=map_value(id=0,off=40,ks=4,vs=13872,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
203: (07) r8 += 9696
R8_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
...
255: (bf) r1 = r8
R1_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=0xffffffff,var_off=(0x0; 0xffffffff))
...
257: (85) call bpf_probe_read_user_str#114
R1 unbounded memory access, make sure to bounds check any array access into a map
The value range for register r6 at insn 198 should be really just 0/1.
The umax_value=0xffffffff caused later verification failure.
After jmp instructions, the current verifier already tried to use just
obtained information to get better register range. The current mechanism is
for 64bit register only. This patch implemented to tighten the range
for 32bit sub-registers after jmp32 instructions.
With the patch, we have the below range ranges for the
above code sequence:
193: (85) call bpf_probe_read_user_str#114
R0=inv(id=0)
194: (26) if w0 > 0x1 goto pc+4
R0_w=inv(id=0,smax_value=0x7fffffff00000001,umax_value=0xffffffff00000001,
var_off=(0x0; 0xffffffff00000001))
195: (6b) *(u16 *)(r7 +80) = r0
196: (bc) w6 = w0
R6_w=inv(id=0,umax_value=0xffffffff,var_off=(0x0; 0x1))
197: (67) r6 <<= 32
R6_w=inv(id=0,umax_value=0x100000000,var_off=(0x0; 0x100000000))
198: (77) r6 >>= 32
R6=inv(id=0,umax_value=1,var_off=(0x0; 0x1))
...
201: (79) r8 = *(u64 *)(r10 -416)
R8_w=map_value(id=0,off=40,ks=4,vs=13872,imm=0)
202: (0f) r8 += r6
R8_w=map_value(id=0,off=40,ks=4,vs=13872,umax_value=1,var_off=(0x0; 0x1))
203: (07) r8 += 9696
R8_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=1,var_off=(0x0; 0x1))
...
255: (bf) r1 = r8
R1_w=map_value(id=0,off=9736,ks=4,vs=13872,umax_value=1,var_off=(0x0; 0x1))
...
257: (85) call bpf_probe_read_user_str#114
...
At insn 194, the register R0 has better var_off.mask and smax_value.
Especially, the var_off.mask ensures later lshift and rshift
maintains proper value range.
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191121170650.449030-1-yhs@fb.com
Tetsuo pointed out that it was not only the device unregister hook that was
broken for devmap_hash types, it was also cleanup on map free. So better
fix this as well.
While we're at it, there's no reason to allocate the netdev_map array for
DEVMAP_HASH, so skip that and adjust the cost accordingly.
Fixes: 6f9d451ab1 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20191121133612.430414-1-toke@redhat.com
This commit reverts commit 91e6015b08 ("bpf: Emit audit messages
upon successful prog load and unload") and its follow up commit
7599a896f2 ("audit: Move audit_log_task declaration under
CONFIG_AUDITSYSCALL") as requested by Paul Moore. The change needs
close review on linux-audit, tests etc.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Minor conflict in drivers/s390/net/qeth_l2_main.c, kept the lock
from commit c8183f5489 ("s390/qeth: fix potential deadlock on
workqueue flush"), removed the code which was removed by commit
9897d583b0 ("s390/qeth: consolidate some duplicated HW cmd code").
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-11-20
The following pull-request contains BPF updates for your *net-next* tree.
We've added 81 non-merge commits during the last 17 day(s) which contain
a total of 120 files changed, 4958 insertions(+), 1081 deletions(-).
There are 3 trivial conflicts, resolve it by always taking the chunk from
196e8ca74886c433:
<<<<<<< HEAD
=======
void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
>>>>>>> 196e8ca748
<<<<<<< HEAD
void *bpf_map_area_alloc(u64 size, int numa_node)
=======
static void *__bpf_map_area_alloc(u64 size, int numa_node, bool mmapable)
>>>>>>> 196e8ca748
<<<<<<< HEAD
if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
=======
/* kmalloc()'ed memory can't be mmap()'ed */
if (!mmapable && size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
>>>>>>> 196e8ca748
The main changes are:
1) Addition of BPF trampoline which works as a bridge between kernel functions,
BPF programs and other BPF programs along with two new use cases: i) fentry/fexit
BPF programs for tracing with practically zero overhead to call into BPF (as
opposed to k[ret]probes) and ii) attachment of the former to networking related
programs to see input/output of networking programs (covering xdpdump use case),
from Alexei Starovoitov.
2) BPF array map mmap support and use in libbpf for global data maps; also a big
batch of libbpf improvements, among others, support for reading bitfields in a
relocatable manner (via libbpf's CO-RE helper API), from Andrii Nakryiko.
3) Extend s390x JIT with usage of relative long jumps and loads in order to lift
the current 64/512k size limits on JITed BPF programs there, from Ilya Leoshkevich.
4) Add BPF audit support and emit messages upon successful prog load and unload in
order to have a timeline of events, from Daniel Borkmann and Jiri Olsa.
5) Extension to libbpf and xdpsock sample programs to demo the shared umem mode
(XDP_SHARED_UMEM) as well as RX-only and TX-only sockets, from Magnus Karlsson.
6) Several follow-up bug fixes for libbpf's auto-pinning code and a new API
call named bpf_get_link_xdp_info() for retrieving the full set of prog
IDs attached to XDP, from Toke Høiland-Jørgensen.
7) Add BTF support for array of int, array of struct and multidimensional arrays
and enable it for skb->cb[] access in kfree_skb test, from Martin KaFai Lau.
8) Fix AF_XDP by using the correct number of channels from ethtool, from Luigi Rizzo.
9) Two fixes for BPF selftest to get rid of a hang in test_tc_tunnel and to avoid
xdping to be run as standalone, from Jiri Benc.
10) Various BPF selftest fixes when run with latest LLVM trunk, from Yonghong Song.
11) Fix a memory leak in BPF fentry test run data, from Colin Ian King.
12) Various smaller misc cleanups and improvements mostly all over BPF selftests and
samples, from Daniel T. Lee, Andre Guedes, Anders Roxell, Mao Wenan, Yue Haibing.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Given we recently extended the original bpf_map_area_alloc() helper in
commit fc9702273e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY"),
we need to apply the same logic as in ff1c08e1f7 ("bpf: Change size
to u64 for bpf_map_{area_alloc, charge_init}()"). To avoid conflicts,
extend it for bpf-next.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Allow for audit messages to be emitted upon BPF program load and
unload for having a timeline of events. The load itself is in
syscall context, so additional info about the process initiating
the BPF prog creation can be logged and later directly correlated
to the unload event.
The only info really needed from BPF side is the globally unique
prog ID where then audit user space tooling can query / dump all
info needed about the specific BPF program right upon load event
and enrich the record, thus these changes needed here can be kept
small and non-intrusive to the core.
Raw example output:
# auditctl -D
# auditctl -a always,exit -F arch=x86_64 -S bpf
# ausearch --start recent -m 1334
[...]
----
time->Wed Nov 20 12:45:51 2019
type=PROCTITLE msg=audit(1574271951.590:8974): proctitle="./test_verifier"
type=SYSCALL msg=audit(1574271951.590:8974): arch=c000003e syscall=321 success=yes exit=14 a0=5 a1=7ffe2d923e80 a2=78 a3=0 items=0 ppid=742 pid=949 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2 comm="test_verifier" exe="/root/bpf-next/tools/testing/selftests/bpf/test_verifier" subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 key=(null)
type=UNKNOWN[1334] msg=audit(1574271951.590:8974): auid=0 uid=0 gid=0 ses=2 subj=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023 pid=949 comm="test_verifier" exe="/root/bpf-next/tools/testing/selftests/bpf/test_verifier" prog-id=3260 event=LOAD
----
time->Wed Nov 20 12:45:51 2019
type=UNKNOWN[1334] msg=audit(1574271951.590:8975): prog-id=3260 event=UNLOAD
----
[...]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191120213816.8186-1-jolsa@kernel.org
Fix sparse warning:
kernel/bpf/arraymap.c:481:5: warning:
symbol 'array_map_mmap' was not declared. Should it be static?
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191119142113.15388-1-yuehaibing@huawei.com
Add ability to memory-map contents of BPF array map. This is extremely useful
for working with BPF global data from userspace programs. It allows to avoid
typical bpf_map_{lookup,update}_elem operations, improving both performance
and usability.
There had to be special considerations for map freezing, to avoid having
writable memory view into a frozen map. To solve this issue, map freezing and
mmap-ing is happening under mutex now:
- if map is already frozen, no writable mapping is allowed;
- if map has writable memory mappings active (accounted in map->writecnt),
map freezing will keep failing with -EBUSY;
- once number of writable memory mappings drops to zero, map freezing can be
performed again.
Only non-per-CPU plain arrays are supported right now. Maps with spinlocks
can't be memory mapped either.
For BPF_F_MMAPABLE array, memory allocation has to be done through vmalloc()
to be mmap()'able. We also need to make sure that array data memory is
page-sized and page-aligned, so we over-allocate memory in such a way that
struct bpf_array is at the end of a single page of memory with array->value
being aligned with the start of the second page. On deallocation we need to
accomodate this memory arrangement to free vmalloc()'ed memory correctly.
One important consideration regarding how memory-mapping subsystem functions.
Memory-mapping subsystem provides few optional callbacks, among them open()
and close(). close() is called for each memory region that is unmapped, so
that users can decrease their reference counters and free up resources, if
necessary. open() is *almost* symmetrical: it's called for each memory region
that is being mapped, **except** the very first one. So bpf_map_mmap does
initial refcnt bump, while open() will do any extra ones after that. Thus
number of close() calls is equal to number of open() calls plus one more.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-4-andriin@fb.com
Similarly to bpf_map's refcnt/usercnt, convert bpf_prog's refcnt to atomic64
and remove artificial 32k limit. This allows to make bpf_prog's refcounting
non-failing, simplifying logic of users of bpf_prog_add/bpf_prog_inc.
Validated compilation by running allyesconfig kernel build.
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-3-andriin@fb.com
92117d8443 ("bpf: fix refcnt overflow") turned refcounting of bpf_map into
potentially failing operation, when refcount reaches BPF_MAX_REFCNT limit
(32k). Due to using 32-bit counter, it's possible in practice to overflow
refcounter and make it wrap around to 0, causing erroneous map free, while
there are still references to it, causing use-after-free problems.
But having a failing refcounting operations are problematic in some cases. One
example is mmap() interface. After establishing initial memory-mapping, user
is allowed to arbitrarily map/remap/unmap parts of mapped memory, arbitrarily
splitting it into multiple non-contiguous regions. All this happening without
any control from the users of mmap subsystem. Rather mmap subsystem sends
notifications to original creator of memory mapping through open/close
callbacks, which are optionally specified during initial memory mapping
creation. These callbacks are used to maintain accurate refcount for bpf_map
(see next patch in this series). The problem is that open() callback is not
supposed to fail, because memory-mapped resource is set up and properly
referenced. This is posing a problem for using memory-mapping with BPF maps.
One solution to this is to maintain separate refcount for just memory-mappings
and do single bpf_map_inc/bpf_map_put when it goes from/to zero, respectively.
There are similar use cases in current work on tcp-bpf, necessitating extra
counter as well. This seems like a rather unfortunate and ugly solution that
doesn't scale well to various new use cases.
Another approach to solve this is to use non-failing refcount_t type, which
uses 32-bit counter internally, but, once reaching overflow state at UINT_MAX,
stays there. This utlimately causes memory leak, but prevents use after free.
But given refcounting is not the most performance-critical operation with BPF
maps (it's not used from running BPF program code), we can also just switch to
64-bit counter that can't overflow in practice, potentially disadvantaging
32-bit platforms a tiny bit. This simplifies semantics and allows above
described scenarios to not worry about failing refcount increment operation.
In terms of struct bpf_map size, we are still good and use the same amount of
space:
BEFORE (3 cache lines, 8 bytes of padding at the end):
struct bpf_map {
const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */
struct bpf_map * inner_map_meta; /* 8 8 */
void * security; /* 16 8 */
enum bpf_map_type map_type; /* 24 4 */
u32 key_size; /* 28 4 */
u32 value_size; /* 32 4 */
u32 max_entries; /* 36 4 */
u32 map_flags; /* 40 4 */
int spin_lock_off; /* 44 4 */
u32 id; /* 48 4 */
int numa_node; /* 52 4 */
u32 btf_key_type_id; /* 56 4 */
u32 btf_value_type_id; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct btf * btf; /* 64 8 */
struct bpf_map_memory memory; /* 72 16 */
bool unpriv_array; /* 88 1 */
bool frozen; /* 89 1 */
/* XXX 38 bytes hole, try to pack */
/* --- cacheline 2 boundary (128 bytes) --- */
atomic_t refcnt __attribute__((__aligned__(64))); /* 128 4 */
atomic_t usercnt; /* 132 4 */
struct work_struct work; /* 136 32 */
char name[16]; /* 168 16 */
/* size: 192, cachelines: 3, members: 21 */
/* sum members: 146, holes: 1, sum holes: 38 */
/* padding: 8 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));
AFTER (same 3 cache lines, no extra padding now):
struct bpf_map {
const struct bpf_map_ops * ops __attribute__((__aligned__(64))); /* 0 8 */
struct bpf_map * inner_map_meta; /* 8 8 */
void * security; /* 16 8 */
enum bpf_map_type map_type; /* 24 4 */
u32 key_size; /* 28 4 */
u32 value_size; /* 32 4 */
u32 max_entries; /* 36 4 */
u32 map_flags; /* 40 4 */
int spin_lock_off; /* 44 4 */
u32 id; /* 48 4 */
int numa_node; /* 52 4 */
u32 btf_key_type_id; /* 56 4 */
u32 btf_value_type_id; /* 60 4 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct btf * btf; /* 64 8 */
struct bpf_map_memory memory; /* 72 16 */
bool unpriv_array; /* 88 1 */
bool frozen; /* 89 1 */
/* XXX 38 bytes hole, try to pack */
/* --- cacheline 2 boundary (128 bytes) --- */
atomic64_t refcnt __attribute__((__aligned__(64))); /* 128 8 */
atomic64_t usercnt; /* 136 8 */
struct work_struct work; /* 144 32 */
char name[16]; /* 176 16 */
/* size: 192, cachelines: 3, members: 21 */
/* sum members: 154, holes: 1, sum holes: 38 */
/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));
This patch, while modifying all users of bpf_map_inc, also cleans up its
interface to match bpf_map_put with separate operations for bpf_map_inc and
bpf_map_inc_with_uref (to match bpf_map_put and bpf_map_put_with_uref,
respectively). Also, given there are no users of bpf_map_inc_not_zero
specifying uref=true, remove uref flag and default to uref=false internally.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-2-andriin@fb.com
Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type
including their subprograms. This feature allows snooping on input and output
packets in XDP, TC programs including their return values. In order to do that
the verifier needs to track types not only of vmlinux, but types of other BPF
programs as well. The verifier also needs to translate uapi/linux/bpf.h types
used by networking programs into kernel internal BTF types used by FENTRY/FEXIT
BPF programs. In some cases LLVM optimizations can remove arguments from BPF
subprograms without adjusting BTF info that LLVM backend knows. When BTF info
disagrees with actual types that the verifiers sees the BPF trampoline has to
fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT
program can still attach to such subprograms, but it won't be able to recognize
pointer types like 'struct sk_buff *' and it won't be able to pass them to
bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program
would need to use bpf_probe_read_kernel() instead.
The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set
to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd
points to previously loaded BPF program the attach_btf_id is BTF type id of
main function or one of its subprograms.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
Make the verifier check that BTF types of function arguments match actual types
passed into top-level BPF program and into BPF-to-BPF calls. If types match
such BPF programs and sub-programs will have full support of BPF trampoline. If
types mismatch the trampoline has to be conservative. It has to save/restore
five program arguments and assume 64-bit scalars.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-17-ast@kernel.org
Annotate BPF program context types with program-side type and kernel-side type.
This type information is used by the verifier. btf_get_prog_ctx_type() is
used in the later patches to verify that BTF type of ctx in BPF program matches to
kernel expected ctx type. For example, the XDP program type is:
BPF_PROG_TYPE(BPF_PROG_TYPE_XDP, xdp, struct xdp_md, struct xdp_buff)
That means that XDP program should be written as:
int xdp_prog(struct xdp_md *ctx) { ... }
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-16-ast@kernel.org
btf_resolve_helper_id() caching logic is a bit racy, since under root the
verifier can verify several programs in parallel. Fix it with READ/WRITE_ONCE.
Fix the type as well, since error is also recorded.
Fixes: a7658e1a41 ("bpf: Check types of arguments passed into helpers")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-15-ast@kernel.org
Introduce BPF trampoline concept to allow kernel code to call into BPF programs
with practically zero overhead. The trampoline generation logic is
architecture dependent. It's converting native calling convention into BPF
calling convention. BPF ISA is 64-bit (even on 32-bit architectures). The
registers R1 to R5 are used to pass arguments into BPF functions. The main BPF
program accepts only single argument "ctx" in R1. Whereas CPU native calling
convention is different. x86-64 is passing first 6 arguments in registers
and the rest on the stack. x86-32 is passing first 3 arguments in registers.
sparc64 is passing first 6 in registers. And so on.
The trampolines between BPF and kernel already exist. BPF_CALL_x macros in
include/linux/filter.h statically compile trampolines from BPF into kernel
helpers. They convert up to five u64 arguments into kernel C pointers and
integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On
32-bit architecture they're meaningful.
The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and
__bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert
kernel function arguments into array of u64s that BPF program consumes via
R1=ctx pointer.
This patch set is doing the same job as __bpf_trace_##call() static
trampolines, but dynamically for any kernel function. There are ~22k global
kernel functions that are attachable via nop at function entry. The function
arguments and types are described in BTF. The job of btf_distill_func_proto()
function is to extract useful information from BTF into "function model" that
architecture dependent trampoline generators will use to generate assembly code
to cast kernel function arguments into array of u64s. For example the kernel
function eth_type_trans has two pointers. They will be casted to u64 and stored
into stack of generated trampoline. The pointer to that stack space will be
passed into BPF program in R1. On x86-64 such generated trampoline will consume
16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will
make sure that only two u64 are accessed read-only by BPF program. The verifier
will also recognize the precise type of the pointers being accessed and will
not allow typecasting of the pointer to a different type within BPF program.
The tracing use case in the datacenter demonstrated that certain key kernel
functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always
active. Other functions have both kprobe and kretprobe. So it is essential to
keep both kernel code and BPF programs executing at maximum speed. Hence
generated BPF trampoline is re-generated every time new program is attached or
detached to maintain maximum performance.
To avoid the high cost of retpoline the attached BPF programs are called
directly. __bpf_prog_enter/exit() are used to support per-program execution
stats. In the future this logic will be optimized further by adding support
for bpf_stats_enabled_key inside generated assembly code. Introduction of
preemptible and sleepable BPF programs will completely remove the need to call
to __bpf_prog_enter/exit().
Detach of a BPF program from the trampoline should not fail. To avoid memory
allocation in detach path the half of the page is used as a reserve and flipped
after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly
which is enough for BPF tracing use cases. This limit can be increased in the
future.
BPF_TRACE_FENTRY programs have access to raw kernel function arguments while
BPF_TRACE_FEXIT programs have access to kernel return value as well. Often
kprobe BPF program remembers function arguments in a map while kretprobe
fetches arguments from a map and analyzes them together with return value.
BPF_TRACE_FEXIT accelerates this typical use case.
Recursion prevention for kprobe BPF programs is done via per-cpu
bpf_prog_active counter. In practice that turned out to be a mistake. It
caused programs to randomly skip execution. The tracing tools missed results
they were looking for. Hence BPF trampoline doesn't provide builtin recursion
prevention. It's a job of BPF program itself and will be addressed in the
follow up patches.
BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases
in the future. For example to remove retpoline cost from XDP programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
Add bpf_arch_text_poke() helper that is used by BPF trampoline logic to patch
nops/calls in kernel text into calls into BPF trampoline and to patch
calls/nops inside BPF programs too.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-4-ast@kernel.org
Currently passing alignment greater than 4 to bpf_jit_binary_alloc does
not work: in such cases it silently aligns only to 4 bytes.
On s390, in order to load a constant from memory in a large (>512k) BPF
program, one must use lgrl instruction, whose memory operand must be
aligned on an 8-byte boundary.
This patch makes it possible to request 8-byte alignment from
bpf_jit_binary_alloc, and also makes it issue a warning when an
unsupported alignment is requested.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191115123722.58462-1-iii@linux.ibm.com
cgroup ID is currently allocated using a dedicated per-hierarchy idr
and used internally and exposed through tracepoints and bpf. This is
confusing because there are tracepoints and other interfaces which use
the cgroupfs ino as IDs.
The preceding changes made kn->id exposed as ino as 64bit ino on
supported archs or ino+gen (low 32bits as ino, high gen). There's no
reason for cgroup to use different IDs. The kernfs IDs are unique and
userland can easily discover them and map them back to paths using
standard file operations.
This patch replaces cgroup IDs with kernfs IDs.
* cgroup_id() is added and all cgroup ID users are converted to use it.
* kernfs_node creation is moved to earlier during cgroup init so that
cgroup_id() is available during init.
* While at it, s/cgroup/cgrp/ in psi helpers for consistency.
* Fallback ID value is changed to 1 to be consistent with root cgroup
ID.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
kernfs_node->id is currently a union kernfs_node_id which represents
either a 32bit (ino, gen) pair or u64 value. I can't see much value
in the usage of the union - all that's needed is a 64bit ID which the
current code is already limited to. Using a union makes the code
unnecessarily complicated and prevents using 64bit ino without adding
practical benefits.
This patch drops union kernfs_node_id and makes kernfs_node->id a u64.
ino is stored in the lower 32bits and gen upper. Accessors -
kernfs[_id]_ino() and kernfs[_id]_gen() - are added to retrieve the
ino and gen. This simplifies ID handling less cumbersome and will
allow using 64bit inos on supported archs.
This patch doesn't make any functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Alexei Starovoitov <ast@kernel.org>
We need to convert flags to atomic_t in order to later fix an ordering
issue on atomic_cmpxchg() failure. This will allow us to use atomic_fetch_or().
Also clarify the nature of those flags.
[ mingo: Converted two more usage site the original patch missed. ]
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20191108160858.31665-2-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
One conflict in the BPF samples Makefile, some fixes in 'net' whilst
we were converting over to Makefile.target rules in 'net-next'.
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds array support to btf_struct_access().
It supports array of int, array of struct and multidimensional
array.
It also allows using u8[] as a scratch space. For example,
it allows access the "char cb[48]" with size larger than
the array's element "char". Another potential use case is
"u64 icsk_ca_priv[]" in the tcp congestion control.
btf_resolve_size() is added to resolve the size of any type.
It will follow the modifier if there is any. Please
see the function comment for details.
This patch also adds the "off < moff" check at the beginning
of the for loop. It is to reject cases when "off" is pointing
to a "hole" in a struct.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191107180903.4097702-1-kafai@fb.com
In the bpf interpreter mode, bpf_probe_read_kernel is used to read
from PTR_TO_BTF_ID's kernel object. It currently missed considering
the insn->off. This patch fixes it.
Fixes: 2a02759ef5 ("bpf: Add support for BTF pointers to interpreter")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191107014640.384083-1-kafai@fb.com
We need to drop the bpf_devs_lock on error before returning.
Fixes: 9fd7c55591 ("bpf: offload: aggregate offloads per-device")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Link: https://lore.kernel.org/bpf/20191104091536.GB31509@mwanda
Alexei Starovoitov says:
====================
pull-request: bpf-next 2019-11-02
The following pull-request contains BPF updates for your *net-next* tree.
We've added 30 non-merge commits during the last 7 day(s) which contain
a total of 41 files changed, 1864 insertions(+), 474 deletions(-).
The main changes are:
1) Fix long standing user vs kernel access issue by introducing
bpf_probe_read_user() and bpf_probe_read_kernel() helpers, from Daniel.
2) Accelerated xskmap lookup, from Björn and Maciej.
3) Support for automatic map pinning in libbpf, from Toke.
4) Cleanup of BTF-enabled raw tracepoints, from Alexei.
5) Various fixes to libbpf and selftests.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The only slightly tricky merge conflict was the netdevsim because the
mutex locking fix overlapped a lot of driver reload reorganization.
The rest were (relatively) trivial in nature.
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 2a02759ef5 ("bpf: Add support for BTF pointers to interpreter")
explicitly states that the pointer to BTF object is a pointer to a kernel
object or NULL. Therefore we should also switch to using the strict kernel
probe helper which is restricted to kernel addresses only when architectures
have non-overlapping address spaces.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/d2b90827837685424a4b8008dfe0460558abfada.1572649915.git.daniel@iogearbox.net
In this commit the XSKMAP entry lookup function used by the XDP
redirect code is moved from the xskmap.c file to the xdp_sock.h
header, so the lookup can be inlined from, e.g., the
bpf_xdp_redirect_map() function.
Further the __xsk_map_redirect() and __xsk_map_flush() is moved to the
xsk.c, which lets the compiler inline the xsk_rcv() and xsk_flush()
functions.
Finally, all the XDP socket functions were moved from linux/bpf.h to
net/xdp_sock.h, where most of the XDP sockets functions are anyway.
This yields a ~2% performance boost for the xdpsock "rx_drop"
scenario.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191101110346.15004-4-bjorn.topel@gmail.com
Inline the xsk_map_lookup_elem() via implementing the map_gen_lookup()
callback. This results in emitting the bpf instructions in place of
bpf_map_lookup_elem() helper call and better performance of bpf
programs.
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Link: https://lore.kernel.org/bpf/20191101110346.15004-3-bjorn.topel@gmail.com
Prior this commit, the array storing XDP socket instances were stored
in a separate allocated array of the XSKMAP. Now, we store the sockets
as a flexible array member in a similar fashion as the arraymap. Doing
so, we do less pointer chasing in the lookup.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Link: https://lore.kernel.org/bpf/20191101110346.15004-2-bjorn.topel@gmail.com
The functions bpf_map_area_alloc() and bpf_map_charge_init() prior
this commit passed the size parameter as size_t. In this commit this
is changed to u64.
All users of these functions avoid size_t overflows on 32-bit systems,
by explicitly using u64 when calculating the allocation size and
memory charge cost. However, since the result was narrowed by the
size_t when passing size and cost to the functions, the overflow
handling was in vain.
Instead of changing all call sites to size_t and handle overflow at
the call site, the parameter is changed to u64 and checked in the
functions above.
Fixes: d407bd25a2 ("bpf: don't trigger OOM killer under pressure with map alloc")
Fixes: c85d69135a ("bpf: move memory size checks to bpf_map_charge_init()")
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Link: https://lore.kernel.org/bpf/20191029154307.23053-1-bjorn.topel@gmail.com
The bpf program type raw_tp together with 'expected_attach_type'
was the most appropriate api to indicate BTF-enabled raw_tp programs.
But during development it became apparent that 'expected_attach_type'
cannot be used and new 'attach_btf_id' field had to be introduced.
Which means that the information is duplicated in two fields where
one of them is ignored.
Clean it up by introducing new program type where both
'expected_attach_type' and 'attach_btf_id' fields have
specific meaning.
In the future 'expected_attach_type' will be extended
with other attach points that have similar semantics to raw_tp.
This patch is replacing BTF-enabled BPF_PROG_TYPE_RAW_TRACEPOINT with
prog_type = BPF_RPOG_TYPE_TRACING
expected_attach_type = BPF_TRACE_RAW_TP
attach_btf_id = btf_id of raw tracepoint inside the kernel
Future patches will add
expected_attach_type = BPF_TRACE_FENTRY or BPF_TRACE_FEXIT
where programs have the same input context and the same helpers,
but different attach points.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191030223212.953010-2-ast@kernel.org
Jiri reported crash when JIT is on, but net.core.bpf_jit_kallsyms is off.
bpf_prog_kallsyms_find() was skipping addr->bpf_prog resolution
logic in oops and stack traces. That's incorrect.
It should only skip addr->name resolution for 'cat /proc/kallsyms'.
That's what bpf_jit_kallsyms and bpf_jit_harden protect.
Fixes: 3dec541b2e ("bpf: Add support for BTF pointers to x86 JIT")
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191030233019.1187404-1-ast@kernel.org
"ctx:file_pos sysctl:read read ok narrow" works on s390 by accident: it
reads the wrong byte, which happens to have the expected value of 0.
Improve the test by seeking to the 4th byte and expecting 4 instead of
0.
This makes the latent problem apparent: the test attempts to read the
first byte of bpf_sysctl.file_pos, assuming this is the least-significant
byte, which is not the case on big-endian machines: a non-zero offset is
needed.
The point of the test is to verify narrow loads, so we cannot cheat our
way out by simply using BPF_W. The existence of the test means that such
loads have to be supported, most likely because llvm can generate them.
Fix the test by adding a big-endian variant, which uses an offset to
access the least-significant byte of bpf_sysctl.file_pos.
This reveals the final problem: verifier rejects accesses to bpf_sysctl
fields with offset > 0. Such accesses are already allowed for a wide
range of structs: __sk_buff, bpf_sock_addr and sk_msg_md to name a few.
Extend this support to bpf_sysctl by using bpf_ctx_range instead of
offsetof when matching field offsets.
Fixes: 7b146cebe3 ("bpf: Sysctl hook")
Fixes: e1550bfe0d ("bpf: Add file_pos field to bpf_sysctl ctx")
Fixes: 9a1027e525 ("selftests/bpf: Test file_pos field in bpf_sysctl ctx")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrey Ignatov <rdna@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191028122902.9763-1-iii@linux.ibm.com
This commit replaces the use of rcu_swap_protected() with the more
intuitively appealing rcu_replace_pointer() as a step towards removing
rcu_swap_protected().
Link: https://lore.kernel.org/lkml/CAHk-=wiAsJLw1egFEE=Z7-GGtM6wcvtyytXZA1+BHqta4gg6Hw@mail.gmail.com/
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
[ paulmck: From rcu_replace() to rcu_replace_pointer() per Ingo Molnar. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: <netdev@vger.kernel.org>
Cc: <bpf@vger.kernel.org>
The return value of raw_tp programs is ignored by __bpf_trace_run()
that calls them. The verifier also allows any value to be returned.
For BTF-enabled raw_tp lets enforce 'return 0', so that return value
can be used for something in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191029032426.1206762-1-ast@kernel.org
This patch makes a few changes to btf_ctx_access() to prepare
it for non raw_tp use case where the attach_btf_id is not
necessary a BTF_KIND_TYPEDEF.
It moves the "btf_trace_" prefix check and typedef-follow logic to a new
function "check_attach_btf_id()" which is called only once during
bpf_check(). btf_ctx_access() only operates on a BTF_KIND_FUNC_PROTO
type now. That should also be more efficient since it is done only
one instead of every-time check_ctx_access() is called.
"check_attach_btf_id()" needs to find the func_proto type from
the attach_btf_id. It needs to store the result into the
newly added prog->aux->attach_func_proto. func_proto
btf type has no name, so a proper name should be stored into
"attach_func_name" also.
v2:
- Move the "btf_trace_" check to an earlier verifier phase (Alexei)
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191025001811.1718491-1-kafai@fb.com
There is one more problematic case I noticed while recently fixing BPF kallsyms
handling in cd7455f101 ("bpf: Fix use after free in subprog's jited symbol
removal") and that is bpf_get_prog_name().
If BTF has been attached to the prog, then we may be able to fetch the function
signature type id in kallsyms through prog->aux->func_info[prog->aux->func_idx].type_id.
However, while the BTF object itself is torn down via RCU callback, the prog's
aux->func_info is immediately freed via kvfree(prog->aux->func_info) once the
prog's refcount either hit zero or when subprograms were already exposed via
kallsyms and we hit the error path added in 5482e9a93c ("bpf: Fix memleak in
aux->func_info and aux->btf").
This violates RCU as well since kallsyms could be walked in parallel where we
could access aux->func_info. Hence, defer kvfree() to after RCU grace period.
Looking at ba64e7d852 ("bpf: btf: support proper non-jit func info") there
is no reason/dependency where we couldn't defer the kvfree(aux->func_info) into
the RCU callback.
Fixes: 5482e9a93c ("bpf: Fix memleak in aux->func_info and aux->btf")
Fixes: ba64e7d852 ("bpf: btf: support proper non-jit func info")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Cc: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/875f2906a7c1a0691f2d567b4d8e4ea2739b1e88.1571779205.git.daniel@iogearbox.net
syzkaller managed to trigger the following crash:
[...]
BUG: unable to handle page fault for address: ffffc90001923030
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD aa551067 P4D aa551067 PUD aa552067 PMD a572b067 PTE 80000000a1173163
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 7982 Comm: syz-executor912 Not tainted 5.4.0-rc3+ #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:bpf_jit_binary_hdr include/linux/filter.h:787 [inline]
RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:531 [inline]
RIP: 0010:bpf_tree_comp kernel/bpf/core.c:600 [inline]
RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline]
RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline]
RIP: 0010:bpf_prog_kallsyms_find kernel/bpf/core.c:674 [inline]
RIP: 0010:is_bpf_text_address+0x184/0x3b0 kernel/bpf/core.c:709
[...]
Call Trace:
kernel_text_address kernel/extable.c:147 [inline]
__kernel_text_address+0x9a/0x110 kernel/extable.c:102
unwind_get_return_address+0x4c/0x90 arch/x86/kernel/unwind_frame.c:19
arch_stack_walk+0x98/0xe0 arch/x86/kernel/stacktrace.c:26
stack_trace_save+0xb6/0x150 kernel/stacktrace.c:123
save_stack mm/kasan/common.c:69 [inline]
set_track mm/kasan/common.c:77 [inline]
__kasan_kmalloc+0x11c/0x1b0 mm/kasan/common.c:510
kasan_slab_alloc+0xf/0x20 mm/kasan/common.c:518
slab_post_alloc_hook mm/slab.h:584 [inline]
slab_alloc mm/slab.c:3319 [inline]
kmem_cache_alloc+0x1f5/0x2e0 mm/slab.c:3483
getname_flags+0xba/0x640 fs/namei.c:138
getname+0x19/0x20 fs/namei.c:209
do_sys_open+0x261/0x560 fs/open.c:1091
__do_sys_open fs/open.c:1115 [inline]
__se_sys_open fs/open.c:1110 [inline]
__x64_sys_open+0x87/0x90 fs/open.c:1110
do_syscall_64+0xf7/0x1c0 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
[...]
After further debugging it turns out that we walk kallsyms while in parallel
we tear down a BPF program which contains subprograms that have been JITed
though the program itself has not been fully exposed and is eventually bailing
out with error.
The bpf_prog_kallsyms_del_subprogs() in bpf_prog_load()'s error path removes
the symbols, however, bpf_prog_free() tears down the JIT memory too early via
scheduled work. Instead, it needs to properly respect RCU grace period as the
kallsyms walk for BPF is under RCU.
Fix it by refactoring __bpf_prog_put()'s tear down and reuse it in our error
path where we defer final destruction when we have subprogs in the program.
Fixes: 7d1982b4e3 ("bpf: fix panic in prog load calls cleanup")
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Reported-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: syzbot+710043c5d1d5b5013bc7@syzkaller.appspotmail.com
Link: https://lore.kernel.org/bpf/55f6367324c2d7e9583fa9ccf5385dcbba0d7a6e.1571752452.git.daniel@iogearbox.net
It seems I forgot to add handling of devmap_hash type maps to the device
unregister hook for devmaps. This omission causes devices to not be
properly released, which causes hangs.
Fix this by adding the missing handler.
Fixes: 6f9d451ab1 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191019111931.2981954-1-toke@redhat.com
Tetsuo pointed out that without an explicit cast, the cost calculation for
devmap_hash type maps could overflow on 32-bit builds. This adds the
missing cast.
Fixes: 6f9d451ab1 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Reported-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20191017105702.2807093-1-toke@redhat.com
Only raw_tracepoint program type can have bpf_attr.attach_btf_id >= 0.
Make sure to reject other program types that accidentally set it to non-zero.
Fixes: ccfe29eb29 ("bpf: Add attach_btf_id attribute to program load")
Reported-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20191018060933.2950231-1-ast@kernel.org
Introduce new helper that reuses existing skb perf_event output
implementation, but can be called from raw_tracepoint programs
that receive 'struct sk_buff *' as tracepoint argument or
can walk other kernel data structures to skb pointer.
In order to do that teach verifier to resolve true C types
of bpf helpers into in-kernel BTF ids.
The type of kernel pointer passed by raw tracepoint into bpf
program will be tracked by the verifier all the way until
it's passed into helper function.
For example:
kfree_skb() kernel function calls trace_kfree_skb(skb, loc);
bpf programs receives that skb pointer and may eventually
pass it into bpf_skb_output() bpf helper which in-kernel is
implemented via bpf_skb_event_output() kernel function.
Its first argument in the kernel is 'struct sk_buff *'.
The verifier makes sure that types match all the way.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-11-ast@kernel.org
Pointer to BTF object is a pointer to kernel object or NULL.
Such pointers can only be used by BPF_LDX instructions.
The verifier changed their opcode from LDX|MEM|size
to LDX|PROBE_MEM|size to make JITing easier.
The number of entries in extable is the number of BPF_LDX insns
that access kernel memory via "pointer to BTF type".
Only these load instructions can fault.
Since x86 extable is relative it has to be allocated in the same
memory region as JITed code.
Allocate it prior to last pass of JITing and let the last pass populate it.
Pointer to extable in bpf_prog_aux is necessary to make page fault
handling fast.
Page fault handling is done in two steps:
1. bpf_prog_kallsyms_find() finds BPF program that page faulted.
It's done by walking rb tree.
2. then extable for given bpf program is binary searched.
This process is similar to how page faulting is done for kernel modules.
The exception handler skips over faulting x86 instruction and
initializes destination register with zero. This mimics exact
behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed).
JITs for other architectures can add support in similar way.
Until then they will reject unknown opcode and fallback to interpreter.
Since extable should be aligned and placed near JITed code
make bpf_jit_binary_alloc() return 4 byte aligned image offset,
so that extable aligning formula in bpf_int_jit_compile() doesn't need
to rely on internal implementation of bpf_jit_binary_alloc().
On x86 gcc defaults to 16-byte alignment for regular kernel functions
due to better performance. JITed code may be aligned to 16 in the future,
but it will use 4 in the meantime.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
Pointer to BTF object is a pointer to kernel object or NULL.
The memory access in the interpreter has to be done via probe_kernel_read
to avoid page faults.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-9-ast@kernel.org
BTF type id specified at program load time has all
necessary information to attach that program to raw tracepoint.
Use kernel type name to find raw tracepoint.
Add missing CHECK_ATTR() condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-8-ast@kernel.org
libbpf analyzes bpf C program, searches in-kernel BTF for given type name
and stores it into expected_attach_type.
The kernel verifier expects this btf_id to point to something like:
typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc);
which represents signature of raw_tracepoint "kfree_skb".
Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb'
and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint.
In first case it passes btf_id of 'struct sk_buff *' back to the verifier core
and 'void *' in second case.
Then the verifier tracks PTR_TO_BTF_ID as any other pointer type.
Like PTR_TO_SOCKET points to 'struct bpf_sock',
PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on.
PTR_TO_BTF_ID points to in-kernel structs.
If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF
then PTR_TO_BTF_ID#1234 points to one of in kernel skbs.
When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32)
the btf_struct_access() checks which field of 'struct sk_buff' is
at offset 32. Checks that size of access matches type definition
of the field and continues to track the dereferenced type.
If that field was a pointer to 'struct net_device' the r2's type
will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device'
in vmlinux's BTF.
Such verifier analysis prevents "cheating" in BPF C program.
The program cannot cast arbitrary pointer to 'struct sk_buff *'
and access it. C compiler would allow type cast, of course,
but the verifier will notice type mismatch based on BPF assembly
and in-kernel BTF.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
Add attach_btf_id attribute to prog_load command.
It's similar to existing expected_attach_type attribute which is
used in several cgroup based program types.
Unfortunately expected_attach_type is ignored for
tracing programs and cannot be reused for new purpose.
Hence introduce attach_btf_id to verify bpf programs against
given in-kernel BTF type id at load time.
It is strictly checked to be valid for raw_tp programs only.
In a later patches it will become:
btf_id == 0 semantics of existing raw_tp progs.
btd_id > 0 raw_tp with BTF and additional type safety.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-5-ast@kernel.org
If in-kernel BTF exists parse it and prepare 'struct btf *btf_vmlinux'
for further use by the verifier.
In-kernel BTF is trusted just like kallsyms and other build artifacts
embedded into vmlinux.
Yet run this BTF image through BTF verifier to make sure
that it is valid and it wasn't mangled during the build.
If in-kernel BTF is incorrect it means either gcc or pahole or kernel
are buggy. In such case disallow loading BPF programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-4-ast@kernel.org
bpf stackmap with build-id lookup (BPF_F_STACK_BUILD_ID) can trigger A-A
deadlock on rq_lock():
rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[...]
Call Trace:
try_to_wake_up+0x1ad/0x590
wake_up_q+0x54/0x80
rwsem_wake+0x8a/0xb0
bpf_get_stack+0x13c/0x150
bpf_prog_fbdaf42eded9fe46_on_event+0x5e3/0x1000
bpf_overflow_handler+0x60/0x100
__perf_event_overflow+0x4f/0xf0
perf_swevent_overflow+0x99/0xc0
___perf_sw_event+0xe7/0x120
__schedule+0x47d/0x620
schedule+0x29/0x90
futex_wait_queue_me+0xb9/0x110
futex_wait+0x139/0x230
do_futex+0x2ac/0xa50
__x64_sys_futex+0x13c/0x180
do_syscall_64+0x42/0x100
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This can be reproduced by:
1. Start a multi-thread program that does parallel mmap() and malloc();
2. taskset the program to 2 CPUs;
3. Attach bpf program to trace_sched_switch and gather stackmap with
build-id, e.g. with trace.py from bcc tools:
trace.py -U -p <pid> -s <some-bin,some-lib> t:sched:sched_switch
A sample reproducer is attached at the end.
This could also trigger deadlock with other locks that are nested with
rq_lock.
Fix this by checking whether irqs are disabled. Since rq_lock and all
other nested locks are irq safe, it is safe to do up_read() when irqs are
not disable. If the irqs are disabled, postpone up_read() in irq_work.
Fixes: 615755a77b ("bpf: extend stackmap to save binary_build_id+offset instead of address")
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191014171223.357174-1-songliubraving@fb.com
Reproducer:
============================ 8< ============================
char *filename;
void *worker(void *p)
{
void *ptr;
int fd;
char *pptr;
fd = open(filename, O_RDONLY);
if (fd < 0)
return NULL;
while (1) {
struct timespec ts = {0, 1000 + rand() % 2000};
ptr = mmap(NULL, 4096 * 64, PROT_READ, MAP_PRIVATE, fd, 0);
usleep(1);
if (ptr == MAP_FAILED) {
printf("failed to mmap\n");
break;
}
munmap(ptr, 4096 * 64);
usleep(1);
pptr = malloc(1);
usleep(1);
pptr[0] = 1;
usleep(1);
free(pptr);
usleep(1);
nanosleep(&ts, NULL);
}
close(fd);
return NULL;
}
int main(int argc, char *argv[])
{
void *ptr;
int i;
pthread_t threads[THREAD_COUNT];
if (argc < 2)
return 0;
filename = argv[1];
for (i = 0; i < THREAD_COUNT; i++) {
if (pthread_create(threads + i, NULL, worker, NULL)) {
fprintf(stderr, "Error creating thread\n");
return 0;
}
}
for (i = 0; i < THREAD_COUNT; i++)
pthread_join(threads[i], NULL);
return 0;
}
============================ 8< ============================
Fix "warning: cast to pointer from integer of different size" when
casting u64 addr to void *.
Fixes: a23740ec43 ("bpf: Track contents of read-only maps as scalars")
Reported-by: kbuild test robot <lkp@intel.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191011172053.2980619-1-andriin@fb.com
Maps that are read-only both from BPF program side and user space side
have their contents constant, so verifier can track referenced values
precisely and use that knowledge for dead code elimination, branch
pruning, etc. This patch teaches BPF verifier how to do this.
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191009201458.2679171-2-andriin@fb.com
Pull networking fixes from David Miller:
1) Sanity check URB networking device parameters to avoid divide by
zero, from Oliver Neukum.
2) Disable global multicast filter in NCSI, otherwise LLDP and IPV6
don't work properly. Longer term this needs a better fix tho. From
Vijay Khemka.
3) Small fixes to selftests (use ping when ping6 is not present, etc.)
from David Ahern.
4) Bring back rt_uses_gateway member of struct rtable, it's semantics
were not well understood and trying to remove it broke things. From
David Ahern.
5) Move usbnet snaity checking, ignore endpoints with invalid
wMaxPacketSize. From Bjørn Mork.
6) Missing Kconfig deps for sja1105 driver, from Mao Wenan.
7) Various small fixes to the mlx5 DR steering code, from Alaa Hleihel,
Alex Vesker, and Yevgeny Kliteynik
8) Missing CAP_NET_RAW checks in various places, from Ori Nimron.
9) Fix crash when removing sch_cbs entry while offloading is enabled,
from Vinicius Costa Gomes.
10) Signedness bug fixes, generally in looking at the result given by
of_get_phy_mode() and friends. From Dan Crapenter.
11) Disable preemption around BPF_PROG_RUN() calls, from Eric Dumazet.
12) Don't create VRF ipv6 rules if ipv6 is disabled, from David Ahern.
13) Fix quantization code in tcp_bbr, from Kevin Yang.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (127 commits)
net: tap: clean up an indentation issue
nfp: abm: fix memory leak in nfp_abm_u32_knode_replace
tcp: better handle TCP_USER_TIMEOUT in SYN_SENT state
sk_buff: drop all skb extensions on free and skb scrubbing
tcp_bbr: fix quantization code to not raise cwnd if not probing bandwidth
mlxsw: spectrum_flower: Fail in case user specifies multiple mirror actions
Documentation: Clarify trap's description
mlxsw: spectrum: Clear VLAN filters during port initialization
net: ena: clean up indentation issue
NFC: st95hf: clean up indentation issue
net: phy: micrel: add Asym Pause workaround for KSZ9021
net: socionext: ave: Avoid using netdev_err() before calling register_netdev()
ptp: correctly disable flags on old ioctls
lib: dimlib: fix help text typos
net: dsa: microchip: Always set regmap stride to 1
nfp: flower: fix memory leak in nfp_flower_spawn_vnic_reprs
nfp: flower: prevent memory leak in nfp_flower_spawn_phy_reprs
net/sched: Set default of CONFIG_NET_TC_SKB_EXT to N
vrf: Do not attempt to create IPv6 mcast rule if IPv6 is disabled
net: sched: sch_sfb: don't call qdisc_put() while holding tree lock
...
When kzalloc() failed, NULL was returned to the caller, which
tested the pointer with IS_ERR(), which didn't match, so the
pointer was used later, resulting in a NULL dereference.
Return ERR_PTR(-ENOMEM) instead of NULL.
Reported-by: syzbot+491c1b7565ba9069ecae@syzkaller.appspotmail.com
Fixes: 0402acd683 ("xsk: remove AF_XDP socket from map when the socket is released")
Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Pull more mount API conversions from Al Viro:
"Assorted conversions of options parsing to new API.
gfs2 is probably the most serious one here; the rest is trivial stuff.
Other things in what used to be #work.mount are going to wait for the
next cycle (and preferably go via git trees of the filesystems
involved)"
* 'work.mount3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
gfs2: Convert gfs2 to fs_context
vfs: Convert spufs to use the new mount API
vfs: Convert hypfs to use the new mount API
hypfs: Fix error number left in struct pointer member
vfs: Convert functionfs to use the new mount API
vfs: Convert bpf to use the new mount API
vmlinux BTF has enums that are 8 byte and 1 byte in size.
2 byte enum is a valid construct as well.
Fix BTF enum verification to accept those sizes.
Fixes: 69b693f0ae ("bpf: btf: Introduce BPF Type Format (BTF)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Convert the bpf filesystem to the new internal mount API as the old
one will be obsoleted and removed. This allows greater flexibility in
communication of mount parameters between userspace, the VFS and the
filesystem.
See Documentation/filesystems/mount_api.txt for more information.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Alexei Starovoitov <ast@kernel.org>
cc: Daniel Borkmann <daniel@iogearbox.net>
cc: Martin KaFai Lau <kafai@fb.com>
cc: Song Liu <songliubraving@fb.com>
cc: Yonghong Song <yhs@fb.com>
cc: netdev@vger.kernel.org
cc: bpf@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-09-16
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Now that initial BPF backend for gcc has been merged upstream, enable
BPF kselftest suite for bpf-gcc. Also fix a BE issue with access to
bpf_sysctl.file_pos, from Ilya.
2) Follow-up fix for link-vmlinux.sh to remove bash-specific extensions
related to recent work on exposing BTF info through sysfs, from Andrii.
3) AF_XDP zero copy fixes for i40e and ixgbe driver which caused umem
headroom to be added twice, from Ciara.
4) Refactoring work to convert sock opt tests into test_progs framework
in BPF kselftests, from Stanislav.
5) Fix a general protection fault in dev_map_hash_update_elem(), from Toke.
6) Cleanup to use BPF_PROG_RUN() macro in KCM, from Sami.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
"ctx:file_pos sysctl:read write ok" fails on s390 with "Read value !=
nux". This is because verifier rewrites a complete 32-bit
bpf_sysctl.file_pos update to a partial update of the first 32 bits of
64-bit *bpf_sysctl_kern.ppos, which is not correct on big-endian
systems.
Fix by using an offset on big-endian systems.
Ditto for bpf_sysctl.file_pos reads. Currently the test does not detect
a problem there, since it expects to see 0, which it gets with high
probability in error cases, so change it to seek to offset 3 and expect
3 in bpf_sysctl.file_pos.
Fixes: e1550bfe0d ("bpf: Add file_pos field to bpf_sysctl ctx")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20190816105300.49035-1-iii@linux.ibm.com/
syzbot found a crash in dev_map_hash_update_elem(), when replacing an
element with a new one. Jesper correctly identified the cause of the crash
as a race condition between the initial lookup in the map (which is done
before taking the lock), and the removal of the old element.
Rather than just add a second lookup into the hashmap after taking the
lock, fix this by reworking the function logic to take the lock before the
initial lookup.
Fixes: 6f9d451ab1 ("xdp: Add devmap_hash map type for looking up devices by hashed index")
Reported-and-tested-by: syzbot+4e7a85b1432052e8d6f8@syzkaller.appspotmail.com
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Add the ability to use unaligned chunks in the AF_XDP umem. By
relaxing where the chunks can be placed, it allows to use an
arbitrary buffer size and place whenever there is a free
address in the umem. Helps more seamless DPDK AF_XDP driver
integration. Support for i40e, ixgbe and mlx5e, from Kevin and
Maxim.
2) Addition of a wakeup flag for AF_XDP tx and fill rings so the
application can wake up the kernel for rx/tx processing which
avoids busy-spinning of the latter, useful when app and driver
is located on the same core. Support for i40e, ixgbe and mlx5e,
from Magnus and Maxim.
3) bpftool fixes for printf()-like functions so compiler can actually
enforce checks, bpftool build system improvements for custom output
directories, and addition of 'bpftool map freeze' command, from Quentin.
4) Support attaching/detaching XDP programs from 'bpftool net' command,
from Daniel.
5) Automatic xskmap cleanup when AF_XDP socket is released, and several
barrier/{read,write}_once fixes in AF_XDP code, from Björn.
6) Relicense of bpf_helpers.h/bpf_endian.h for future libbpf
inclusion as well as libbpf versioning improvements, from Andrii.
7) Several new BPF kselftests for verifier precision tracking, from Alexei.
8) Several BPF kselftest fixes wrt endianess to run on s390x, from Ilya.
9) And more BPF kselftest improvements all over the place, from Stanislav.
10) Add simple BPF map op cache for nfp driver to batch dumps, from Jakub.
11) AF_XDP socket umem mapping improvements for 32bit archs, from Ivan.
12) Add BPF-to-BPF call and BTF line info support for s390x JIT, from Yauheni.
13) Small optimization in arm64 JIT to spare 1 insns for BPF_MOD, from Jerin.
14) Fix an error check in bpf_tcp_gen_syncookie() helper, from Petar.
15) Various minor fixes and cleanups, from Nathan, Masahiro, Masanari,
Peter, Wei, Yue.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The problem can be seen in the following two tests:
0: (bf) r3 = r10
1: (55) if r3 != 0x7b goto pc+0
2: (7a) *(u64 *)(r3 -8) = 0
3: (79) r4 = *(u64 *)(r10 -8)
..
0: (85) call bpf_get_prandom_u32#7
1: (bf) r3 = r10
2: (55) if r3 != 0x7b goto pc+0
3: (7b) *(u64 *)(r3 -8) = r0
4: (79) r4 = *(u64 *)(r10 -8)
When backtracking need to mark R4 it will mark slot fp-8.
But ST or STX into fp-8 could belong to the same block of instructions.
When backtracing is done the parent state may have fp-8 slot
as "unallocated stack". Which will cause verifier to warn
and incorrectly reject such programs.
Writes into stack via non-R10 register are rare. llvm always
generates canonical stack spill/fill.
For such pathological case fall back to conservative precision
tracking instead of rejecting.
Reported-by: syzbot+c8d66267fd2b5955287e@syzkaller.appspotmail.com
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Introduce BPF_F_TEST_STATE_FREQ flag to stress test parentage chain
and state pruning.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Since BPF constant blinding is performed after the verifier pass, the
ALU32 instructions inserted for doubleword immediate loads don't have a
corresponding zext instruction. This is causing a kernel oops on powerpc
and can be reproduced by running 'test_cgroup_storage' with
bpf_jit_harden=2.
Fix this by emitting BPF_ZEXT during constant blinding if
prog->aux->verifier_zext is set.
Fixes: a4b1d3c1dd ("bpf: verifier: insert zero extension according to analysis result")
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
syzkaller managed to trigger the warning in bpf_jit_free() which checks via
bpf_prog_kallsyms_verify_off() for potentially unlinked JITed BPF progs
in kallsyms, and subsequently trips over GPF when walking kallsyms entries:
[...]
8021q: adding VLAN 0 to HW filter on device batadv0
8021q: adding VLAN 0 to HW filter on device batadv0
WARNING: CPU: 0 PID: 9869 at kernel/bpf/core.c:810 bpf_jit_free+0x1e8/0x2a0
Kernel panic - not syncing: panic_on_warn set ...
CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events bpf_prog_free_deferred
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x113/0x167 lib/dump_stack.c:113
panic+0x212/0x40b kernel/panic.c:214
__warn.cold.8+0x1b/0x38 kernel/panic.c:571
report_bug+0x1a4/0x200 lib/bug.c:186
fixup_bug arch/x86/kernel/traps.c:178 [inline]
do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:271
do_invalid_op+0x36/0x40 arch/x86/kernel/traps.c:290
invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:973
RIP: 0010:bpf_jit_free+0x1e8/0x2a0
Code: 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 86 00 00 00 48 ba 00 02 00 00 00 00 ad de 0f b6 43 02 49 39 d6 0f 84 5f fe ff ff <0f> 0b e9 58 fe ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 e2 48 c1
RSP: 0018:ffff888092f67cd8 EFLAGS: 00010202
RAX: 0000000000000007 RBX: ffffc90001947000 RCX: ffffffff816e9d88
RDX: dead000000000200 RSI: 0000000000000008 RDI: ffff88808769f7f0
RBP: ffff888092f67d00 R08: fffffbfff1394059 R09: fffffbfff1394058
R10: fffffbfff1394058 R11: ffffffff89ca02c7 R12: ffffc90001947002
R13: ffffc90001947020 R14: ffffffff881eca80 R15: ffff88808769f7e8
BUG: unable to handle kernel paging request at fffffbfff400d000
#PF error: [normal kernel read fault]
PGD 21ffee067 P4D 21ffee067 PUD 21ffed067 PMD 9f942067 PTE 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: events bpf_prog_free_deferred
RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:495 [inline]
RIP: 0010:bpf_tree_comp kernel/bpf/core.c:558 [inline]
RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline]
RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline]
RIP: 0010:bpf_prog_kallsyms_find+0x107/0x2e0 kernel/bpf/core.c:632
Code: 00 f0 ff ff 44 38 c8 7f 08 84 c0 0f 85 fa 00 00 00 41 f6 45 02 01 75 02 0f 0b 48 39 da 0f 82 92 00 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 30 84 c0 74 08 3c 03 0f 8e 45 01 00 00 8b 03 48 c1 e0
[...]
Upon further debugging, it turns out that whenever we trigger this
issue, the kallsyms removal in bpf_prog_ksym_node_del() was /skipped/
but yet bpf_jit_free() reported that the entry is /in use/.
Problem is that symbol exposure via bpf_prog_kallsyms_add() but also
perf_event_bpf_event() were done /after/ bpf_prog_new_fd(). Once the
fd is exposed to the public, a parallel close request came in right
before we attempted to do the bpf_prog_kallsyms_add().
Given at this time the prog reference count is one, we start to rip
everything underneath us via bpf_prog_release() -> bpf_prog_put().
The memory is eventually released via deferred free, so we're seeing
that bpf_jit_free() has a kallsym entry because we added it from
bpf_prog_load() but /after/ bpf_prog_put() from the remote CPU.
Therefore, move both notifications /before/ we install the fd. The
issue was never seen between bpf_prog_alloc_id() and bpf_prog_new_fd()
because upon bpf_prog_get_fd_by_id() we'll take another reference to
the BPF prog, so we're still holding the original reference from the
bpf_prog_load().
Fixes: 6ee52e2a3f ("perf, bpf: Introduce PERF_RECORD_BPF_EVENT")
Fixes: 74451e66d5 ("bpf: make jited programs visible in traces")
Reported-by: syzbot+bd3bba6ff3fcea7a6ec6@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Song Liu <songliubraving@fb.com>
While adding extra tests for precision tracking and extra infra
to adjust verifier heuristics the existing test
"calls: cross frame pruning - liveness propagation" started to fail.
The root cause is the same as described in verifer.c comment:
* Also if parent's curframe > frame where backtracking started,
* the verifier need to mark registers in both frames, otherwise callees
* may incorrectly prune callers. This is similar to
* commit 7640ead939 ("bpf: verifier: make sure callees don't prune with caller differences")
* For now backtracking falls back into conservative marking.
Turned out though that returning -ENOTSUPP from backtrack_insn() and
doing mark_all_scalars_precise() in the current parentage chain is not enough.
Depending on how is_state_visited() heuristic is creating parentage chain
it's possible that callee will incorrectly prune caller.
Fix the issue by setting precise=true earlier and more aggressively.
Before this fix the precision tracking _within_ functions that don't do
bpf2bpf calls would still work. Whereas now precision tracking is completely
disabled when bpf2bpf calls are present anywhere in the program.
No difference in cilium tests (they don't have bpf2bpf calls).
No difference in test_progs though some of them have bpf2bpf calls,
but precision tracking wasn't effective there.
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Add a new command for the bpf() system call: BPF_BTF_GET_NEXT_ID is used
to cycle through all BTF objects loaded on the system.
The motivation is to be able to inspect (list) all BTF objects presents
on the system.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement the show_fdinfo hook for BTF FDs file operations, and make it
print the id of the BTF object. This allows for a quick retrieval of the
BTF id from its FD; or it can help understanding what type of object
(BTF) the file descriptor points to.
v2:
- Do not expose data_size, only btf_id, in FD info.
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Use PTR_ERR_OR_ZERO rather than if(IS_ERR(...)) + PTR_ERR.
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The XSKMAP did not honor the BPF_EXIST/BPF_NOEXIST flags when updating
an entry. This patch addresses that.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When an AF_XDP socket is released/closed the XSKMAP still holds a
reference to the socket in a "released" state. The socket will still
use the netdev queue resource, and block newly created sockets from
attaching to that queue, but no user application can access the
fill/complete/rx/tx queues. This results in that all applications need
to explicitly clear the map entry from the old "zombie state"
socket. This should be done automatically.
In this patch, the sockets tracks, and have a reference to, which maps
it resides in. When the socket is released, it will remove itself from
all maps.
Suggested-by: Bruce Richardson <bruce.richardson@intel.com>
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Rename existing bpf_map_inc_not_zero to __bpf_map_inc_not_zero to
indicate that it's caller's responsibility to do proper locking.
Create and export bpf_map_inc_not_zero wrapper that properly
locks map_idr_lock. Will be used in the next commit to
hold a map while cloning a socket.
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In case of error, the function kobject_create_and_add() returns NULL
pointer not ERR_PTR(). The IS_ERR() test in the return value check
should be replaced with NULL test.
Fixes: 341dfcf8d7 ("btf: expose BTF info through sysfs")
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
The following pull-request contains BPF updates for your *net-next* tree.
There is a small merge conflict in libbpf (Cc Andrii so he's in the loop
as well):
for (i = 1; i <= btf__get_nr_types(btf); i++) {
t = (struct btf_type *)btf__type_by_id(btf, i);
if (!has_datasec && btf_is_var(t)) {
/* replace VAR with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
<<<<<<< HEAD
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t+1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && kind == BTF_KIND_DATASEC) {
=======
t->size = sizeof(int);
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 32);
} else if (!has_datasec && btf_is_datasec(t)) {
>>>>>>> 72ef80b5ee
/* replace DATASEC with STRUCT */
Conflict is between the two commits 1d4126c4e1 ("libbpf: sanitize VAR to
conservative 1-byte INT") and b03bc6853c ("libbpf: convert libbpf code to
use new btf helpers"), so we need to pick the sanitation fixup as well as
use the new btf_is_datasec() helper and the whitespace cleanup. Looks like
the following:
[...]
if (!has_datasec && btf_is_var(t)) {
/* replace VAR with INT */
t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
/*
* using size = 1 is the safest choice, 4 will be too
* big and cause kernel BTF validation failure if
* original variable took less than 4 bytes
*/
t->size = 1;
*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
} else if (!has_datasec && btf_is_datasec(t)) {
/* replace DATASEC with STRUCT */
[...]
The main changes are:
1) Addition of core parts of compile once - run everywhere (co-re) effort,
that is, relocation of fields offsets in libbpf as well as exposure of
kernel's own BTF via sysfs and loading through libbpf, from Andrii.
More info on co-re: http://vger.kernel.org/bpfconf2019.html#session-2
and http://vger.kernel.org/lpc-bpf2018.html#session-2
2) Enable passing input flags to the BPF flow dissector to customize parsing
and allowing it to stop early similar to the C based one, from Stanislav.
3) Add a BPF helper function that allows generating SYN cookies from XDP and
tc BPF, from Petar.
4) Add devmap hash-based map type for more flexibility in device lookup for
redirects, from Toke.
5) Improvements to XDP forwarding sample code now utilizing recently enabled
devmap lookups, from Jesper.
6) Add support for reporting the effective cgroup progs in bpftool, from Jakub
and Takshak.
7) Fix reading kernel config from bpftool via /proc/config.gz, from Peter.
8) Fix AF_XDP umem pages mapping for 32 bit architectures, from Ivan.
9) Follow-up to add two more BPF loop tests for the selftest suite, from Alexei.
10) Add perf event output helper also for other skb-based program types, from Allan.
11) Fix a co-re related compilation error in selftests, from Yonghong.
====================
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Expose kernel's BTF under the name vmlinux to be more uniform with using
kernel module names as file names in the future.
Fixes: 341dfcf8d7 ("btf: expose BTF info through sysfs")
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Make .BTF section allocated and expose its contents through sysfs.
/sys/kernel/btf directory is created to contain all the BTFs present
inside kernel. Currently there is only kernel's main BTF, represented as
/sys/kernel/btf/kernel file. Once kernel modules' BTFs are supported,
each module will expose its BTF as /sys/kernel/btf/<module-name> file.
Current approach relies on a few pieces coming together:
1. pahole is used to take almost final vmlinux image (modulo .BTF and
kallsyms) and generate .BTF section by converting DWARF info into
BTF. This section is not allocated and not mapped to any segment,
though, so is not yet accessible from inside kernel at runtime.
2. objcopy dumps .BTF contents into binary file and subsequently
convert binary file into linkable object file with automatically
generated symbols _binary__btf_kernel_bin_start and
_binary__btf_kernel_bin_end, pointing to start and end, respectively,
of BTF raw data.
3. final vmlinux image is generated by linking this object file (and
kallsyms, if necessary). sysfs_btf.c then creates
/sys/kernel/btf/kernel file and exposes embedded BTF contents through
it. This allows, e.g., libbpf and bpftool access BTF info at
well-known location, without resorting to searching for vmlinux image
on disk (location of which is not standardized and vmlinux image
might not be even available in some scenarios, e.g., inside qemu
during testing).
Alternative approach using .incbin assembler directive to embed BTF
contents directly was attempted but didn't work, because sysfs_proc.o is
not re-compiled during link-vmlinux.sh stage. This is required, though,
to update embedded BTF data (initially empty data is embedded, then
pahole generates BTF info and we need to regenerate sysfs_btf.o with
updated contents, but it's too late at that point).
If BTF couldn't be generated due to missing or too old pahole,
sysfs_btf.c handles that gracefully by detecting that
_binary__btf_kernel_bin_start (weak symbol) is 0 and not creating
/sys/kernel/btf at all.
v2->v3:
- added Documentation/ABI/testing/sysfs-kernel-btf (Greg K-H);
- created proper kobject (btf_kobj) for btf directory (Greg K-H);
- undo v2 change of reusing vmlinux, as it causes extra kallsyms pass
due to initially missing __binary__btf_kernel_bin_{start/end} symbols;
v1->v2:
- allow kallsyms stage to re-use vmlinux generated by gen_btf();
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Since we always allocate memory, allocate just a little bit more
for the BPF program in case it need to override user input with
bigger value. The canonical example is TCP_CONGESTION where
input string might be too small to override (nv -> bbr or cubic).
16 bytes are chosen to match the size of TCP_CA_NAME_MAX and can
be extended in the future if needed.
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
A common pattern when using xdp_redirect_map() is to create a device map
where the lookup key is simply ifindex. Because device maps are arrays,
this leaves holes in the map, and the map has to be sized to fit the
largest ifindex, regardless of how many devices actually are actually
needed in the map.
This patch adds a second type of device map where the key is looked up
using a hashmap, instead of being used as an array index. This allows maps
to be densely packed, so they can be smaller.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The subsequent patch to add a new devmap sub-type can re-use much of the
initialisation and allocation code, so refactor it into separate functions.
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Alexei Starovoitov says:
====================
pull-request: bpf 2019-07-25
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) fix segfault in libbpf, from Andrii.
2) fix gso_segs access, from Eric.
3) tls/sockmap fixes, from Jakub and John.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The very first check in test_pkt_md_access is failing on s390, which
happens because loading a part of a struct __sk_buff field produces
an incorrect result.
The preprocessed code of the check is:
{
__u8 tmp = *((volatile __u8 *)&skb->len +
((sizeof(skb->len) - sizeof(__u8)) / sizeof(__u8)));
if (tmp != ((*(volatile __u32 *)&skb->len) & 0xFF)) return 2;
};
clang generates the following code for it:
0: 71 21 00 03 00 00 00 00 r2 = *(u8 *)(r1 + 3)
1: 61 31 00 00 00 00 00 00 r3 = *(u32 *)(r1 + 0)
2: 57 30 00 00 00 00 00 ff r3 &= 255
3: 5d 23 00 1d 00 00 00 00 if r2 != r3 goto +29 <LBB0_10>
Finally, verifier transforms it to:
0: (61) r2 = *(u32 *)(r1 +104)
1: (bc) w2 = w2
2: (74) w2 >>= 24
3: (bc) w2 = w2
4: (54) w2 &= 255
5: (bc) w2 = w2
The problem is that when verifier emits the code to replace a partial
load of a struct __sk_buff field (*(u8 *)(r1 + 3)) with a full load of
struct sk_buff field (*(u32 *)(r1 + 104)), an optional shift and a
bitwise AND, it assumes that the machine is little endian and
incorrectly decides to use a shift.
Adjust shift count calculation to account for endianness.
Fixes: 31fd85816d ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Pull core fixes from Thomas Gleixner:
- A collection of objtool fixes which address recent fallout partially
exposed by newer toolchains, clang, BPF and general code changes.
- Force USER_DS for user stack traces
[ Note: the "objtool fixes" are not all to objtool itself, but for
kernel code that triggers objtool warnings.
Things like missing function size annotations, or code that confuses
the unwinder etc. - Linus]
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
objtool: Support conditional retpolines
objtool: Convert insn type to enum
objtool: Fix seg fault on bad switch table entry
objtool: Support repeated uses of the same C jump table
objtool: Refactor jump table code
objtool: Refactor sibling call detection logic
objtool: Do frame pointer check before dead end check
objtool: Change dead_end_function() to return boolean
objtool: Warn on zero-length functions
objtool: Refactor function alias logic
objtool: Track original function across branches
objtool: Add mcsafe_handle_tail() to the uaccess safe list
bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()
x86/uaccess: Remove redundant CLACs in getuser/putuser error paths
x86/uaccess: Don't leak AC flag into fentry from mcsafe_handle_tail()
x86/uaccess: Remove ELF function annotation from copy_user_handle_tail()
x86/head/64: Annotate start_cpu0() as non-callable
x86/entry: Fix thunk function ELF sizes
x86/kvm: Don't call kvm_spurious_fault() from .fixup
x86/kvm: Replace vmx_vmenter()'s call to kvm_spurious_fault() with UD2
...
On x86-64, with CONFIG_RETPOLINE=n, GCC's "global common subexpression
elimination" optimization results in ___bpf_prog_run()'s jumptable code
changing from this:
select_insn:
jmp *jumptable(, %rax, 8)
...
ALU64_ADD_X:
...
jmp *jumptable(, %rax, 8)
ALU_ADD_X:
...
jmp *jumptable(, %rax, 8)
to this:
select_insn:
mov jumptable, %r12
jmp *(%r12, %rax, 8)
...
ALU64_ADD_X:
...
jmp *(%r12, %rax, 8)
ALU_ADD_X:
...
jmp *(%r12, %rax, 8)
The jumptable address is placed in a register once, at the beginning of
the function. The function execution can then go through multiple
indirect jumps which rely on that same register value. This has a few
issues:
1) Objtool isn't smart enough to be able to track such a register value
across multiple recursive indirect jumps through the jump table.
2) With CONFIG_RETPOLINE enabled, this optimization actually results in
a small slowdown. I measured a ~4.7% slowdown in the test_bpf
"tcpdump port 22" selftest.
This slowdown is actually predicted by the GCC manual:
Note: When compiling a program using computed gotos, a GCC
extension, you may get better run-time performance if you
disable the global common subexpression elimination pass by
adding -fno-gcse to the command line.
So just disable the optimization for this function.
Fixes: e55a73251d ("bpf: Fix ORC unwinding in non-JIT BPF code")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/30c3ca29ba037afcbd860a8672eef0021addf9fe.1563413318.git.jpoimboe@redhat.com
BTF verifier has a size resolution bug which in some circumstances leads to
invalid size resolution for, e.g., TYPEDEF modifier. This happens if we have
[1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer
context ARRAY size won't be resolved (because for pointer it doesn't matter, so
it's a sink in pointer context), but it will be permanently remembered as zero
for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will
be resolved correctly, but TYPEDEF resolved_size won't be updated anymore.
This, subsequently, will lead to erroneous map creation failure, if that
TYPEDEF is specified as either key or value, as key_size/value_size won't
correspond to resolved size of TYPEDEF (kernel will believe it's zero).
Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this
won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already
calculated and stored.
This bug manifests itself in rejecting BTF-defined maps that use array
typedef as a value type:
typedef int array_t[16];
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__type(value, array_t); /* i.e., array_t *value; */
} test_map SEC(".maps");
The fix consists on not relying on modifier's resolved_size and instead using
modifier's resolved_id (type ID for "concrete" type to which modifier
eventually resolves) and doing size determination for that resolved type. This
allow to preserve existing "early DFS termination" logic for PTR or
STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier
types.
Fixes: eb3f595dab ("bpf: btf: Validate type reference")
Cc: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In preparation to enabling -Wimplicit-fallthrough, this patch silences
the following warning:
kernel/bpf/verifier.c: In function ‘check_return_code’:
kernel/bpf/verifier.c:6106:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (env->prog->expected_attach_type == BPF_CGROUP_UDP4_RECVMSG ||
^
kernel/bpf/verifier.c:6109:2: note: here
case BPF_PROG_TYPE_CGROUP_SKB:
^~~~
Warning level 3 was used: -Wimplicit-fallthrough=3
Notice that is much clearer to explicitly add breaks in each case
statement (that actually contains some code), rather than letting
the code to fall through.
This patch is part of the ongoing efforts to enable
-Wimplicit-fallthrough.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>