Граф коммитов

1334 Коммитов

Автор SHA1 Сообщение Дата
Bhupesh Sharma 82ff165cd3 mm/memcontrol: fix OOPS inside mem_cgroup_get_nr_swap_pages()
Prabhakar reported an OOPS inside mem_cgroup_get_nr_swap_pages()
function in a corner case seen on some arm64 boards when kdump kernel
runs with "cgroup_disable=memory" passed to the kdump kernel via
bootargs.

The root-cause behind the same is that currently mem_cgroup_swap_init()
function is implemented as a subsys_initcall() call instead of a
core_initcall(), this means 'cgroup_memory_noswap' still remains set to
the default value (false) even when memcg is disabled via
"cgroup_disable=memory" boot parameter.

This may result in premature OOPS inside mem_cgroup_get_nr_swap_pages()
function in corner cases:

  Unable to handle kernel NULL pointer dereference at virtual address 0000000000000188
  Mem abort info:
    ESR = 0x96000006
    EC = 0x25: DABT (current EL), IL = 32 bits
    SET = 0, FnV = 0
    EA = 0, S1PTW = 0
  Data abort info:
    ISV = 0, ISS = 0x00000006
    CM = 0, WnR = 0
  [0000000000000188] user address but active_mm is swapper
  Internal error: Oops: 96000006 [#1] SMP
  Modules linked in:
  <..snip..>
  Call trace:
    mem_cgroup_get_nr_swap_pages+0x9c/0xf4
    shrink_lruvec+0x404/0x4f8
    shrink_node+0x1a8/0x688
    do_try_to_free_pages+0xe8/0x448
    try_to_free_pages+0x110/0x230
    __alloc_pages_slowpath.constprop.106+0x2b8/0xb48
    __alloc_pages_nodemask+0x2ac/0x2f8
    alloc_page_interleave+0x20/0x90
    alloc_pages_current+0xdc/0xf8
    atomic_pool_expand+0x60/0x210
    __dma_atomic_pool_init+0x50/0xa4
    dma_atomic_pool_init+0xac/0x158
    do_one_initcall+0x50/0x218
    kernel_init_freeable+0x22c/0x2d0
    kernel_init+0x18/0x110
    ret_from_fork+0x10/0x18
  Code: aa1403e3 91106000 97f82a27 14000011 (f940c663)
  ---[ end trace 9795948475817de4 ]---
  Kernel panic - not syncing: Fatal exception
  Rebooting in 10 seconds..

Fixes: eccb52e788 ("mm: memcontrol: prepare swap controller setup for integration")
Reported-by: Prabhakar Kushwaha <pkushwaha@marvell.com>
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/r/1593641660-13254-2-git-send-email-bhsharma@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Kees Cook 3f649ab728 treewide: Remove uninitialized_var() usage
Using uninitialized_var() is dangerous as it papers over real bugs[1]
(or can in the future), and suppresses unrelated compiler warnings
(e.g. "unused variable"). If the compiler thinks it is uninitialized,
either simply initialize the variable or make compiler changes.

In preparation for removing[2] the[3] macro[4], remove all remaining
needless uses with the following script:

git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \
	xargs perl -pi -e \
		's/\buninitialized_var\(([^\)]+)\)/\1/g;
		 s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;'

drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid
pathological white-space.

No outstanding warnings were found building allmodconfig with GCC 9.3.0
for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64,
alpha, and m68k.

[1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/
[2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/
[4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/

Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5
Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB
Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers
Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs
Signed-off-by: Kees Cook <keescook@chromium.org>
2020-07-16 12:35:15 -07:00
Chris Down 03960e3318 mm/memcontrol.c: prevent missed memory.low load tears
Looks like one of these got missed when massaging in f86b810c26 ("mm,
memcg: prevent memory.low load/store tearing") with other linux-mm
changes.

Link: http://lkml.kernel.org/r/20200612174437.GA391453@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Reported-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Muchun Song 3a98990ae2 mm/memcontrol.c: add missed css_put()
We should put the css reference when memory allocation failed.

Link: http://lkml.kernel.org/r/20200614122653.98829-1-songmuchun@bytedance.com
Fixes: f0a3a24b53 ("mm: memcg/slab: rework non-root kmem_cache lifecycle management")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Johannes Weiner cd324edce5 mm: memcontrol: handle div0 crash race condition in memory.low
Tejun reports seeing rare div0 crashes in memory.low stress testing:

  RIP: 0010:mem_cgroup_calculate_protection+0xed/0x150
  Code: 0f 46 d1 4c 39 d8 72 57 f6 05 16 d6 42 01 40 74 1f 4c 39 d8 76 1a 4c 39 d1 76 15 4c 29 d1 4c 29 d8 4d 29 d9 31 d2 48 0f af c1 <49> f7 f1 49 01 c2 4c 89 96 38 01 00 00 5d c3 48 0f af c7 31 d2 49
  RSP: 0018:ffffa14e01d6fcd0 EFLAGS: 00010246
  RAX: 000000000243e384 RBX: 0000000000000000 RCX: 0000000000008f4b
  RDX: 0000000000000000 RSI: ffff8b89bee84000 RDI: 0000000000000000
  RBP: ffffa14e01d6fcd0 R08: ffff8b89ca7d40f8 R09: 0000000000000000
  R10: 0000000000000000 R11: 00000000006422f7 R12: 0000000000000000
  R13: ffff8b89d9617000 R14: ffff8b89bee84000 R15: ffffa14e01d6fdb8
  FS:  0000000000000000(0000) GS:ffff8b8a1f1c0000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f93b1fc175b CR3: 000000016100a000 CR4: 0000000000340ea0
  Call Trace:
    shrink_node+0x1e5/0x6c0
    balance_pgdat+0x32d/0x5f0
    kswapd+0x1d7/0x3d0
    kthread+0x11c/0x160
    ret_from_fork+0x1f/0x30

This happens when parent_usage == siblings_protected.

We check that usage is bigger than protected, which should imply
parent_usage being bigger than siblings_protected.  However, we don't
read (or even update) these values atomically, and they can be out of
sync as the memory state changes under us.  A bit of fluctuation around
the target protection isn't a big deal, but we need to handle the div0
case.

Check the parent state explicitly to make sure we have a reasonable
positive value for the divisor.

Link: http://lkml.kernel.org/r/20200615140658.601684-1-hannes@cmpxchg.org
Fixes: 8a931f8013 ("mm: memcontrol: recursive memory.low protection")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Michel Lespinasse c1e8d7c6a7 mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Michel Lespinasse d8ed45c5dc mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap
locking API instead.

The change is generated using coccinelle with the following rule:

// spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir .

@@
expression mm;
@@
(
-init_rwsem
+mmap_init_lock
|
-down_write
+mmap_write_lock
|
-down_write_killable
+mmap_write_lock_killable
|
-down_write_trylock
+mmap_write_trylock
|
-up_write
+mmap_write_unlock
|
-downgrade_write
+mmap_write_downgrade
|
-down_read
+mmap_read_lock
|
-down_read_killable
+mmap_read_lock_killable
|
-down_read_trylock
+mmap_read_trylock
|
-up_read
+mmap_read_unlock
)
-(&mm->mmap_sem)
+(mm)

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Ethon Paul b8f2935f72 mm, memcg: fix some typos in memcontrol.c
There are some typos in comment, fix them.

s/responsiblity/responsibility
s/oflline/offline

Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200411064246.15781-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:24 -07:00
Johannes Weiner 1431d4d11a mm: base LRU balancing on an explicit cost model
Currently, scan pressure between the anon and file LRU lists is balanced
based on a mixture of reclaim efficiency and a somewhat vague notion of
"value" of having certain pages in memory over others.  That concept of
value is problematic, because it has caused us to count any event that
remotely makes one LRU list more or less preferrable for reclaim, even
when these events are not directly comparable and impose very different
costs on the system.  One example is referenced file pages that we still
deactivate and referenced anonymous pages that we actually rotate back to
the head of the list.

There is also conceptual overlap with the LRU algorithm itself.  By
rotating recently used pages instead of reclaiming them, the algorithm
already biases the applied scan pressure based on page value.  Thus, when
rebalancing scan pressure due to rotations, we should think of reclaim
cost, and leave assessing the page value to the LRU algorithm.

Lastly, considering both value-increasing as well as value-decreasing
events can sometimes cause the same type of event to be counted twice,
i.e.  how rotating a page increases the LRU value, while reclaiming it
succesfully decreases the value.  In itself this will balance out fine,
but it quietly skews the impact of events that are only recorded once.

The abstract metric of "value", the murky relationship with the LRU
algorithm, and accounting both negative and positive events make the
current pressure balancing model hard to reason about and modify.

This patch switches to a balancing model of accounting the concrete,
actually observed cost of reclaiming one LRU over another.  For now, that
cost includes pages that are scanned but rotated back to the list head.
Subsequent patches will add consideration for IO caused by refaulting of
recently evicted pages.

Replace struct zone_reclaim_stat with two cost counters in the lruvec, and
make everything that affects cost go through a new lru_note_cost()
function.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-9-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner a0b5b4147f mm: memcontrol: update page->mem_cgroup stability rules
The previous patches have simplified the access rules around
page->mem_cgroup somewhat:

1. We never change page->mem_cgroup while the page is isolated by
   somebody else.  This was by far the biggest exception to our rules and
   it didn't stop at lock_page() or lock_page_memcg().

2. We charge pages before they get put into page tables now, so the
   somewhat fishy rule about "can be in page table as long as it's still
   locked" is now gone and boiled down to having an exclusive reference to
   the page.

Document the new rules.  Any of the following will stabilize the
page->mem_cgroup association:

- the page lock
- LRU isolation
- lock_page_memcg()
- exclusive access to the page

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-20-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner d9eb1ea2bf mm: memcontrol: delete unused lrucare handling
Swapin faults were the last event to charge pages after they had already
been put on the LRU list.  Now that we charge directly on swapin, the
lrucare portion of the charge code is unused.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner 2d1c498072 mm: memcontrol: make swap tracking an integral part of memory control
Without swap page tracking, users that are otherwise memory controlled can
easily escape their containment and allocate significant amounts of memory
that they're not being charged for.  That's because swap does readahead,
but without the cgroup records of who owned the page at swapout, readahead
pages don't get charged until somebody actually faults them into their
page table and we can identify an owner task.  This can be maliciously
exploited with MADV_WILLNEED, which triggers arbitrary readahead
allocations without charging the pages.

Make swap swap page tracking an integral part of memcg and remove the
Kconfig options.  In the first place, it was only made configurable to
allow users to save some memory.  But the overhead of tracking cgroup
ownership per swap page is minimal - 2 byte per page, or 512k per 1G of
swap, or 0.04%.  Saving that at the expense of broken containment
semantics is not something we should present as a coequal option.

The swapaccount=0 boot option will continue to exist, and it will
eliminate the page_counter overhead and hide the swap control files, but
it won't disable swap slot ownership tracking.

This patch makes sure we always have the cgroup records at swapin time;
the next patch will fix the actual bug by charging readahead swap pages at
swapin time rather than at fault time.

v2: fix double swap charge bug in cgroup1/cgroup2 code gating

[hannes@cmpxchg.org: fix crash with cgroup_disable=memory]
  Link: http://lkml.kernel.org/r/20200521215855.GB815153@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200508183105.225460-16-hannes@cmpxchg.org
Debugged-by: Hugh Dickins <hughd@google.com>
Debugged-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner eccb52e788 mm: memcontrol: prepare swap controller setup for integration
A few cleanups to streamline the swap controller setup:

- Replace the do_swap_account flag with cgroup_memory_noswap. This
  brings it in line with other functionality that is usually available
  unless explicitly opted out of - nosocket, nokmem.

- Remove the really_do_swap_account flag that stores the boot option
  and is later used to switch the do_swap_account. It's not clear why
  this indirection is/was necessary. Use do_swap_account directly.

- Minor coding style polishing

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-15-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner f0e45fb4da mm: memcontrol: drop unused try/commit/cancel charge API
There are no more users. RIP in peace.

[arnd@arndb.de: fix an unused-function warning]
  Link: http://lkml.kernel.org/r/20200528095640.151454-1-arnd@arndb.de
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-14-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner 468c398233 mm: memcontrol: switch to native NR_ANON_THPS counter
With rmap memcg locking already in place for NR_ANON_MAPPED, it's just a
small step to remove the MEMCG_RSS_HUGE wart and switch memcg to the
native NR_ANON_THPS accounting sites.

[hannes@cmpxchg.org: fixes]
  Link: http://lkml.kernel.org/r/20200512121750.GA397968@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>	[build-tested]
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner be5d0a74c6 mm: memcontrol: switch to native NR_ANON_MAPPED counter
Memcg maintains a private MEMCG_RSS counter.  This divergence from the
generic VM accounting means unnecessary code overhead, and creates a
dependency for memcg that page->mapping is set up at the time of charging,
so that page types can be told apart.

Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED.  We use
lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the
same way we do for NR_FILE_MAPPED.

With the previous patch removing MEMCG_CACHE and the private NR_SHMEM
counter, this patch finally eliminates the need to have page->mapping set
up at charge time.  However, we need to have page->mem_cgroup set up by
the time rmap runs and does the accounting, so switch the commit and the
rmap callbacks around.

v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo)

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 0d1c20722a mm: memcontrol: switch to native NR_FILE_PAGES and NR_SHMEM counters
Memcg maintains private MEMCG_CACHE and NR_SHMEM counters.  This
divergence from the generic VM accounting means unnecessary code overhead,
and creates a dependency for memcg that page->mapping is set up at the
time of charging, so that page types can be told apart.

Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counters of NR_FILE_PAGES and NR_SHMEM.
The page is already locked in these places, so page->mem_cgroup is stable;
we only need minimal tweaks of two mem_cgroup_migrate() calls to ensure
it's set up in time.

Then replace MEMCG_CACHE with NR_FILE_PAGES and delete the private
NR_SHMEM accounting sites.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-10-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 9da7b52168 mm: memcontrol: prepare cgroup vmstat infrastructure for native anon counters
Anonymous compound pages can be mapped by ptes, which means that if we
want to track NR_MAPPED_ANON, NR_ANON_THPS on a per-cgroup basis, we have
to be prepared to see tail pages in our accounting functions.

Make mod_lruvec_page_state() and lock_page_memcg() deal with tail pages
correctly, namely by redirecting to the head page which has the
page->mem_cgroup set up.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-9-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 49e50d277b mm: memcontrol: prepare move_account for removal of private page type counters
When memcg uses the generic vmstat counters, it doesn't need to do
anything at charging and uncharging time.  It does, however, need to
migrate counts when pages move to a different cgroup in move_account.

Prepare the move_account function for the arrival of NR_FILE_PAGES,
NR_ANON_MAPPED, NR_ANON_THPS etc.  by having a branch for files and a
branch for anon, which can then divided into sub-branches.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-8-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 9f762dbe19 mm: memcontrol: prepare uncharging for removal of private page type counters
The uncharge batching code adds up the anon, file, kmem counts to
determine the total number of pages to uncharge and references to drop.
But the next patches will remove the anon and file counters.

Maintain an aggregate nr_pages in the uncharge_gather struct.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-7-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 3fea5a499d mm: memcontrol: convert page cache to a new mem_cgroup_charge() API
The try/commit/cancel protocol that memcg uses dates back to when pages
used to be uncharged upon removal from the page cache, and thus couldn't
be committed before the insertion had succeeded.  Nowadays, pages are
uncharged when they are physically freed; it doesn't matter whether the
insertion was successful or not.  For the page cache, the transaction
dance has become unnecessary.

Introduce a mem_cgroup_charge() function that simply charges a newly
allocated page to a cgroup and sets up page->mem_cgroup in one single
step.  If the insertion fails, the caller doesn't have to do anything but
free/put the page.

Then switch the page cache over to this new API.

Subsequent patches will also convert anon pages, but it needs a bit more
prep work.  Right now, memcg depends on page->mapping being already set up
at the time of charging, so that it can maintain its own MEMCG_CACHE and
MEMCG_RSS counters.  For anon, page->mapping is set under the same pte
lock under which the page is publishd, so a single charge point that can
block doesn't work there just yet.

The following prep patches will replace the private memcg counters with
the generic vmstat counters, thus removing the page->mapping dependency,
then complete the transition to the new single-point charge API and delete
the old transactional scheme.

v2: leave shmem swapcache when charging fails to avoid double IO (Joonsoo)
v3: rebase on preceeding shmem simplification patch

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-6-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 6caa6a0703 mm: memcontrol: move out cgroup swaprate throttling
The cgroup swaprate throttling is about matching new anon allocations to
the rate of available IO when that is being throttled.  It's the io
controller hooking into the VM, rather than a memory controller thing.

Rename mem_cgroup_throttle_swaprate() to cgroup_throttle_swaprate(), and
drop the @memcg argument which is only used to check whether the preceding
page charge has succeeded and the fault is proceeding.

We could decouple the call from mem_cgroup_try_charge() here as well, but
that would cause unnecessary churn: the following patches convert all
callsites to a new charge API and we'll decouple as we go along.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-5-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 3fba69a56e mm: memcontrol: drop @compound parameter from memcg charging API
The memcg charging API carries a boolean @compound parameter that tells
whether the page we're dealing with is a hugepage.
mem_cgroup_commit_charge() has another boolean @lrucare that indicates
whether the page needs LRU locking or not while charging.  The majority of
callsites know those parameters at compile time, which results in a lot of
naked "false, false" argument lists.  This makes for cryptic code and is a
breeding ground for subtle mistakes.

Thankfully, the huge page state can be inferred from the page itself and
doesn't need to be passed along.  This is safe because charging completes
before the page is published and somebody may split it.

Simplify the callsites by removing @compound, and let memcg infer the
state by using hpage_nr_pages() unconditionally.  That function does
PageTransHuge() to identify huge pages, which also helpfully asserts that
nobody passes in tail pages by accident.

The following patches will introduce a new charging API, best not to carry
over unnecessary weight.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner abb242f571 mm: memcontrol: fix stat-corrupting race in charge moving
The move_lock is a per-memcg lock, but the VM accounting code that needs
to acquire it comes from the page and follows page->mem_cgroup under RCU
protection.  That means that the page becomes unlocked not when we drop
the move_lock, but when we update page->mem_cgroup.  And that assignment
doesn't imply any memory ordering.  If that pointer write gets reordered
against the reads of the page state - page_mapped, PageDirty etc.  the
state may change while we rely on it being stable and we can end up
corrupting the counters.

Place an SMP memory barrier to make sure we're done with all page state by
the time the new page->mem_cgroup becomes visible.

Also replace the open-coded move_lock with a lock_page_memcg() to make it
more obvious what we're serializing against.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Shakeel Butt dd8657b6c1 mm/memcg: optimize memory.numa_stat like memory.stat
Currently reading memory.numa_stat traverses the underlying memcg tree
multiple times to accumulate the stats to present the hierarchical view of
the memcg tree.  However the kernel already maintains the hierarchical
view of the stats and use it in memory.stat.  Just use the same mechanism
in memory.numa_stat as well.

I ran a simple benchmark which reads root_mem_cgroup's memory.numa_stat
file in the presense of 10000 memcgs.  The results are:

Without the patch:
$ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null

real    0m0.700s
user    0m0.001s
sys     0m0.697s

With the patch:
$ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null

real    0m0.001s
user    0m0.001s
sys     0m0.000s

[akpm@linux-foundation.org: avoid forcing out-of-line code generation]
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200304022058.248270-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:42 -07:00
Zefan Li 50d53d7c72 memcg: fix memcg_kmem_bypass() for remote memcg charging
While trying to use remote memcg charging in an out-of-tree kernel
module I found it's not working, because the current thread is a
workqueue thread.

As we will probably encounter this issue in the future as the users of
memalloc_use_memcg() grow, and it's nothing wrong for this usage, it's
better we fix it now.

Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1d202a12-26fe-0012-ea14-f025ddcd044a@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski 4b82ab4f28 mm/memcg: automatically penalize tasks with high swap use
Add a memory.swap.high knob, which can be used to protect the system
from SWAP exhaustion.  The mechanism used for penalizing is similar to
memory.high penalty (sleep on return to user space).

That is not to say that the knob itself is equivalent to memory.high.
The objective is more to protect the system from potentially buggy tasks
consuming a lot of swap and impacting other tasks, or even bringing the
whole system to stand still with complete SWAP exhaustion.  Hopefully
without the need to find per-task hard limits.

Slowing misbehaving tasks down gradually allows user space oom killers
or other protection mechanisms to react.  oomd and earlyoom already do
killing based on swap exhaustion, and memory.swap.high protection will
help implement such userspace oom policies more reliably.

We can use one counter for number of pages allocated under pressure to
save struct task space and avoid two separate hierarchy walks on the hot
path.  The exact overage is calculated on return to user space, anyway.

Take the new high limit into account when determining if swap is "full".
Borrowing the explanation from Johannes:

  The idea behind "swap full" is that as long as the workload has plenty
  of swap space available and it's not changing its memory contents, it
  makes sense to generously hold on to copies of data in the swap device,
  even after the swapin.  A later reclaim cycle can drop the page without
  any IO.  Trading disk space for IO.

  But the only two ways to reclaim a swap slot is when they're faulted
  in and the references go away, or by scanning the virtual address space
  like swapoff does - which is very expensive (one could argue it's too
  expensive even for swapoff, it's often more practical to just reboot).

  So at some point in the fill level, we have to start freeing up swap
  slots on fault/swapin.  Otherwise we could eventually run out of swap
  slots while they're filled with copies of data that is also in RAM.

  We don't want to OOM a workload because its available swap space is
  filled with redundant cache.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200527195846.102707-5-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski d1663a907b mm/memcg: move cgroup high memory limit setting into struct page_counter
High memory limit is currently recorded directly in struct mem_cgroup.
We are about to add a high limit for swap, move the field to struct
page_counter and add some helpers.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-4-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski ff144e69f7 mm/memcg: move penalty delay clamping out of calculate_high_delay()
We will want to call calculate_high_delay() twice - once for memory and
once for swap, and we should apply the clamp value to sum of the
penalties.  Clamping has to be applied outside of calculate_high_delay().

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-3-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski 8a5dbc657e mm/memcg: prepare for swap over-high accounting and penalty calculation
Patch series "memcg: Slow down swap allocation as the available space
gets depleted", v6.

Tejun describes the problem as follows:

When swap runs out, there's an abrupt change in system behavior - the
anonymous memory suddenly becomes unmanageable which readily breaks any
sort of memory isolation and can bring down the whole system.  To avoid
that, oomd [1] monitors free swap space and triggers kills when it drops
below the specific threshold (e.g.  15%).

While this works, it's far from ideal:

 - Depending on IO performance and total swap size, a given
   headroom might not be enough or too much.

 - oomd has to monitor swap depletion in addition to the usual
   pressure metrics and it currently doesn't consider memory.swap.max.

Solve this by adapting parts of the approach that memory.high uses -
slow down allocation as the resource gets depleted turning the depletion
behavior from abrupt cliff one to gradual degradation observable through
memory pressure metric.

[1] https://github.com/facebookincubator/oomd

This patch (of 4):

Slice the memory overage calculation logic a little bit so we can reuse
it to apply a similar penalty to the swap.  The logic which accesses the
memory-specific fields (use and high values) has to be taken out of
calculate_high_delay().

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-1-kuba@kernel.org
Link: http://lkml.kernel.org/r/20200527195846.102707-2-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Shakeel Butt 54b512e96d memcg: expose root cgroup's memory.stat
One way to measure the efficiency of memory reclaim is to look at the
ratio (pgscan+pfrefill)/pgsteal.  However at the moment these stats are
not updated consistently at the system level and the ratio of these are
not very meaningful.  The pgsteal and pgscan are updated for only global
reclaim while pgrefill gets updated for global as well as cgroup
reclaim.

Please note that this difference is only for system level vmstats.  The
cgroup stats returned by memory.stat are actually consistent.  The
cgroup's pgsteal contains number of reclaimed pages for global as well
as cgroup reclaim.  So, one way to get the system level stats is to get
these stats from root's memory.stat, so, expose memory.stat for the root
cgroup.

From Johannes Weiner:
	There are subtle differences between /proc/vmstat and
	memory.stat, and cgroup-aware code that wants to watch the full
	hierarchy currently has to know about these intricacies and
	translate semantics back and forth.

	Generally having the fully recursive memory.stat at the root
	level could help a broader range of usecases.

Why not fix the stats by including both the global and cgroup reclaim
activity instead of exposing root cgroup's memory.stat? The reason is
the benefit of having metrics exposing the activity that happens purely
due to machine capacity rather than localized activity that happens due
to the limits throughout the cgroup tree.  Additionally there are
userspace tools like sysstat(sar) which reads these stats to inform
about the system level reclaim activity.  So, we should not break such
use-cases.

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200508170630.94406-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Kaixu Xia 1c4448edb7 mm: memcontrol: simplify value comparison between count and limit
When the variables count and limit have the same value(count == limit),
the result of min(margin, limit - count) statement should be 0 and the
variable margin is set to 0.  So in this case, the min() statement is
not necessary and we can directly set the variable margin to 0.

Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1587479661-27237-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Yafang Shao a6f5576bb1 mm, memcg: add workingset_restore in memory.stat
There's a new workingset counter introduced in commit 1899ad18c6 ("mm:
workingset: tell cache transitions from workingset thrashing").  With
the help of this counter we can know the workingset is transitioning or
thrashing.  To leverage the benifit of this counter to memcg, we should
introduce it into memory.stat.  Then we could know the workingset of the
workload inside a memcg better.

Bellow is the verification of this new counter in memory.stat.  Read a
file into the memory and then read it again to make these pages be
active.  The size of this file is 1G.  (memory.max is greater than file
size) The counters in memory.stat will be

	inactive_file 0
	active_file 1073639424

	workingset_refault 0
	workingset_activate 0
	workingset_restore 0
	workingset_nodereclaim 0

Trigger the memcg reclaim by setting a lower value to memory.high, and
then some pages will be demoted into inactive list, and then some pages
in the inactive list will be evicted into the storage.

	inactive_file 498094080
	active_file 310063104

	workingset_refault 0
	workingset_activate 0
	workingset_restore 0
	workingset_nodereclaim 0

Then recover the memory.high and read the file into memory again.  As a
result of it, the transitioning will occur.  Bellow is the result of
this transitioning,

	inactive_file 498094080
	active_file 575397888

	workingset_refault 64746
	workingset_activate 64746
	workingset_restore 64746
	workingset_nodereclaim 0

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200504153522.11553-1-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
NeilBrown 8d92890bd6 mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead
After an NFS page has been written it is considered "unstable" until a
COMMIT request succeeds.  If the COMMIT fails, the page will be
re-written.

These "unstable" pages are currently accounted as "reclaimable", either
in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a
'reclaimable' count.  This might have made sense when sending the COMMIT
required a separate action by the VFS/MM (e.g.  releasepage() used to
send a COMMIT).  However now that all writes generated by ->writepages()
will automatically be followed by a COMMIT (since commit 919e3bd9a8
("NFS: Ensure we commit after writeback is complete")) it makes more
sense to treat them as writeback pages.

So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in
NR_WRITEBACK and WB_WRITEBACK.

A particular effect of this change is that when
wb_check_background_flush() calls wb_over_bg_threshold(), the latter
will report 'true' a lot less often as the 'unstable' pages are no
longer considered 'dirty' (as there is nothing that writeback can do
about them anyway).

Currently wb_check_background_flush() will trigger writeback to NFS even
when there are relatively few dirty pages (if there are lots of unstable
pages), this can result in small writes going to the server (10s of
Kilobytes rather than a Megabyte) which hurts throughput.  With this
patch, there are fewer writes which are each larger on average.

Where the NR_UNSTABLE_NFS count was included in statistics
virtual-files, the entry is retained, but the value is hard-coded as
zero.  static trace points and warning printks which mentioned this
counter no longer report it.

[akpm@linux-foundation.org: re-layout comment]
[akpm@linux-foundation.org: fix printk warning]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Acked-by: Michal Hocko <mhocko@suse.com>	[mm]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Link: http://lkml.kernel.org/r/87d06j7gqa.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:08 -07:00
Yafang Shao 11d6761218 mm, memcg: fix error return value of mem_cgroup_css_alloc()
When I run my memcg testcase which creates lots of memcgs, I found
there're unexpected out of memory logs while there're still enough
available free memory.  The error log is

  mkdir: cannot create directory 'foo.65533': Cannot allocate memory

The reason is when we try to create more than MEM_CGROUP_ID_MAX memcgs,
an -ENOMEM errno will be set by mem_cgroup_css_alloc(), but the right
errno should be -ENOSPC "No space left on device", which is an
appropriate errno for userspace's failed mkdir.

As the errno really misled me, we should make it right.  After this
patch, the error log will be

  mkdir: cannot create directory 'foo.65533': No space left on device

[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200407063621.GA18914@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1586192163-20099-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-07 19:27:20 -07:00
Jakub Kicinski 9b8b17541f mm, memcg: do not high throttle allocators based on wraparound
If a cgroup violates its memory.high constraints, we may end up unduly
penalising it.  For example, for the following hierarchy:

  A:   max high, 20 usage
  A/B: 9 high, 10 usage
  A/C: max high, 10 usage

We would end up doing the following calculation below when calculating
high delay for A/B:

  A/B: 10 - 9 = 1...
  A:   20 - PAGE_COUNTER_MAX = 21, so set max_overage to 21.

This gets worse with higher disparities in usage in the parent.

I have no idea how this disappeared from the final version of the patch,
but it is certainly Not Good(tm).  This wasn't obvious in testing because,
for a simple cgroup hierarchy with only one child, the result is usually
roughly the same.  It's only in more complex hierarchies that things go
really awry (although still, the effects are limited to a maximum of 2
seconds in schedule_timeout_killable at a maximum).

[chris@chrisdown.name: changelog]
Fixes: e26733e0d0 ("mm, memcg: throttle allocators based on ancestral memory.high")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[5.4.x]
Link: http://lkml.kernel.org/r/20200331152424.GA1019937@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-10 15:36:20 -07:00
Joe Perches e4a9bc5896 mm: use fallthrough;
Convert the various /* fallthrough */ comments to the pseudo-keyword
fallthrough;

Done via script:
https://lore.kernel.org/lkml/b56602fcf79f849e733e7b521bb0e17895d390fa.1582230379.git.joe@perches.com/

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Link: http://lkml.kernel.org/r/f62fea5d10eb0ccfc05d87c242a620c261219b66.camel@perches.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:41 -07:00
Chris Down 4bf173072c mm, memcg: bypass high reclaim iteration for cgroup hierarchy root
The root of the hierarchy cannot have high set, so we will never reclaim
based on it.  This makes that clearer and avoids another entry.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200312164137.GA1753625@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:37 -07:00
Roman Gushchin 48fe267c50 mm: memcg: make memory.oom.group tolerable to task migration
If a task is getting moved out of the OOMing cgroup, it might result in
unexpected OOM killings if memory.oom.group is used anywhere in the cgroup
tree.

Imagine the following example:

          A (oom.group = 1)
         / \
  (OOM) B   C

Let's say B's memory.max is exceeded and it's OOMing.  The OOM killer
selects a task in B as a victim, but someone asynchronously moves the task
into C.  mem_cgroup_get_oom_group() will iterate over all ancestors of C
up to the root cgroup.  In theory it had to stop at the oom_domain level -
the memory cgroup which is OOMing.  But because B is not an ancestor of C,
it's not happening.  Instead it chooses A (because it's oom.group is set),
and kills all tasks in A.  This behavior is wrong because the OOM happened
in B, so there is no reason to kill anything outside.

Fix this by checking it the memory cgroup to which the task belongs is a
descendant of the oom_domain.  If not, memory.oom.group should be ignored,
and the OOM killer should kill only the victim task.

Reported-by: Dan Schatzberg <dschatzberg@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/20200316223510.3176148-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down b3a7822e5e mm, memcg: prevent mem_cgroup_protected store tearing
The read side of this is all protected, but we can still tear if multiple
iterations of mem_cgroup_protected are going at the same time.

There's some intentional racing in mem_cgroup_protected which is ok, but
load/store tearing should be avoided.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/d1e9fbc0379fe8db475d82c8b6fbe048876e12ae.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down 32d087cdd9 mm, memcg: prevent memory.swap.max load tearing
The write side of this is xchg()/smp_mb(), so that's all good.  Just a few
sites missing a READ_ONCE.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/bbec2c3d822217334855c8877a9d28b2a6d395fb.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down c3d5320086 mm, memcg: prevent memory.min load/store tearing
This can be set concurrently with reads, which may cause the wrong value
to be propagated.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/e809b4e6b0c1626dac6945970de06409a180ee65.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down 15b42562d4 mm, memcg: prevent memory.max load tearing
This one is a bit more nuanced because we have memcg_max_mutex, which is
mostly just used for enforcing invariants, but we still need to READ_ONCE
since (despite its name) it doesn't really protect memory.max access.

On write (page_counter_set_max() and memory_max_write()) we use xchg(),
which uses smp_mb(), so that's already fine.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/50a31e5f39f8ae6c8fb73966ba1455f0924e8f44.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Chris Down f6f989c5ce mm, memcg: prevent memory.high load/store tearing
A mem_cgroup's high attribute can be concurrently set at the same time as
we are trying to read it -- for example, if we are in memory_high_write at
the same time as we are trying to do high reclaim.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/2f66f7038ed1d4688e59de72b627ae0ea52efa83.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Vincenzo Frascino c1514c0aac mm/memcontrol.c: make mem_cgroup_id_get_many() __maybe_unused
mem_cgroup_id_get_many() is currently used only when MMU or MEMCG_SWAP
configuration options are enabled.  Having them disabled triggers the
following warning at compile time:

  linux/mm/memcontrol.c:4797:13: warning: `mem_cgroup_id_get_many' defined but not used [-Wunused-function]
   static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)

Make mem_cgroup_id_get_many() __maybe_unused to address the issue.

Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200305164354.48147-1-vincenzo.frascino@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Shakeel Butt 8965aa28cd memcg: css_tryget_online cleanups
Currently multiple locations in memcg code, css_tryget_online() is being
used. However it doesn't matter whether the cgroup is online for the
callers. Online used to matter when we had reparenting on offlining and
we needed a way to prevent new ones from showing up.

The failure case for couple of these css_tryget_online usage is to
fallback to root_mem_cgroup which kind of make bypassing the memcg
limits possible for some workloads. For example creating an inotify
group in a subcontainer and then deleting that container after moving the
process to a different container will make all the event objects
allocated for that group to the root_mem_cgroup. So, using
css_tryget_online() is dangerous for such cases.

Two locations still use the online version. The swapin of offlined
memcg's pages and the memcg kmem cache creation. The kmem cache indeed
needs the online version as the kernel does the reparenting of memcg
kmem caches. For the swapin case, it has been left for later as the
fallback is not really that concerning.

With swap accounting enabled, if the memcg of the swapped out page is
not online then the memcg extracted from the given 'mm' will be charged
and if 'mm' is NULL then root memcg will be charged.  However I could
not find a code path where the given 'mm' will be NULL for swap-in
case.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200302203109.179417-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Johannes Weiner 8a931f8013 mm: memcontrol: recursive memory.low protection
Right now, the effective protection of any given cgroup is capped by its
own explicit memory.low setting, regardless of what the parent says.  The
reasons for this are mostly historical and ease of implementation: to make
delegation of memory.low safe, effective protection is the min() of all
memory.low up the tree.

Unfortunately, this limitation makes it impossible to protect an entire
subtree from another without forcing the user to make explicit protection
allocations all the way to the leaf cgroups - something that is highly
undesirable in real life scenarios.

Consider memory in a data center host.  At the cgroup top level, we have a
distinction between system management software and the actual workload the
system is executing.  Both branches are further subdivided into individual
services, job components etc.

We want to protect the workload as a whole from the system management
software, but that doesn't mean we want to protect and prioritize
individual workload wrt each other.  Their memory demand can vary over
time, and we'd want the VM to simply cache the hottest data within the
workload subtree.  Yet, the current memory.low limitations force us to
allocate a fixed amount of protection to each workload component in order
to get protection from system management software in general.  This
results in very inefficient resource distribution.

Another concern with mandating downward allocation is that, as the
complexity of the cgroup tree grows, it gets harder for the lower levels
to be informed about decisions made at the host-level.  Consider a
container inside a namespace that in turn creates its own nested tree of
cgroups to run multiple workloads.  It'd be extremely difficult to
configure memory.low parameters in those leaf cgroups that on one hand
balance pressure among siblings as the container desires, while also
reflecting the host-level protection from e.g.  rpm upgrades, that lie
beyond one or more delegation and namespacing points in the tree.

It's highly unusual from a cgroup interface POV that nested levels have to
be aware of and reflect decisions made at higher levels for them to be
effective.

To enable such use cases and scale configurability for complex trees, this
patch implements a resource inheritance model for memory that is similar
to how the CPU and the IO controller implement work-conserving resource
allocations: a share of a resource allocated to a subree always applies to
the entire subtree recursively, while allowing, but not mandating,
children to further specify distribution rules.

That means that if protection is explicitly allocated among siblings,
those configured shares are being followed during page reclaim just like
they are now.  However, if the memory.low set at a higher level is not
fully claimed by the children in that subtree, the "floating" remainder is
applied to each cgroup in the tree in proportion to its size.  Since
reclaim pressure is applied in proportion to size as well, each child in
that tree gets the same boost, and the effect is neutral among siblings -
with respect to each other, they behave as if no memory control was
enabled at all, and the VM simply balances the memory demands optimally
within the subtree.  But collectively those cgroups enjoy a boost over the
cgroups in neighboring trees.

E.g.  a leaf cgroup with a memory.low setting of 0 no longer means that
it's not getting a share of the hierarchically assigned resource, just
that it doesn't claim a fixed amount of it to protect from its siblings.

This allows us to recursively protect one subtree (workload) from another
(system management), while letting subgroups compete freely among each
other - without having to assign fixed shares to each leaf, and without
nested groups having to echo higher-level settings.

The floating protection composes naturally with fixed protection.
Consider the following example tree:

		A            A: low = 2G
               / \          A1: low = 1G
              A1 A2         A2: low = 0G

As outside pressure is applied to this tree, A1 will enjoy a fixed
protection from A2 of 1G, but the remaining, unclaimed 1G from A is split
evenly among A1 and A2, coming out to 1.5G and 0.5G.

There is a slight risk of regressing theoretical setups where the
top-level cgroups don't know about the true budgeting and set bogusly high
"bypass" values that are meaningfully allocated down the tree.  Such
setups would rely on unclaimed protection to be discarded, and
distributing it would change the intended behavior.  Be safe and hide the
new behavior behind a mount option, 'memory_recursiveprot'.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Johannes Weiner bc50bcc6e0 mm: memcontrol: clean up and document effective low/min calculations
The effective protection of any given cgroup is a somewhat complicated
construct that depends on the ancestor's configuration, siblings'
configurations, as well as current memory utilization in all these groups.
It's done this way to satisfy hierarchical delegation requirements while
also making the configuration semantics flexible and expressive in complex
real life scenarios.

Unfortunately, all the rules and requirements are sparsely documented, and
the code is a little too clever in merging different scenarios into a
single min() expression.  This makes it hard to reason about the
implementation and avoid breaking semantics when making changes to it.

This patch documents each semantic rule individually and splits out the
handling of the overcommit case from the regular case.

Michal Koutný also points out that the points of equilibrium as described
in the existing example scenarios aren't actually accurate.  Delete these
examples for now to avoid confusion.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Johannes Weiner 503970e423 mm: memcontrol: fix memory.low proportional distribution
Patch series "mm: memcontrol: recursive memory.low protection", v3.

The current memory.low (and memory.min) semantics require protection to be
assigned to a cgroup in an untinterrupted chain from the top-level cgroup
all the way to the leaf.

In practice, we want to protect entire cgroup subtrees from each other
(system management software vs.  workload), but we would like the VM to
balance memory optimally *within* each subtree, without having to make
explicit weight allocations among individual components.  The current
semantics make that impossible.

They also introduce unmanageable complexity into more advanced resource
trees.  For example:

          host root
          `- system.slice
             `- rpm upgrades
             `- logging
          `- workload.slice
             `- a container
                `- system.slice
                `- workload.slice
                   `- job A
                      `- component 1
                      `- component 2
                   `- job B

At a host-level perspective, we would like to protect the outer
workload.slice subtree as a whole from rpm upgrades, logging etc.  But for
that to be effective, right now we'd have to propagate it down through the
container, the inner workload.slice, into the job cgroup and ultimately
the component cgroups where memory is actually, physically allocated.
This may cross several tree delegation points and namespace boundaries,
which make such a setup near impossible.

CPU and IO on the other hand are already distributed recursively.  The
user would simply configure allowances at the host level, and they would
apply to the entire subtree without any downward propagation.

To enable the above-mentioned usecases and bring memory in line with other
resource controllers, this patch series extends memory.low/min such that
settings apply recursively to the entire subtree.  Users can still assign
explicit shares in subgroups, but if they don't, any ancestral protection
will be distributed such that children compete freely amongst each other -
as if no memory control were enabled inside the subtree - but enjoy
protection from neighboring trees.

In the above example, the user would then be able to configure shares of
CPU, IO and memory at the host level to comprehensively protect and
isolate the workload.slice as a whole from system.slice activity.

Patch #1 fixes an existing bug that can give a cgroup tree more protection
than it should receive as per ancestor configuration.

Patch #2 simplifies and documents the existing code to make it easier to
reason about the changes in the next patch.

Patch #3 finally implements recursive memory protection semantics.

Because of a risk of regressing legacy setups, the new semantics are
hidden behind a cgroup2 mount option, 'memory_recursiveprot'.

More details in patch #3.

This patch (of 3):

When memory.low is overcommitted - i.e.  the children claim more
protection than their shared ancestor grants them - the allowance is
distributed in proportion to how much each sibling uses their own declared
protection:

	low_usage = min(memory.low, memory.current)
	elow = parent_elow * (low_usage / siblings_low_usage)

However, siblings_low_usage is not the sum of all low_usages. It sums
up the usages of *only those cgroups that are within their memory.low*
That means that low_usage can be *bigger* than siblings_low_usage, and
consequently the total protection afforded to the children can be
bigger than what the ancestor grants the subtree.

Consider three groups where two are in excess of their protection:

  A/memory.low = 10G
  A/A1/memory.low = 10G, memory.current = 20G
  A/A2/memory.low = 10G, memory.current = 20G
  A/A3/memory.low = 10G, memory.current =  8G
  siblings_low_usage = 8G (only A3 contributes)

  A1/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G
  A2/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G
  A3/elow = parent_elow(10G) * low_usage(8G) / siblings_low_usage(8G) = 10.0G

  (the 12.5G are capped to the explicit memory.low setting of 10G)

With that, the sum of all awarded protection below A is 30G, when A
only grants 10G for the entire subtree.

What does this mean in practice? A1 and A2 would still be in excess of
their 10G allowance and would be reclaimed, whereas A3 would not. As
they eventually drop below their protection setting, they would be
counted in siblings_low_usage again and the error would right itself.

When reclaim was applied in a binary fashion (cgroup is reclaimed when
it's above its protection, otherwise it's skipped) this would actually
work out just fine. However, since 1bc63fb127 ("mm, memcg: make scan
aggression always exclude protection"), reclaim pressure is scaled to
how much a cgroup is above its protection. As a result this
calculation error unduly skews pressure away from A1 and A2 toward the
rest of the system.

But why did we do it like this in the first place?

The reasoning behind exempting groups in excess from
siblings_low_usage was to go after them first during reclaim in an
overcommitted subtree:

  A/memory.low = 2G, memory.current = 4G
  A/A1/memory.low = 3G, memory.current = 2G
  A/A2/memory.low = 1G, memory.current = 2G

  siblings_low_usage = 2G (only A1 contributes)
  A1/elow = parent_elow(2G) * low_usage(2G) / siblings_low_usage(2G) = 2G
  A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G

While the children combined are overcomitting A and are technically
both at fault, A2 is actively declaring unprotected memory and we
would like to reclaim that first.

However, while this sounds like a noble goal on the face of it, it
doesn't make much difference in actual memory distribution: Because A
is overcommitted, reclaim will not stop once A2 gets pushed back to
within its allowance; we'll have to reclaim A1 either way. The end
result is still that protection is distributed proportionally, with A1
getting 3/4 (1.5G) and A2 getting 1/4 (0.5G) of A's allowance.

[ If A weren't overcommitted, it wouldn't make a difference since each
  cgroup would just get the protection it declares:

  A/memory.low = 2G, memory.current = 3G
  A/A1/memory.low = 1G, memory.current = 1G
  A/A2/memory.low = 1G, memory.current = 2G

  With the current calculation:

  siblings_low_usage = 1G (only A1 contributes)
  A1/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(1G) = 2G -> 1G
  A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(1G) = 2G -> 1G

  Including excess groups in siblings_low_usage:

  siblings_low_usage = 2G
  A1/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G -> 1G
  A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G -> 1G ]

Simplify the calculation and fix the proportional reclaim bug by
including excess cgroups in siblings_low_usage.

After this patch, the effective memory.low distribution from the
example above would be as follows:

  A/memory.low = 10G
  A/A1/memory.low = 10G, memory.current = 20G
  A/A2/memory.low = 10G, memory.current = 20G
  A/A3/memory.low = 10G, memory.current =  8G
  siblings_low_usage = 28G

  A1/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(28G) = 3.5G
  A2/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(28G) = 3.5G
  A3/elow = parent_elow(10G) * low_usage(8G) / siblings_low_usage(28G) = 2.8G

Fixes: 1bc63fb127 ("mm, memcg: make scan aggression always exclude protection")
Fixes: 230671533d ("mm: memory.low hierarchical behavior")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-2-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 4b13f64de2 mm: kmem: rename (__)memcg_kmem_(un)charge_memcg() to __memcg_kmem_(un)charge()
Drop the _memcg suffix from (__)memcg_kmem_(un)charge functions.  It's
shorter and more obvious.

These are the most basic functions which are just (un)charging the given
cgroup with the given amount of pages.

Also fix up the corresponding comments.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-7-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 92d0510c35 mm: kmem: switch to nr_pages in (__)memcg_kmem_charge_memcg()
These functions are charging the given number of kernel pages to the given
memory cgroup.  The number doesn't have to be a power of two.  Let's make
them to take the unsigned int nr_pages as an argument instead of the page
order.

It makes them look consistent with the corresponding uncharge functions
and functions like: mem_cgroup_charge_skmem(memcg, nr_pages).

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin f4b00eab50 mm: kmem: rename memcg_kmem_(un)charge() into memcg_kmem_(un)charge_page()
Rename (__)memcg_kmem_(un)charge() into (__)memcg_kmem_(un)charge_page()
to better reflect what they are actually doing:

1) call __memcg_kmem_(un)charge_memcg() to actually charge or uncharge
   the current memcg

2) set or clear the PageKmemcg flag

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 10eaec2f63 mm: kmem: cleanup (__)memcg_kmem_charge_memcg() arguments
Patch series "mm: memcg: kmem API cleanup", v2.

This patchset aims to clean up the kernel memory charging API.  It doesn't
bring any functional changes, just removes unused arguments, renames some
functions and fixes some comments.

Currently it's not obvious which functions are most basic
(memcg_kmem_(un)charge_memcg()) and which are based on them
(memcg_kmem_(un)charge()).  The patchset renames these functions and
removes unused arguments:

TL;DR:
was:
  memcg_kmem_charge_memcg(page, gfp, order, memcg)
  memcg_kmem_uncharge_memcg(memcg, nr_pages)
  memcg_kmem_charge(page, gfp, order)
  memcg_kmem_uncharge(page, order)

now:
  memcg_kmem_charge(memcg, gfp, nr_pages)
  memcg_kmem_uncharge(memcg, nr_pages)
  memcg_kmem_charge_page(page, gfp, order)
  memcg_kmem_uncharge_page(page, order)

This patch (of 6):

The first argument of memcg_kmem_charge_memcg() and
__memcg_kmem_charge_memcg() is the page pointer and it's not used.  Let's
drop it.

Memcg pointer is passed as the last argument.  Move it to the first place
for consistency with other memcg functions, e.g.
__memcg_kmem_uncharge_memcg() or try_charge().

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 4f103c6363 mm: memcg/slab: use mem_cgroup_from_obj()
Sometimes we need to get a memcg pointer from a charged kernel object.
The right way to get it depends on whether it's a proper slab object or
it's backed by raw pages (e.g.  it's a vmalloc alloction).  In the first
case the kmem_cache->memcg_params.memcg indirection should be used; in
other cases it's just page->mem_cgroup.

To simplify this task and hide the implementation details let's use the
mem_cgroup_from_obj() helper, which takes a pointer to any kernel object
and returns a valid memcg pointer or NULL.

Passing a kernel address rather than a pointer to a page will allow to use
this helper for per-object (rather than per-page) tracked objects in the
future.

The caller is still responsible to ensure that the returned memcg isn't
going away underneath: take the rcu read lock, cgroup mutex etc; depending
on the context.

mem_cgroup_from_kmem() defined in mm/list_lru.c is now obsolete and can be
removed.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200117203609.3146239-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Kirill Tkhai 86daf94efb mm/memcontrol.c: allocate shrinker_map on appropriate NUMA node
The shrinker_map may be touched from any cpu (e.g., a bit there may be set
by a task running everywhere) but kswapd is always bound to specific node.
So allocate shrinker_map from the related NUMA node to respect its NUMA
locality.  Also, this follows generic way we use for allocation of memcg's
per-node data.

Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/fff0e636-4c36-ed10-281c-8cdb0687c839@virtuozzo.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Yafang Shao a87425a36f mm, memcg: fix build error around the usage of kmem_caches
When I manually set default n to MEMCG_KMEM in init/Kconfig, bellow error
occurs,

  mm/slab_common.c: In function 'memcg_slab_start':
  mm/slab_common.c:1530:30: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    return seq_list_start(&memcg->kmem_caches, *pos);
                                ^
  mm/slab_common.c: In function 'memcg_slab_next':
  mm/slab_common.c:1537:32: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    return seq_list_next(p, &memcg->kmem_caches, pos);
                                  ^
  mm/slab_common.c: In function 'memcg_slab_show':
  mm/slab_common.c:1551:16: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    if (p == memcg->kmem_caches.next)
                  ^
    CC      arch/x86/xen/smp.o
  mm/slab_common.c: In function 'memcg_slab_start':
  mm/slab_common.c:1531:1: warning: control reaches end of non-void function
  [-Wreturn-type]
   }
   ^
  mm/slab_common.c: In function 'memcg_slab_next':
  mm/slab_common.c:1538:1: warning: control reaches end of non-void function
  [-Wreturn-type]
   }
   ^

That's because kmem_caches is defined only when CONFIG_MEMCG_KMEM is set,
while memcg_slab_start() will use it no matter CONFIG_MEMCG_KMEM is defined
or not.

By the way, the reason I mannuly undefined CONFIG_MEMCG_KMEM is to verify
whether my some other code change is still stable when CONFIG_MEMCG_KMEM is
not set. Unfortunately, the existing code has been already unstable since
v4.11.

Fixes: bc2791f857 ("slab: link memcg kmem_caches on their associated memory cgroup")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/1580970260-2045-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 8380ce4790 mm: fork: fix kernel_stack memcg stats for various stack implementations
Depending on CONFIG_VMAP_STACK and the THREAD_SIZE / PAGE_SIZE ratio the
space for task stacks can be allocated using __vmalloc_node_range(),
alloc_pages_node() and kmem_cache_alloc_node().

In the first and the second cases page->mem_cgroup pointer is set, but
in the third it's not: memcg membership of a slab page should be
determined using the memcg_from_slab_page() function, which looks at
page->slab_cache->memcg_params.memcg .  In this case, using
mod_memcg_page_state() (as in account_kernel_stack()) is incorrect:
page->mem_cgroup pointer is NULL even for pages charged to a non-root
memory cgroup.

It can lead to kernel_stack per-memcg counters permanently showing 0 on
some architectures (depending on the configuration).

In order to fix it, let's introduce a mod_memcg_obj_state() helper,
which takes a pointer to a kernel object as a first argument, uses
mem_cgroup_from_obj() to get a RCU-protected memcg pointer and calls
mod_memcg_state().  It allows to handle all possible configurations
(CONFIG_VMAP_STACK and various THREAD_SIZE/PAGE_SIZE values) without
spilling any memcg/kmem specifics into fork.c .

Note: This is a special version of the patch created for stable
backports.  It contains code from the following two patches:
  - mm: memcg/slab: introduce mem_cgroup_from_obj()
  - mm: fork: fix kernel_stack memcg stats for various stack implementations

[guro@fb.com: introduce mem_cgroup_from_obj()]
  Link: http://lkml.kernel.org/r/20200324004221.GA36662@carbon.dhcp.thefacebook.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200303233550.251375-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-29 09:47:05 -07:00
Chris Down e26733e0d0 mm, memcg: throttle allocators based on ancestral memory.high
Prior to this commit, we only directly check the affected cgroup's
memory.high against its usage.  However, it's possible that we are being
reclaimed as a result of hitting an ancestor memory.high and should be
penalised based on that, instead.

This patch changes memory.high overage throttling to use the largest
overage in its ancestors when considering how many penalty jiffies to
charge.  This makes sure that we penalise poorly behaving cgroups in the
same way regardless of at what level of the hierarchy memory.high was
breached.

Fixes: 0e4b01df86 ("mm, memcg: throttle allocators when failing reclaim over memory.high")
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>	[5.4.x+]
Link: http://lkml.kernel.org/r/8cd132f84bd7e16cdb8fde3378cdbf05ba00d387.1584036142.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-21 18:56:06 -07:00
Chris Down d397a45fc7 mm, memcg: fix corruption on 64-bit divisor in memory.high throttling
Commit 0e4b01df86 had a bunch of fixups to use the right division
method.  However, it seems that after all that it still wasn't right --
div_u64 takes a 32-bit divisor.

The headroom is still large (2^32 pages), so on mundane systems you
won't hit this, but this should definitely be fixed.

Fixes: 0e4b01df86 ("mm, memcg: throttle allocators when failing reclaim over memory.high")
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: <stable@vger.kernel.org>	[5.4.x+]
Link: http://lkml.kernel.org/r/80780887060514967d414b3cd91f9a316a16ab98.1584036142.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-21 18:56:06 -07:00
Chunguang Xu 7d36665a58 memcg: fix NULL pointer dereference in __mem_cgroup_usage_unregister_event
An eventfd monitors multiple memory thresholds of the cgroup, closes them,
the kernel deletes all events related to this eventfd.  Before all events
are deleted, another eventfd monitors the memory threshold of this cgroup,
leading to a crash:

  BUG: kernel NULL pointer dereference, address: 0000000000000004
  #PF: supervisor write access in kernel mode
  #PF: error_code(0x0002) - not-present page
  PGD 800000033058e067 P4D 800000033058e067 PUD 3355ce067 PMD 0
  Oops: 0002 [#1] SMP PTI
  CPU: 2 PID: 14012 Comm: kworker/2:6 Kdump: loaded Not tainted 5.6.0-rc4 #3
  Hardware name: LENOVO 20AWS01K00/20AWS01K00, BIOS GLET70WW (2.24 ) 05/21/2014
  Workqueue: events memcg_event_remove
  RIP: 0010:__mem_cgroup_usage_unregister_event+0xb3/0x190
  RSP: 0018:ffffb47e01c4fe18 EFLAGS: 00010202
  RAX: 0000000000000001 RBX: ffff8bb223a8a000 RCX: 0000000000000001
  RDX: 0000000000000001 RSI: ffff8bb22fb83540 RDI: 0000000000000001
  RBP: ffffb47e01c4fe48 R08: 0000000000000000 R09: 0000000000000010
  R10: 000000000000000c R11: 071c71c71c71c71c R12: ffff8bb226aba880
  R13: ffff8bb223a8a480 R14: 0000000000000000 R15: 0000000000000000
  FS:  0000000000000000(0000) GS:ffff8bb242680000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000004 CR3: 000000032c29c003 CR4: 00000000001606e0
  Call Trace:
    memcg_event_remove+0x32/0x90
    process_one_work+0x172/0x380
    worker_thread+0x49/0x3f0
    kthread+0xf8/0x130
    ret_from_fork+0x35/0x40
  CR2: 0000000000000004

We can reproduce this problem in the following ways:

1. We create a new cgroup subdirectory and a new eventfd, and then we
   monitor multiple memory thresholds of the cgroup through this eventfd.

2.  closing this eventfd, and __mem_cgroup_usage_unregister_event ()
   will be called multiple times to delete all events related to this
   eventfd.

The first time __mem_cgroup_usage_unregister_event() is called, the
kernel will clear all items related to this eventfd in thresholds->
primary.

Since there is currently only one eventfd, thresholds-> primary becomes
empty, so the kernel will set thresholds-> primary and hresholds-> spare
to NULL.  If at this time, the user creates a new eventfd and monitor
the memory threshold of this cgroup, kernel will re-initialize
thresholds-> primary.

Then when __mem_cgroup_usage_unregister_event () is called for the
second time, because thresholds-> primary is not empty, the system will
access thresholds-> spare, but thresholds-> spare is NULL, which will
trigger a crash.

In general, the longer it takes to delete all events related to this
eventfd, the easier it is to trigger this problem.

The solution is to check whether the thresholds associated with the
eventfd has been cleared when deleting the event.  If so, we do nothing.

[akpm@linux-foundation.org: fix comment, per Kirill]
Fixes: 907860ed38 ("cgroups: make cftype.unregister_event() void-returning")
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/077a6f67-aefa-4591-efec-f2f3af2b0b02@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-21 18:56:06 -07:00
Shakeel Butt d752a49865 net: memcg: late association of sock to memcg
If a TCP socket is allocated in IRQ context or cloned from unassociated
(i.e. not associated to a memcg) in IRQ context then it will remain
unassociated for its whole life. Almost half of the TCPs created on the
system are created in IRQ context, so, memory used by such sockets will
not be accounted by the memcg.

This issue is more widespread in cgroup v1 where network memory
accounting is opt-in but it can happen in cgroup v2 if the source socket
for the cloning was created in root memcg.

To fix the issue, just do the association of the sockets at the accept()
time in the process context and then force charge the memory buffer
already used and reserved by the socket.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-10 15:33:05 -07:00
Shakeel Butt e876ecc67d cgroup: memcg: net: do not associate sock with unrelated cgroup
We are testing network memory accounting in our setup and noticed
inconsistent network memory usage and often unrelated cgroups network
usage correlates with testing workload. On further inspection, it
seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in
irq context specially for cgroup v1.

mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context
and kind of assumes that this can only happen from sk_clone_lock()
and the source sock object has already associated cgroup. However in
cgroup v1, where network memory accounting is opt-in, the source sock
can be unassociated with any cgroup and the new cloned sock can get
associated with unrelated interrupted cgroup.

Cgroup v2 can also suffer if the source sock object was created by
process in the root cgroup or if sk_alloc() is called in irq context.
The fix is to just do nothing in interrupt.

WARNING: Please note that about half of the TCP sockets are allocated
from the IRQ context, so, memory used by such sockets will not be
accouted by the memcg.

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:

CPU: 70 PID: 12720 Comm: ssh Tainted:  5.6.0-smp-DEV #1
Hardware name: ...
Call Trace:
 <IRQ>
 dump_stack+0x57/0x75
 mem_cgroup_sk_alloc+0xe9/0xf0
 sk_clone_lock+0x2a7/0x420
 inet_csk_clone_lock+0x1b/0x110
 tcp_create_openreq_child+0x23/0x3b0
 tcp_v6_syn_recv_sock+0x88/0x730
 tcp_check_req+0x429/0x560
 tcp_v6_rcv+0x72d/0xa40
 ip6_protocol_deliver_rcu+0xc9/0x400
 ip6_input+0x44/0xd0
 ? ip6_protocol_deliver_rcu+0x400/0x400
 ip6_rcv_finish+0x71/0x80
 ipv6_rcv+0x5b/0xe0
 ? ip6_sublist_rcv+0x2e0/0x2e0
 process_backlog+0x108/0x1e0
 net_rx_action+0x26b/0x460
 __do_softirq+0x104/0x2a6
 do_softirq_own_stack+0x2a/0x40
 </IRQ>
 do_softirq.part.19+0x40/0x50
 __local_bh_enable_ip+0x51/0x60
 ip6_finish_output2+0x23d/0x520
 ? ip6table_mangle_hook+0x55/0x160
 __ip6_finish_output+0xa1/0x100
 ip6_finish_output+0x30/0xd0
 ip6_output+0x73/0x120
 ? __ip6_finish_output+0x100/0x100
 ip6_xmit+0x2e3/0x600
 ? ipv6_anycast_cleanup+0x50/0x50
 ? inet6_csk_route_socket+0x136/0x1e0
 ? skb_free_head+0x1e/0x30
 inet6_csk_xmit+0x95/0xf0
 __tcp_transmit_skb+0x5b4/0xb20
 __tcp_send_ack.part.60+0xa3/0x110
 tcp_send_ack+0x1d/0x20
 tcp_rcv_state_process+0xe64/0xe80
 ? tcp_v6_connect+0x5d1/0x5f0
 tcp_v6_do_rcv+0x1b1/0x3f0
 ? tcp_v6_do_rcv+0x1b1/0x3f0
 __release_sock+0x7f/0xd0
 release_sock+0x30/0xa0
 __inet_stream_connect+0x1c3/0x3b0
 ? prepare_to_wait+0xb0/0xb0
 inet_stream_connect+0x3b/0x60
 __sys_connect+0x101/0x120
 ? __sys_getsockopt+0x11b/0x140
 __x64_sys_connect+0x1a/0x20
 do_syscall_64+0x51/0x200
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
Fixes: 2d75807383 ("mm: memcontrol: consolidate cgroup socket tracking")
Fixes: d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-10 15:33:05 -07:00
Vasily Averin 75866af62b mm/memcontrol.c: lost css_put in memcg_expand_shrinker_maps()
for_each_mem_cgroup() increases css reference counter for memory cgroup
and requires to use mem_cgroup_iter_break() if the walk is cancelled.

Link: http://lkml.kernel.org/r/c98414fb-7e1f-da0f-867a-9340ec4bd30b@virtuozzo.com
Fixes: 0a4465d340 ("mm, memcg: assign memcg-aware shrinkers bitmap to memcg")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-21 11:22:15 -08:00
Kaitao Cheng 92855270ff mm/memcontrol.c: cleanup some useless code
Compound pages handling in mem_cgroup_migrate is more convoluted than
necessary.  The state is duplicated in compound variable and the same
could be achieved by PageTransHuge check which is trivial and
hpage_nr_pages is already PageTransHuge aware.

It is much simpler to just use hpage_nr_pages for nr_pages and replace
the local variable by PageTransHuge check directly

Link: http://lkml.kernel.org/r/20191210160450.3395-1-pilgrimtao@gmail.com
Signed-off-by: Kaitao Cheng <pilgrimtao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:38 -08:00
Wei Yang fac0516b55 mm: thp: don't need care deferred split queue in memcg charge move path
If compound is true, this means it is a PMD mapped THP.  Which implies
the page is not linked to any defer list.  So the first code chunk will
not be executed.

Also with this reason, it would not be proper to add this page to a
defer list.  So the second code chunk is not correct.

Based on this, we should remove the defer list related code.

[yang.shi@linux.alibaba.com: better patch title]
Link: http://lkml.kernel.org/r/20200117233836.3434-1-richardw.yang@linux.intel.com
Fixes: 87eaceb3fa ("mm: thp: make deferred split shrinker memcg aware")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>    [5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:36 -08:00
Roman Gushchin 4a87e2a25d mm: memcg/slab: fix percpu slab vmstats flushing
Currently slab percpu vmstats are flushed twice: during the memcg
offlining and just before freeing the memcg structure.  Each time percpu
counters are summed, added to the atomic counterparts and propagated up
by the cgroup tree.

The second flushing is required due to how recursive vmstats are
implemented: counters are batched in percpu variables on a local level,
and once a percpu value is crossing some predefined threshold, it spills
over to atomic values on the local and each ascendant levels.  It means
that without flushing some numbers cached in percpu variables will be
dropped on floor each time a cgroup is destroyed.  And with uptime the
error on upper levels might become noticeable.

The first flushing aims to make counters on ancestor levels more
precise.  Dying cgroups may resume in the dying state for a long time.
After kmem_cache reparenting which is performed during the offlining
slab counters of the dying cgroup don't have any chances to be updated,
because any slab operations will be performed on the parent level.  It
means that the inaccuracy caused by percpu batching will not decrease up
to the final destruction of the cgroup.  By the original idea flushing
slab counters during the offlining should minimize the visible
inaccuracy of slab counters on the parent level.

The problem is that percpu counters are not zeroed after the first
flushing.  So every cached percpu value is summed twice.  It creates a
small error (up to 32 pages per cpu, but usually less) which accumulates
on parent cgroup level.  After creating and destroying of thousands of
child cgroups, slab counter on parent level can be way off the real
value.

For now, let's just stop flushing slab counters on memcg offlining.  It
can't be done correctly without scheduling a work on each cpu: reading
and zeroing it during css offlining can race with an asynchronous
update, which doesn't expect values to be changed underneath.

With this change, slab counters on parent level will become eventually
consistent.  Once all dying children are gone, values are correct.  And
if not, the error is capped by 32 * NR_CPUS pages per dying cgroup.

It's not perfect, as slab are reparented, so any updates after the
reparenting will happen on the parent level.  It means that if a slab
page was allocated, a counter on child level was bumped, then the page
was reparented and freed, the annihilation of positive and negative
counter values will not happen until the child cgroup is released.  It
makes slab counters different from others, and it might want us to
implement flushing in a correct form again.  But it's also a question of
performance: scheduling a work on each cpu isn't free, and it's an open
question if the benefit of having more accurate counters is worth it.

We might also consider flushing all counters on offlining, not only slab
counters.

So let's fix the main problem now: make the slab counters eventually
consistent, so at least the error won't grow with uptime (or more
precisely the number of created and destroyed cgroups).  And think about
the accuracy of counters separately.

Link: http://lkml.kernel.org/r/20191220042728.1045881-1-guro@fb.com
Fixes: bee07b33db ("mm: memcontrol: flush percpu slab vmstats on kmem offlining")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-13 18:19:02 -08:00
Konstantin Khlebnikov ebc5d83d04 mm/memcontrol: use vmstat names for printing statistics
Use common names from vmstat array when possible.  This gives not much
difference in code size for now, but should help in keeping interfaces
consistent.

  add/remove: 0/2 grow/shrink: 2/0 up/down: 70/-72 (-2)
  Function                                     old     new   delta
  memory_stat_format                           984    1050     +66
  memcg_stat_show                              957     961      +4
  memcg1_event_names                            32       -     -32
  mem_cgroup_lru_names                          40       -     -40
  Total: Before=14485337, After=14485335, chg -0.00%

Link: http://lkml.kernel.org/r/157113012508.453.80391533767219371.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-04 19:44:11 -08:00
Johannes Weiner 867e5e1de1 mm: clean up and clarify lruvec lookup procedure
There is a per-memcg lruvec and a NUMA node lruvec.  Which one is being
used is somewhat confusing right now, and it's easy to make mistakes -
especially when it comes to global reclaim.

How it works: when memory cgroups are enabled, we always use the
root_mem_cgroup's per-node lruvecs.  When memory cgroups are not compiled
in or disabled at runtime, we use pgdat->lruvec.

Document that in a comment.

Due to the way the reclaim code is generalized, all lookups use the
mem_cgroup_lruvec() helper function, and nobody should have to find the
right lruvec manually right now.  But to avoid future mistakes, rename the
pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper
that suggests it's a commonly accessed member.

While in this area, swap the mem_cgroup_lruvec() argument order.  The name
suggests a memcg operation, yet it takes a pgdat first and a memcg second.
I have to double take every time I call this.  Fix that.

Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:06 -08:00
Shakeel Butt fa40d1ee9f mm: vmscan: memcontrol: remove mem_cgroup_select_victim_node()
Since commit 1ba6fc9af3 ("mm: vmscan: do not share cgroup iteration
between reclaimers"), the memcg reclaim does not bail out earlier based
on sc->nr_reclaimed and will traverse all the nodes.  All the
reclaimable pages of the memcg on all the nodes will be scanned relative
to the reclaim priority.  So, there is no need to maintain state
regarding which node to start the memcg reclaim from.

This patch effectively reverts the commit 889976dbcb ("memcg: reclaim
memory from nodes in round-robin order") and commit 453a9bf347
("memcg: fix numa scan information update to be triggered by memory
event").

[shakeelb@google.com: v2]
  Link: http://lkml.kernel.org/r/20191030204232.139424-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20191029234753.224143-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Johannes Weiner 8c8c383c04 mm: memcontrol: try harder to set a new memory.high
Setting a memory.high limit below the usage makes almost no effort to
shrink the cgroup to the new target size.

While memory.high is a "soft" limit that isn't supposed to cause OOM
situations, we should still try harder to meet a user request through
persistent reclaim.

For example, after setting a 10M memory.high on an 800M cgroup full of
file cache, the usage shrinks to about 350M:

  + cat /cgroup/workingset/memory.current
  841568256
  + echo 10M
  + cat /cgroup/workingset/memory.current
  355729408

This isn't exactly what the user would expect to happen. Setting the
value a few more times eventually whittles the usage down to what we
are asking for:

  + echo 10M
  + cat /cgroup/workingset/memory.current
  104181760
  + echo 10M
  + cat /cgroup/workingset/memory.current
  31801344
  + echo 10M
  + cat /cgroup/workingset/memory.current
  10440704

To improve this, add reclaim retry loops to the memory.high write()
callback, similar to what we do for memory.max, to make a reasonable
effort that the usage meets the requested size after the call returns.

Afterwards, a single write() to memory.high is enough in all but extreme
cases:

  + cat /cgroup/workingset/memory.current
  841609216
  + echo 10M
  + cat /cgroup/workingset/memory.current
  10182656

790M is not a reasonable reclaim target to ask of a single reclaim
invocation.  And it wouldn't be reasonable to optimize the reclaim code
for it.  So asking for the full size but retrying is not a bad choice
here: we express our intent, and benefit if reclaim becomes better at
handling larger requests, but we also acknowledge that some of the
deltas we can encounter in memory_high_write() are just too ridiculously
big for a single reclaim invocation to manage.

Link: http://lkml.kernel.org/r/20191022201518.341216-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Johannes Weiner 7249c9f01d mm: memcontrol: remove dead code from memory_max_write()
When the reclaim loop in memory_max_write() is ^C'd or similar, we set err
to -EINTR.  But we don't return err.  Once the limit is set, we always
return success (nbytes).  Delete the dead code.

Link: http://lkml.kernel.org/r/20191022201518.341216-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Yafang Shao 9da83f3fc7 mm, memcg: clean up reclaim iter array
The mem_cgroup_reclaim_cookie is only used in memcg softlimit reclaim now,
and the priority of the reclaim is always 0.  We don't need to define the
iter in struct mem_cgroup_per_node as an array any more.  That could make
the code more clear and save some space.

Link: http://lkml.kernel.org/r/1569897728-1686-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Linus Torvalds 168829ad09 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 "The main changes in this cycle were:

   - A comprehensive rewrite of the robust/PI futex code's exit handling
     to fix various exit races. (Thomas Gleixner et al)

   - Rework the generic REFCOUNT_FULL implementation using
     atomic_fetch_* operations so that the performance impact of the
     cmpxchg() loops is mitigated for common refcount operations.

     With these performance improvements the generic implementation of
     refcount_t should be good enough for everybody - and this got
     confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
     REFCOUNT_FULL entirely, leaving the generic implementation enabled
     unconditionally. (Will Deacon)

   - Other misc changes, fixes, cleanups"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
  lkdtm: Remove references to CONFIG_REFCOUNT_FULL
  locking/refcount: Remove unused 'refcount_error_report()' function
  locking/refcount: Consolidate implementations of refcount_t
  locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
  locking/refcount: Move saturation warnings out of line
  locking/refcount: Improve performance of generic REFCOUNT_FULL code
  locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
  locking/refcount: Remove unused refcount_*_checked() variants
  locking/refcount: Ensure integer operands are treated as signed
  locking/refcount: Define constants for saturation and max refcount values
  futex: Prevent exit livelock
  futex: Provide distinct return value when owner is exiting
  futex: Add mutex around futex exit
  futex: Provide state handling for exec() as well
  futex: Sanitize exit state handling
  futex: Mark the begin of futex exit explicitly
  futex: Set task::futex_state to DEAD right after handling futex exit
  futex: Split futex_mm_release() for exit/exec
  exit/exec: Seperate mm_release()
  futex: Replace PF_EXITPIDONE with a state
  ...
2019-11-26 16:02:40 -08:00
Roman Gushchin 00d484f354 mm: memcg: switch to css_tryget() in get_mem_cgroup_from_mm()
We've encountered a rcu stall in get_mem_cgroup_from_mm():

  rcu: INFO: rcu_sched self-detected stall on CPU
  rcu: 33-....: (21000 ticks this GP) idle=6c6/1/0x4000000000000002 softirq=35441/35441 fqs=5017
  (t=21031 jiffies g=324821 q=95837) NMI backtrace for cpu 33
  <...>
  RIP: 0010:get_mem_cgroup_from_mm+0x2f/0x90
  <...>
   __memcg_kmem_charge+0x55/0x140
   __alloc_pages_nodemask+0x267/0x320
   pipe_write+0x1ad/0x400
   new_sync_write+0x127/0x1c0
   __kernel_write+0x4f/0xf0
   dump_emit+0x91/0xc0
   writenote+0xa0/0xc0
   elf_core_dump+0x11af/0x1430
   do_coredump+0xc65/0xee0
   get_signal+0x132/0x7c0
   do_signal+0x36/0x640
   exit_to_usermode_loop+0x61/0xd0
   do_syscall_64+0xd4/0x100
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

The problem is caused by an exiting task which is associated with an
offline memcg.  We're iterating over and over in the do {} while
(!css_tryget_online()) loop, but obviously the memcg won't become online
and the exiting task won't be migrated to a live memcg.

Let's fix it by switching from css_tryget_online() to css_tryget().

As css_tryget_online() cannot guarantee that the memcg won't go offline,
the check is usually useless, except some rare cases when for example it
determines if something should be presented to a user.

A similar problem is described by commit 18fa84a2db ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").

Johannes:

: The bug aside, it doesn't matter whether the cgroup is online for the
: callers.  It used to matter when offlining needed to evacuate all charges
: from the memcg, and so needed to prevent new ones from showing up, but we
: don't care now.

Link: http://lkml.kernel.org/r/20191106225131.3543616-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeeb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15 18:34:00 -08:00
Johannes Weiner 869712fd3d mm: memcontrol: fix network errors from failing __GFP_ATOMIC charges
While upgrading from 4.16 to 5.2, we noticed these allocation errors in
the log of the new kernel:

  SLUB: Unable to allocate memory on node -1, gfp=0xa20(GFP_ATOMIC)
    cache: tw_sock_TCPv6(960:helper-logs), object size: 232, buffer size: 240, default order: 1, min order: 0
    node 0: slabs: 5, objs: 170, free: 0

        slab_out_of_memory+1
        ___slab_alloc+969
        __slab_alloc+14
        kmem_cache_alloc+346
        inet_twsk_alloc+60
        tcp_time_wait+46
        tcp_fin+206
        tcp_data_queue+2034
        tcp_rcv_state_process+784
        tcp_v6_do_rcv+405
        __release_sock+118
        tcp_close+385
        inet_release+46
        __sock_release+55
        sock_close+17
        __fput+170
        task_work_run+127
        exit_to_usermode_loop+191
        do_syscall_64+212
        entry_SYSCALL_64_after_hwframe+68

accompanied by an increase in machines going completely radio silent
under memory pressure.

One thing that changed since 4.16 is e699e2c6a6 ("net, mm: account
sock objects to kmemcg"), which made these slab caches subject to cgroup
memory accounting and control.

The problem with that is that cgroups, unlike the page allocator, do not
maintain dedicated atomic reserves.  As a cgroup's usage hovers at its
limit, atomic allocations - such as done during network rx - can fail
consistently for extended periods of time.  The kernel is not able to
operate under these conditions.

We don't want to revert the culprit patch, because it indeed tracks a
potentially substantial amount of memory used by a cgroup.

We also don't want to implement dedicated atomic reserves for cgroups.
There is no point in keeping a fixed margin of unused bytes in the
cgroup's memory budget to accomodate a consumer that is impossible to
predict - we'd be wasting memory and get into configuration headaches,
not unlike what we have going with min_free_kbytes.  We do this for
physical mem because we have to, but cgroups are an accounting game.

Instead, account these privileged allocations to the cgroup, but let
them bypass the configured limit if they have to.  This way, we get the
benefits of accounting the consumed memory and have it exert pressure on
the rest of the cgroup, but like with the page allocator, we shift the
burden of reclaimining on behalf of atomic allocations onto the regular
allocations that can block.

Link: http://lkml.kernel.org/r/20191022233708.365764-1-hannes@cmpxchg.org
Fixes: e699e2c6a6 ("net, mm: account sock objects to kmemcg")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>	[4.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:47:50 -08:00
Roman Gushchin 221ec5c0a4 mm: slab: make page_cgroup_ino() to recognize non-compound slab pages properly
page_cgroup_ino() doesn't return a valid memcg pointer for non-compound
slab pages, because it depends on PgHead AND PgSlab flags to be set to
determine the memory cgroup from the kmem_cache.  It's correct for
compound pages, but not for generic small pages.  Those don't have PgHead
set, so it ends up returning zero.

Fix this by replacing the condition to PageSlab() && !PageTail().

Before this patch:
  [root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab
  0x0000000000000080	        38        0  _______S___________________________________	slab

After this patch:
  [root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab
  0x0000000000000080	       147        0  _______S___________________________________	slab

Also, hwpoison_filter_task() uses output of page_cgroup_ino() in order
to filter error injection events based on memcg.  So if
page_cgroup_ino() fails to return memcg pointer, we just fail to inject
memory error.  Considering that hwpoison filter is for testing, affected
users are limited and the impact should be marginal.

[n-horiguchi@ah.jp.nec.com: changelog additions]
Link: http://lkml.kernel.org/r/20191031012151.2722280-1-guro@fb.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:47:50 -08:00
Shakeel Butt 7961eee397 mm: memcontrol: fix NULL-ptr deref in percpu stats flush
__mem_cgroup_free() can be called on the failure path in
mem_cgroup_alloc().  However memcg_flush_percpu_vmstats() and
memcg_flush_percpu_vmevents() which are called from __mem_cgroup_free()
access the fields of memcg which can potentially be null if called from
failure path from mem_cgroup_alloc().  Indeed syzbot has reported the
following crash:

	kasan: CONFIG_KASAN_INLINE enabled
	kasan: GPF could be caused by NULL-ptr deref or user memory access
	general protection fault: 0000 [#1] PREEMPT SMP KASAN
	CPU: 0 PID: 30393 Comm: syz-executor.1 Not tainted 5.4.0-rc2+ #0
	Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
	RIP: 0010:memcg_flush_percpu_vmstats+0x4ae/0x930 mm/memcontrol.c:3436
	Code: 05 41 89 c0 41 0f b6 04 24 41 38 c7 7c 08 84 c0 0f 85 5d 03 00 00 44 3b 05 33 d5 12 08 0f 83 e2 00 00 00 4c 89 f0 48 c1 e8 03 <42> 80 3c 28 00 0f 85 91 03 00 00 48 8b 85 10 fe ff ff 48 8b b0 90
	RSP: 0018:ffff888095c27980 EFLAGS: 00010206
	RAX: 0000000000000012 RBX: ffff888095c27b28 RCX: ffffc90008192000
	RDX: 0000000000040000 RSI: ffffffff8340fae7 RDI: 0000000000000007
	RBP: ffff888095c27be0 R08: 0000000000000000 R09: ffffed1013f0da33
	R10: ffffed1013f0da32 R11: ffff88809f86d197 R12: fffffbfff138b760
	R13: dffffc0000000000 R14: 0000000000000090 R15: 0000000000000007
	FS:  00007f5027170700(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000
	CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
	CR2: 0000000000710158 CR3: 00000000a7b18000 CR4: 00000000001406f0
	DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
	DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
	Call Trace:
	__mem_cgroup_free+0x1a/0x190 mm/memcontrol.c:5021
	mem_cgroup_free mm/memcontrol.c:5033 [inline]
	mem_cgroup_css_alloc+0x3a1/0x1ae0 mm/memcontrol.c:5160
	css_create kernel/cgroup/cgroup.c:5156 [inline]
	cgroup_apply_control_enable+0x44d/0xc40 kernel/cgroup/cgroup.c:3119
	cgroup_mkdir+0x899/0x11b0 kernel/cgroup/cgroup.c:5401
	kernfs_iop_mkdir+0x14d/0x1d0 fs/kernfs/dir.c:1124
	vfs_mkdir+0x42e/0x670 fs/namei.c:3807
	do_mkdirat+0x234/0x2a0 fs/namei.c:3830
	__do_sys_mkdir fs/namei.c:3846 [inline]
	__se_sys_mkdir fs/namei.c:3844 [inline]
	__x64_sys_mkdir+0x5c/0x80 fs/namei.c:3844
	do_syscall_64+0xfa/0x760 arch/x86/entry/common.c:290
	entry_SYSCALL_64_after_hwframe+0x49/0xbe

Fixing this by moving the flush to mem_cgroup_free as there is no need
to flush anything if we see failure in mem_cgroup_alloc().

Link: http://lkml.kernel.org/r/20191018165231.249872-1-shakeelb@google.com
Fixes: bb65f89b7d ("mm: memcontrol: flush percpu vmevents before releasing memcg")
Fixes: c350a99ea2 ("mm: memcontrol: flush percpu vmstats before releasing memcg")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: syzbot+515d5bcfe179cdf049b2@syzkaller.appspotmail.com
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:28:58 -08:00
Konstantin Khlebnikov ae8af4388d mm/memcontrol: update lruvec counters in mem_cgroup_move_account
Mapped, dirty and writeback pages are also counted in per-lruvec stats.
These counters needs update when page is moved between cgroups.

Currently is nobody *consuming* the lruvec versions of these counters and
that there is no user-visible effect.

Link: http://lkml.kernel.org/r/157112699975.7360.1062614888388489788.stgit@buzz
Fixes: 00f3ca2c2d ("mm: memcontrol: per-lruvec stats infrastructure")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19 06:32:32 -04:00
Qian Cai 5facae4f35 locking/lockdep: Remove unused @nested argument from lock_release()
Since the following commit:

  b4adfe8e05 ("locking/lockdep: Remove unused argument in __lock_release")

@nested is no longer used in lock_release(), so remove it from all
lock_release() calls and friends.

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: airlied@linux.ie
Cc: akpm@linux-foundation.org
Cc: alexander.levin@microsoft.com
Cc: daniel@iogearbox.net
Cc: davem@davemloft.net
Cc: dri-devel@lists.freedesktop.org
Cc: duyuyang@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: hannes@cmpxchg.org
Cc: intel-gfx@lists.freedesktop.org
Cc: jack@suse.com
Cc: jlbec@evilplan.or
Cc: joonas.lahtinen@linux.intel.com
Cc: joseph.qi@linux.alibaba.com
Cc: jslaby@suse.com
Cc: juri.lelli@redhat.com
Cc: maarten.lankhorst@linux.intel.com
Cc: mark@fasheh.com
Cc: mhocko@kernel.org
Cc: mripard@kernel.org
Cc: ocfs2-devel@oss.oracle.com
Cc: rodrigo.vivi@intel.com
Cc: sean@poorly.run
Cc: st@kernel.org
Cc: tj@kernel.org
Cc: tytso@mit.edu
Cc: vdavydov.dev@gmail.com
Cc: vincent.guittot@linaro.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1568909380-32199-1-git-send-email-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-09 12:46:10 +02:00
Chris Down 9783aa9917 mm, memcg: proportional memory.{low,min} reclaim
cgroup v2 introduces two memory protection thresholds: memory.low
(best-effort) and memory.min (hard protection).  While they generally do
what they say on the tin, there is a limitation in their implementation
that makes them difficult to use effectively: that cliff behaviour often
manifests when they become eligible for reclaim.  This patch implements
more intuitive and usable behaviour, where we gradually mount more
reclaim pressure as cgroups further and further exceed their protection
thresholds.

This cliff edge behaviour happens because we only choose whether or not
to reclaim based on whether the memcg is within its protection limits
(see the use of mem_cgroup_protected in shrink_node), but we don't vary
our reclaim behaviour based on this information.  Imagine the following
timeline, with the numbers the lruvec size in this zone:

1. memory.low=1000000, memory.current=999999. 0 pages may be scanned.
2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned.
3. memory.low=1000000, memory.current=1000001. 1000001* pages may be
   scanned. (?!)

* Of course, we won't usually scan all available pages in the zone even
  without this patch because of scan control priority, over-reclaim
  protection, etc.  However, as shown by the tests at the end, these
  techniques don't sufficiently throttle such an extreme change in input,
  so cliff-like behaviour isn't really averted by their existence alone.

Here's an example of how this plays out in practice.  At Facebook, we are
trying to protect various workloads from "system" software, like
configuration management tools, metric collectors, etc (see this[0] case
study).  In order to find a suitable memory.low value, we start by
determining the expected memory range within which the workload will be
comfortable operating.  This isn't an exact science -- memory usage deemed
"comfortable" will vary over time due to user behaviour, differences in
composition of work, etc, etc.  As such we need to ballpark memory.low,
but doing this is currently problematic:

1. If we end up setting it too low for the workload, it won't have
   *any* effect (see discussion above).  The group will receive the full
   weight of reclaim and won't have any priority while competing with the
   less important system software, as if we had no memory.low configured
   at all.

2. Because of this behaviour, we end up erring on the side of setting
   it too high, such that the comfort range is reliably covered.  However,
   protected memory is completely unavailable to the rest of the system,
   so we might cause undue memory and IO pressure there when we *know* we
   have some elasticity in the workload.

3. Even if we get the value totally right, smack in the middle of the
   comfort zone, we get extreme jumps between no pressure and full
   pressure that cause unpredictable pressure spikes in the workload due
   to the current binary reclaim behaviour.

With this patch, we can set it to our ballpark estimation without too much
worry.  Any undesirable behaviour, such as too much or too little reclaim
pressure on the workload or system will be proportional to how far our
estimation is off.  This means we can set memory.low much more
conservatively and thus waste less resources *without* the risk of the
workload falling off a cliff if we overshoot.

As a more abstract technical description, this unintuitive behaviour
results in having to give high-priority workloads a large protection
buffer on top of their expected usage to function reliably, as otherwise
we have abrupt periods of dramatically increased memory pressure which
hamper performance.  Having to set these thresholds so high wastes
resources and generally works against the principle of work conservation.
In addition, having proportional memory reclaim behaviour has other
benefits.  Most notably, before this patch it's basically mandatory to set
memory.low to a higher than desirable value because otherwise as soon as
you exceed memory.low, all protection is lost, and all pages are eligible
to scan again.  By contrast, having a gradual ramp in reclaim pressure
means that you now still get some protection when thresholds are exceeded,
which means that one can now be more comfortable setting memory.low to
lower values without worrying that all protection will be lost.  This is
important because workingset size is really hard to know exactly,
especially with variable workloads, so at least getting *some* protection
if your workingset size grows larger than you expect increases user
confidence in setting memory.low without a huge buffer on top being
needed.

Thanks a lot to Johannes Weiner and Tejun Heo for their advice and
assistance in thinking about how to make this work better.

In testing these changes, I intended to verify that:

1. Changes in page scanning become gradual and proportional instead of
   binary.

   To test this, I experimented stepping further and further down
   memory.low protection on a workload that floats around 19G workingset
   when under memory.low protection, watching page scan rates for the
   workload cgroup:

   +------------+-----------------+--------------------+--------------+
   | memory.low | test (pgscan/s) | control (pgscan/s) | % of control |
   +------------+-----------------+--------------------+--------------+
   |        21G |               0 |                  0 | N/A          |
   |        17G |             867 |               3799 | 23%          |
   |        12G |            1203 |               3543 | 34%          |
   |         8G |            2534 |               3979 | 64%          |
   |         4G |            3980 |               4147 | 96%          |
   |          0 |            3799 |               3980 | 95%          |
   +------------+-----------------+--------------------+--------------+

   As you can see, the test kernel (with a kernel containing this
   patch) ramps up page scanning significantly more gradually than the
   control kernel (without this patch).

2. More gradual ramp up in reclaim aggression doesn't result in
   premature OOMs.

   To test this, I wrote a script that slowly increments the number of
   pages held by stress(1)'s --vm-keep mode until a production system
   entered severe overall memory contention.  This script runs in a highly
   protected slice taking up the majority of available system memory.
   Watching vmstat revealed that page scanning continued essentially
   nominally between test and control, without causing forward reclaim
   progress to become arrested.

[0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project

[akpm@linux-foundation.org: reflow block comments to fit in 80 cols]
[chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection]
  Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name
Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 15:47:20 -07:00
Michal Hocko e55d9d9bfb memcg, kmem: do not fail __GFP_NOFAIL charges
Thomas has noticed the following NULL ptr dereference when using cgroup
v1 kmem limit:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
PGD 0
P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 16923 Comm: gtk-update-icon Not tainted 4.19.51 #42
Hardware name: Gigabyte Technology Co., Ltd. Z97X-Gaming G1/Z97X-Gaming G1, BIOS F9 07/31/2015
RIP: 0010:create_empty_buffers+0x24/0x100
Code: cd 0f 1f 44 00 00 0f 1f 44 00 00 41 54 49 89 d4 ba 01 00 00 00 55 53 48 89 fb e8 97 fe ff ff 48 89 c5 48 89 c2 eb 03 48 89 ca <48> 8b 4a 08 4c 09 22 48 85 c9 75 f1 48 89 6a 08 48 8b 43 18 48 8d
RSP: 0018:ffff927ac1b37bf8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: fffff2d4429fd740 RCX: 0000000100097149
RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff9075a99fbe00
RBP: 0000000000000000 R08: fffff2d440949cc8 R09: 00000000000960c0
R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000
R13: ffff907601f18360 R14: 0000000000002000 R15: 0000000000001000
FS:  00007fb55b288bc0(0000) GS:ffff90761f8c0000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 000000007aebc002 CR4: 00000000001606e0
Call Trace:
 create_page_buffers+0x4d/0x60
 __block_write_begin_int+0x8e/0x5a0
 ? ext4_inode_attach_jinode.part.82+0xb0/0xb0
 ? jbd2__journal_start+0xd7/0x1f0
 ext4_da_write_begin+0x112/0x3d0
 generic_perform_write+0xf1/0x1b0
 ? file_update_time+0x70/0x140
 __generic_file_write_iter+0x141/0x1a0
 ext4_file_write_iter+0xef/0x3b0
 __vfs_write+0x17e/0x1e0
 vfs_write+0xa5/0x1a0
 ksys_write+0x57/0xd0
 do_syscall_64+0x55/0x160
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg
fails __GFP_NOFAIL charge when the kmem limit is reached.  This is a wrong
behavior because nofail allocations are not allowed to fail.  Normal
charge path simply forces the charge even if that means to cross the
limit.  Kmem accounting should be doing the same.

Link: http://lkml.kernel.org/r/20190906125608.32129-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com>
Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-25 17:51:39 -07:00
Yang Shi 87eaceb3fa mm: thp: make deferred split shrinker memcg aware
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration.  For example the below test would
run into premature OOM easily:

$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000

transhuge-stress comes from kernel selftest.

It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.

Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue.  The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg.  When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.

Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.

[yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai]
  Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:11 -07:00
Yang Shi 0a432dcbeb mm: shrinker: make shrinker not depend on memcg kmem
Currently shrinker is just allocated and can work when memcg kmem is
enabled.  But, THP deferred split shrinker is not slab shrinker, it
doesn't make too much sense to have such shrinker depend on memcg kmem.
It should be able to reclaim THP even though memcg kmem is disabled.

Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker.
When memcg kmem is disabled, just such shrinkers can be called in
shrinking memcg slab.

[yang.shi@linux.alibaba.com: add comment]
  Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:11 -07:00
Michal Hocko 0158115f70 memcg, kmem: deprecate kmem.limit_in_bytes
Cgroup v1 memcg controller has exposed a dedicated kmem limit to users
which turned out to be really a bad idea because there are paths which
cannot shrink the kernel memory usage enough to get below the limit (e.g.
because the accounted memory is not reclaimable).  There are cases when
the failure is even not allowed (e.g.  __GFP_NOFAIL).  This means that the
kmem limit is in excess to the hard limit without any way to shrink and
thus completely useless.  OOM killer cannot be invoked to handle the
situation because that would lead to a premature oom killing.

As a result many places might see ENOMEM returning from kmalloc and result
in unexpected errors.  E.g.  a global OOM killer when there is a lot of
free memory because ENOMEM is translated into VM_FAULT_OOM in #PF path and
therefore pagefault_out_of_memory would result in OOM killer.

Please note that the kernel memory is still accounted to the overall limit
along with the user memory so removing the kmem specific limit should
still allow to contain kernel memory consumption.  Unlike the kmem one,
though, it invokes memory reclaim and targeted memcg oom killing if
necessary.

Start the deprecation process by crying to the kernel log.  Let's see
whether there are relevant usecases and simply return to EINVAL in the
second stage if nobody complains in few releases.

[akpm@linux-foundation.org: tweak documentation text]
Link: http://lkml.kernel.org/r/20190911151612.GI4023@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:10 -07:00
Qian Cai 4d0e3230a5 mm/memcontrol.c: fix a -Wunused-function warning
mem_cgroup_id_get() was introduced in commit 73f576c04b ("mm:memcontrol:
fix cgroup creation failure after many small jobs").

Later, it no longer has any user since the commits,

1f47b61fb4 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup")
58fa2a5512 ("mm: memcontrol: add sanity checks for memcg->id.ref on get/put")

so safe to remove it.

Link: http://lkml.kernel.org/r/1568648453-5482-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:10 -07:00
Roman Gushchin e1a366be5c mm: memcontrol: switch to rcu protection in drain_all_stock()
Commit 72f0184c8a ("mm, memcg: remove hotplug locking from try_charge")
introduced css_tryget()/css_put() calls in drain_all_stock(), which are
supposed to protect the target memory cgroup from being released during
the mem_cgroup_is_descendant() call.

However, it's not completely safe.  In theory, memcg can go away between
reading stock->cached pointer and calling css_tryget().

This can happen if drain_all_stock() races with drain_local_stock()
performed on the remote cpu as a result of a work, scheduled by the
previous invocation of drain_all_stock().

The race is a bit theoretical and there are few chances to trigger it, but
the current code looks a bit confusing, so it makes sense to fix it
anyway.  The code looks like as if css_tryget() and css_put() are used to
protect stocks drainage.  It's not necessary because stocked pages are
holding references to the cached cgroup.  And it obviously won't work for
works, scheduled on other cpus.

So, let's read the stock->cached pointer and evaluate the memory cgroup
inside a rcu read section, and get rid of css_tryget()/css_put() calls.

Link: http://lkml.kernel.org/r/20190802192241.3253165-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:08 -07:00
Chris Down 0e4b01df86 mm, memcg: throttle allocators when failing reclaim over memory.high
We're trying to use memory.high to limit workloads, but have found that
containment can frequently fail completely and cause OOM situations
outside of the cgroup.  This happens especially with swap space -- either
when none is configured, or swap is full.  These failures often also don't
have enough warning to allow one to react, whether for a human or for a
daemon monitoring PSI.

Here is output from a simple program showing how long it takes in usec
(column 2) to allocate a megabyte of anonymous memory (column 1) when a
cgroup is already beyond its memory high setting, and no swap is
available:

    [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
    > --wait -t timeout 300 /root/mdf
    [...]
    95  1035
    96  1038
    97  1000
    98  1036
    99  1048
    100 1590
    101 1968
    102 1776
    103 1863
    104 1757
    105 1921
    106 1893
    107 1760
    108 1748
    109 1843
    110 1716
    111 1924
    112 1776
    113 1831
    114 1766
    115 1836
    116 1588
    117 1912
    118 1802
    119 1857
    120 1731
    [...]
    [System OOM in 2-3 seconds]

The delay does go up extremely marginally past the 100MB memory.high
threshold, as now we spend time scanning before returning to usermode, but
it's nowhere near enough to contain growth.  It also doesn't get worse the
more pages you have, since it only considers nr_pages.

The current situation goes against both the expectations of users of
memory.high, and our intentions as cgroup v2 developers.  In
cgroup-v2.txt, we claim that we will throttle and only under "extreme
conditions" will memory.high protection be breached.  Likewise, cgroup v2
users generally also expect that memory.high should throttle workloads as
they exceed their high threshold.  However, as seen above, this isn't
always how it works in practice -- even on banal setups like those with no
swap, or where swap has become exhausted, we can end up with memory.high
being breached and us having no weapons left in our arsenal to combat
runaway growth with, since reclaim is futile.

It's also hard for system monitoring software or users to tell how bad the
situation is, as "high" events for the memcg may in some cases be benign,
and in others be catastrophic.  The current status quo is that we fail
containment in a way that doesn't provide any advance warning that things
are about to go horribly wrong (for example, we are about to invoke the
kernel OOM killer).

This patch introduces explicit throttling when reclaim is failing to keep
memcg size contained at the memory.high setting.  It does so by applying
an exponential delay curve derived from the memcg's overage compared to
memory.high.  In the normal case where the memcg is either below or only
marginally over its memory.high setting, no throttling will be performed.

This composes well with system health monitoring and remediation, as these
allocator delays are factored into PSI's memory pressure calculations.
This both creates a mechanism system administrators or applications
consuming the PSI interface to trivially see that the memcg in question is
struggling and use that to make more reasonable decisions, and permits
them enough time to act.  Either of these can act with significantly more
nuance than that we can provide using the system OOM killer.

This is a similar idea to memory.oom_control in cgroup v1 which would put
the cgroup to sleep if the threshold was violated, but it's also
significantly improved as it results in visible memory pressure, and also
doesn't schedule indefinitely, which previously made tracing and other
introspection difficult (ie.  it's clamped at 2*HZ per allocation through
MEMCG_MAX_HIGH_DELAY_JIFFIES).

Contrast the previous results with a kernel with this patch:

    [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
    > --wait -t timeout 300 /root/mdf
    [...]
    95  1002
    96  1000
    97  1002
    98  1003
    99  1000
    100 1043
    101 84724
    102 330628
    103 610511
    104 1016265
    105 1503969
    106 2391692
    107 2872061
    108 3248003
    109 4791904
    110 5759832
    111 6912509
    112 8127818
    113 9472203
    114 12287622
    115 12480079
    116 14144008
    117 15808029
    118 16384500
    119 16383242
    120 16384979
    [...]

As you can see, in the normal case, memory allocation takes around 1000
usec.  However, as we exceed our memory.high, things start to increase
exponentially, but fairly leniently at first.  Our first megabyte over
memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then the
next is almost an entire second.  This gets worse until we reach our
eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte.
However, this is still making forward progress, so permits tracing or
further analysis with programs like GDB.

We use an exponential curve for our delay penalty for a few reasons:

1. We run mem_cgroup_handle_over_high to potentially do reclaim after
   we've already performed allocations, which means that temporarily
   going over memory.high by a small amount may be perfectly legitimate,
   even for compliant workloads. We don't want to unduly penalise such
   cases.
2. An exponential curve (as opposed to a static or linear delay) allows
   ramping up memory pressure stats more gradually, which can be useful
   to work out that you have set memory.high too low, without destroying
   application performance entirely.

This patch expands on earlier work by Johannes Weiner. Thanks!

[akpm@linux-foundation.org: fix max() warning]
[akpm@linux-foundation.org: fix __udivdi3 ref on 32-bit]
[akpm@linux-foundation.org: fix it even more]
[chris@chrisdown.name: fix 64-bit divide even more]
Link: http://lkml.kernel.org/r/20190723180700.GA29459@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:08 -07:00
Matthew Wilcox (Oracle) d8c6546b1a mm: introduce compound_nr()
Replace 1 << compound_order(page) with compound_nr(page).  Minor
improvements in readability.

Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:08 -07:00
Linus Torvalds 84da111de0 hmm related patches for 5.4
This is more cleanup and consolidation of the hmm APIs and the very
 strongly related mmu_notifier interfaces. Many places across the tree
 using these interfaces are touched in the process. Beyond that a cleanup
 to the page walker API and a few memremap related changes round out the
 series:
 
 - General improvement of hmm_range_fault() and related APIs, more
   documentation, bug fixes from testing, API simplification &
   consolidation, and unused API removal
 
 - Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and
   make them internal kconfig selects
 
 - Hoist a lot of code related to mmu notifier attachment out of drivers by
   using a refcount get/put attachment idiom and remove the convoluted
   mmu_notifier_unregister_no_release() and related APIs.
 
 - General API improvement for the migrate_vma API and revision of its only
   user in nouveau
 
 - Annotate mmu_notifiers with lockdep and sleeping region debugging
 
 Two series unrelated to HMM or mmu_notifiers came along due to
 dependencies:
 
 - Allow pagemap's memremap_pages family of APIs to work without providing
   a struct device
 
 - Make walk_page_range() and related use a constant structure for function
   pointers
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g
 mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA
 Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS
 6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g
 tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX
 nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v
 wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH
 yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh
 EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF
 Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a
 kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l
 olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0=
 =FRGg
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma

Pull hmm updates from Jason Gunthorpe:
 "This is more cleanup and consolidation of the hmm APIs and the very
  strongly related mmu_notifier interfaces. Many places across the tree
  using these interfaces are touched in the process. Beyond that a
  cleanup to the page walker API and a few memremap related changes
  round out the series:

   - General improvement of hmm_range_fault() and related APIs, more
     documentation, bug fixes from testing, API simplification &
     consolidation, and unused API removal

   - Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
     and make them internal kconfig selects

   - Hoist a lot of code related to mmu notifier attachment out of
     drivers by using a refcount get/put attachment idiom and remove the
     convoluted mmu_notifier_unregister_no_release() and related APIs.

   - General API improvement for the migrate_vma API and revision of its
     only user in nouveau

   - Annotate mmu_notifiers with lockdep and sleeping region debugging

  Two series unrelated to HMM or mmu_notifiers came along due to
  dependencies:

   - Allow pagemap's memremap_pages family of APIs to work without
     providing a struct device

   - Make walk_page_range() and related use a constant structure for
     function pointers"

* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
  libnvdimm: Enable unit test infrastructure compile checks
  mm, notifier: Catch sleeping/blocking for !blockable
  kernel.h: Add non_block_start/end()
  drm/radeon: guard against calling an unpaired radeon_mn_unregister()
  csky: add missing brackets in a macro for tlb.h
  pagewalk: use lockdep_assert_held for locking validation
  pagewalk: separate function pointers from iterator data
  mm: split out a new pagewalk.h header from mm.h
  mm/mmu_notifiers: annotate with might_sleep()
  mm/mmu_notifiers: prime lockdep
  mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
  mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
  mm/hmm: hmm_range_fault() infinite loop
  mm/hmm: hmm_range_fault() NULL pointer bug
  mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
  mm/mmu_notifiers: remove unregister_no_release
  RDMA/odp: remove ib_ucontext from ib_umem
  RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
  RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
  RDMA/mlx5: Use ib_umem_start instead of umem.address
  ...
2019-09-21 10:07:42 -07:00
Linus Torvalds 7ad67ca553 for-5.4/block-2019-09-16
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl1/no0QHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpmo9EACFXMbdNmEEUMyRSdOkVLlr7ZlTyQi1tLpB
 YESDPxdBfybzpi0qa8JSaysGIfvSkSjmSAqBqrWPmASOSOL6CK4bbA4fTYbgPplk
 XeHUdgGiG34oCQUn8Xil5reYaTm7I6LQWnWTpVa5fIhAyUYaGJL+987ykoGmpQmB
 Dvf3YSc+8H0RTp9PCMVd6UCGPkZbVlLImGad3PF5ULvTEaE4RCXC2aiAgh0p1l5A
 J2CkRZ+/mio3zN2O4YN7VdPGfr1Wo1iZ834xbIGLegv1miHXagFk7jwTcC7zIt5t
 oSnJnqIg3iCe7SpWt4Bkzw/zy/2UqaspifbCMgw8vychlViVRUHFO5h85Yboo7kQ
 OMLEQPcwjm6dTHv5h1iXF9LW1O7NoiYmmgvApU9uOo1HUrl1X7PZ3JEfUsVHxkOO
 T4D5igf0Krsl1eAbiwEUQzy7vFZ8PlRHqrHgK+fkyotzHu1BJR7OQkYygEfGFOB/
 EfMxplGDpmibYGuWCwDX2bPAmLV3SPUQENReHrfPJRDt5TD1UkFpVGv/PLLhbr0p
 cLYI78DKpDSigBpVMmwq5nTYpnex33eyDTTA8C0sakcsdzdmU5qv30y3wm4nTiep
 f6gZo6IMXwRg/rCgVVrd9SKQAr/8wEzVlsDW3qyi2pVT8sHIgm0tFv7paihXGdDV
 xsKgmTrQQQ==
 =Qt+h
 -----END PGP SIGNATURE-----

Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - Two NVMe pull requests:
     - ana log parse fix from Anton
     - nvme quirks support for Apple devices from Ben
     - fix missing bio completion tracing for multipath stack devices
       from Hannes and Mikhail
     - IP TOS settings for nvme rdma and tcp transports from Israel
     - rq_dma_dir cleanups from Israel
     - tracing for Get LBA Status command from Minwoo
     - Some nvme-tcp cleanups from Minwoo, Potnuri and Myself
     - Some consolidation between the fabrics transports for handling
       the CAP register
     - reset race with ns scanning fix for fabrics (move fabrics
       commands to a dedicated request queue with a different lifetime
       from the admin request queue)."
     - controller reset and namespace scan races fixes
     - nvme discovery log change uevent support
     - naming improvements from Keith
     - multiple discovery controllers reject fix from James
     - some regular cleanups from various people

 - Series fixing (and re-fixing) null_blk debug printing and nr_devices
   checks (André)

 - A few pull requests from Song, with fixes from Andy, Guoqing,
   Guilherme, Neil, Nigel, and Yufen.

 - REQ_OP_ZONE_RESET_ALL support (Chaitanya)

 - Bio merge handling unification (Christoph)

 - Pick default elevator correctly for devices with special needs
   (Damien)

 - Block stats fixes (Hou)

 - Timeout and support devices nbd fixes (Mike)

 - Series fixing races around elevator switching and device add/remove
   (Ming)

 - sed-opal cleanups (Revanth)

 - Per device weight support for BFQ (Fam)

 - Support for blk-iocost, a new model that can properly account cost of
   IO workloads. (Tejun)

 - blk-cgroup writeback fixes (Tejun)

 - paride queue init fixes (zhengbin)

 - blk_set_runtime_active() cleanup (Stanley)

 - Block segment mapping optimizations (Bart)

 - lightnvm fixes (Hans/Minwoo/YueHaibing)

 - Various little fixes and cleanups

* tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits)
  null_blk: format pr_* logs with pr_fmt
  null_blk: match the type of parameter nr_devices
  null_blk: do not fail the module load with zero devices
  block: also check RQF_STATS in blk_mq_need_time_stamp()
  block: make rq sector size accessible for block stats
  bfq: Fix bfq linkage error
  raid5: use bio_end_sector in r5_next_bio
  raid5: remove STRIPE_OPS_REQ_PENDING
  md: add feature flag MD_FEATURE_RAID0_LAYOUT
  md/raid0: avoid RAID0 data corruption due to layout confusion.
  raid5: don't set STRIPE_HANDLE to stripe which is in batch list
  raid5: don't increment read_errors on EILSEQ return
  nvmet: fix a wrong error status returned in error log page
  nvme: send discovery log page change events to userspace
  nvme: add uevent variables for controller devices
  nvme: enable aen regardless of the presence of I/O queues
  nvme-fabrics: allow discovery subsystems accept a kato
  nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery()
  nvme: Remove redundant assignment of cq vector
  nvme: Assign subsys instance from first ctrl
  ...
2019-09-17 16:57:47 -07:00
Christoph Hellwig 7b86ac3371 pagewalk: separate function pointers from iterator data
The mm_walk structure currently mixed data and code.  Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.

Based on patch from Linus Torvalds.

Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-09-07 04:28:04 -03:00
Christoph Hellwig a520110e4a mm: split out a new pagewalk.h header from mm.h
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.

Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-09-07 04:28:04 -03:00
Shakeel Butt 6c1c280805 mm: memcontrol: fix percpu vmstats and vmevents flush
Instead of using raw_cpu_read() use per_cpu() to read the actual data of
the corresponding cpu otherwise we will be reading the data of the
current cpu for the number of online CPUs.

Link: http://lkml.kernel.org/r/20190829203110.129263-1-shakeelb@google.com
Fixes: bb65f89b7d ("mm: memcontrol: flush percpu vmevents before releasing memcg")
Fixes: c350a99ea2 ("mm: memcontrol: flush percpu vmstats before releasing memcg")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-30 18:00:50 -07:00
Roman Gushchin b4c46484dc mm, memcg: partially revert "mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones"
Commit 766a4c19d8 ("mm/memcontrol.c: keep local VM counters in sync
with the hierarchical ones") effectively decreased the precision of
per-memcg vmstats_local and per-memcg-per-node lruvec percpu counters.

That's good for displaying in memory.stat, but brings a serious
regression into the reclaim process.

One issue I've discovered and debugged is the following:
lruvec_lru_size() can return 0 instead of the actual number of pages in
the lru list, preventing the kernel to reclaim last remaining pages.
Result is yet another dying memory cgroups flooding.  The opposite is
also happening: scanning an empty lru list is the waste of cpu time.

Also, inactive_list_is_low() can return incorrect values, preventing the
active lru from being scanned and freed.  It can fail both because the
size of active and inactive lists are inaccurate, and because the number
of workingset refaults isn't precise.  In other words, the result is
pretty random.

I'm not sure, if using the approximate number of slab pages in
count_shadow_number() is acceptable, but issues described above are
enough to partially revert the patch.

Let's keep per-memcg vmstat_local batched (they are only used for
displaying stats to the userspace), but keep lruvec stats precise.  This
change fixes the dead memcg flooding on my setup.

Link: http://lkml.kernel.org/r/20190817004726.2530670-1-guro@fb.com
Fixes: 766a4c19d8 ("mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-30 18:00:50 -07:00
Roman Gushchin bee07b33db mm: memcontrol: flush percpu slab vmstats on kmem offlining
I've noticed that the "slab" value in memory.stat is sometimes 0, even
if some children memory cgroups have a non-zero "slab" value.  The
following investigation showed that this is the result of the kmem_cache
reparenting in combination with the per-cpu batching of slab vmstats.

At the offlining some vmstat value may leave in the percpu cache, not
being propagated upwards by the cgroup hierarchy.  It means that stats
on ancestor levels are lower than actual.  Later when slab pages are
released, the precise number of pages is substracted on the parent
level, making the value negative.  We don't show negative values, 0 is
printed instead.

To fix this issue, let's flush percpu slab memcg and lruvec stats on
memcg offlining.  This guarantees that numbers on all ancestor levels
are accurate and match the actual number of outstanding slab pages.

Link: http://lkml.kernel.org/r/20190819202338.363363-3-guro@fb.com
Fixes: fb2f2b0adb ("mm: memcg/slab: reparent memcg kmem_caches on cgroup removal")
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-30 18:00:50 -07:00
Tejun Heo 3a8e9ac89e writeback: add tracepoints for cgroup foreign writebacks
cgroup foreign inode handling has quite a bit of heuristics and
internal states which sometimes makes it difficult to understand
what's going on.  Add tracepoints to improve visibility.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-30 07:42:49 -06:00
Tejun Heo 97b27821b4 writeback, memcg: Implement foreign dirty flushing
There's an inherent mismatch between memcg and writeback.  The former
trackes ownership per-page while the latter per-inode.  This was a
deliberate design decision because honoring per-page ownership in the
writeback path is complicated, may lead to higher CPU and IO overheads
and deemed unnecessary given that write-sharing an inode across
different cgroups isn't a common use-case.

Combined with inode majority-writer ownership switching, this works
well enough in most cases but there are some pathological cases.  For
example, let's say there are two cgroups A and B which keep writing to
different but confined parts of the same inode.  B owns the inode and
A's memory is limited far below B's.  A's dirty ratio can rise enough
to trigger balance_dirty_pages() sleeps but B's can be low enough to
avoid triggering background writeback.  A will be slowed down without
a way to make writeback of the dirty pages happen.

This patch implements foreign dirty recording and foreign mechanism so
that when a memcg encounters a condition as above it can trigger
flushes on bdi_writebacks which can clean its pages.  Please see the
comment on top of mem_cgroup_track_foreign_dirty_slowpath() for
details.

A reproducer follows.

write-range.c::

  #include <stdio.h>
  #include <stdlib.h>
  #include <unistd.h>
  #include <fcntl.h>
  #include <sys/types.h>

  static const char *usage = "write-range FILE START SIZE\n";

  int main(int argc, char **argv)
  {
	  int fd;
	  unsigned long start, size, end, pos;
	  char *endp;
	  char buf[4096];

	  if (argc < 4) {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  fd = open(argv[1], O_WRONLY);
	  if (fd < 0) {
		  perror("open");
		  return 1;
	  }

	  start = strtoul(argv[2], &endp, 0);
	  if (*endp != '\0') {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  size = strtoul(argv[3], &endp, 0);
	  if (*endp != '\0') {
		  fprintf(stderr, usage);
		  return 1;
	  }

	  end = start + size;

	  while (1) {
		  for (pos = start; pos < end; ) {
			  long bread, bwritten = 0;

			  if (lseek(fd, pos, SEEK_SET) < 0) {
				  perror("lseek");
				  return 1;
			  }

			  bread = read(0, buf, sizeof(buf) < end - pos ?
					       sizeof(buf) : end - pos);
			  if (bread < 0) {
				  perror("read");
				  return 1;
			  }
			  if (bread == 0)
				  return 0;

			  while (bwritten < bread) {
				  long this;

				  this = write(fd, buf + bwritten,
					       bread - bwritten);
				  if (this < 0) {
					  perror("write");
					  return 1;
				  }

				  bwritten += this;
				  pos += bwritten;
			  }
		  }
	  }
  }

repro.sh::

  #!/bin/bash

  set -e
  set -x

  sysctl -w vm.dirty_expire_centisecs=300000
  sysctl -w vm.dirty_writeback_centisecs=300000
  sysctl -w vm.dirtytime_expire_seconds=300000
  echo 3 > /proc/sys/vm/drop_caches

  TEST=/sys/fs/cgroup/test
  A=$TEST/A
  B=$TEST/B

  mkdir -p $A $B
  echo "+memory +io" > $TEST/cgroup.subtree_control
  echo $((1<<30)) > $A/memory.high
  echo $((32<<30)) > $B/memory.high

  rm -f testfile
  touch testfile
  fallocate -l 4G testfile

  echo "Starting B"

  (echo $BASHPID > $B/cgroup.procs
   pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) &

  echo "Waiting 10s to ensure B claims the testfile inode"
  sleep 5
  sync
  sleep 5
  sync
  echo "Starting A"

  (echo $BASHPID > $A/cgroup.procs
   pv < /dev/urandom | ./write-range testfile 0 $((2<<30)))

v2: Added comments explaining why the specific intervals are being used.

v3: Use 0 @nr when calling cgroup_writeback_by_id() to use best-effort
    flushing while avoding possible livelocks.

v4: Use get_jiffies_64() and time_before/after64() instead of raw
    jiffies_64 and arthimetic comparisons as suggested by Jan.

Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-08-27 09:22:38 -06:00
Roman Gushchin bb65f89b7d mm: memcontrol: flush percpu vmevents before releasing memcg
Similar to vmstats, percpu caching of local vmevents leads to an
accumulation of errors on non-leaf levels.  This happens because some
leftovers may remain in percpu caches, so that they are never propagated
up by the cgroup tree and just disappear into nonexistence with on
releasing of the memory cgroup.

To fix this issue let's accumulate and propagate percpu vmevents values
before releasing the memory cgroup similar to what we're doing with
vmstats.

Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate
only over online cpus.

Link: http://lkml.kernel.org/r/20190819202338.363363-4-guro@fb.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-24 19:48:42 -07:00
Roman Gushchin c350a99ea2 mm: memcontrol: flush percpu vmstats before releasing memcg
Percpu caching of local vmstats with the conditional propagation by the
cgroup tree leads to an accumulation of errors on non-leaf levels.

Let's imagine two nested memory cgroups A and A/B.  Say, a process
belonging to A/B allocates 100 pagecache pages on the CPU 0.  The percpu
cache will spill 3 times, so that 32*3=96 pages will be accounted to A/B
and A atomic vmstat counters, 4 pages will remain in the percpu cache.

Imagine A/B is nearby memory.max, so that every following allocation
triggers a direct reclaim on the local CPU.  Say, each such attempt will
free 16 pages on a new cpu.  That means every percpu cache will have -16
pages, except the first one, which will have 4 - 16 = -12.  A/B and A
atomic counters will not be touched at all.

Now a user removes A/B.  All percpu caches are freed and corresponding
vmstat numbers are forgotten.  A has 96 pages more than expected.

As memory cgroups are created and destroyed, errors do accumulate.  Even
1-2 pages differences can accumulate into large numbers.

To fix this issue let's accumulate and propagate percpu vmstat values
before releasing the memory cgroup.  At this point these numbers are
stable and cannot be changed.

Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate
only over online cpus.

Link: http://lkml.kernel.org/r/20190819202338.363363-2-guro@fb.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-24 19:48:42 -07:00
Roman Gushchin ec9f02384f mm: workingset: fix vmstat counters for shadow nodes
Memcg counters for shadow nodes are broken because the memcg pointer is
obtained in a wrong way. The following approach is used:
        virt_to_page(xa_node)->mem_cgroup

Since commit 4d96ba3530 ("mm: memcg/slab: stop setting
page->mem_cgroup pointer for slab pages") page->mem_cgroup pointer isn't
set for slab pages, so memcg_from_slab_page() should be used instead.

Also I doubt that it ever worked correctly: virt_to_head_page() should
be used instead of virt_to_page().  Otherwise objects residing on tail
pages are not accounted, because only the head page contains a valid
mem_cgroup pointer.  That was a case since the introduction of these
counters by the commit 68d48e6a2d ("mm: workingset: add vmstat counter
for shadow nodes").

Link: http://lkml.kernel.org/r/20190801233532.138743-1-guro@fb.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Miles Chen 54a83d6bcb mm/memcontrol.c: fix use after free in mem_cgroup_iter()
This patch is sent to report an use after free in mem_cgroup_iter()
after merging commit be2657752e ("mm: memcg: fix use after free in
mem_cgroup_iter()").

I work with android kernel tree (4.9 & 4.14), and commit be2657752e
("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged
to the trees.  However, I can still observe use after free issues
addressed in the commit be2657752e.  (on low-end devices, a few times
this month)

backtrace:
        css_tryget <- crash here
        mem_cgroup_iter
        shrink_node
        shrink_zones
        do_try_to_free_pages
        try_to_free_pages
        __perform_reclaim
        __alloc_pages_direct_reclaim
        __alloc_pages_slowpath
        __alloc_pages_nodemask

To debug, I poisoned mem_cgroup before freeing it:

  static void __mem_cgroup_free(struct mem_cgroup *memcg)
        for_each_node(node)
        free_mem_cgroup_per_node_info(memcg, node);
        free_percpu(memcg->stat);
  +     /* poison memcg before freeing it */
  +     memset(memcg, 0x78, sizeof(struct mem_cgroup));
        kfree(memcg);
  }

The coredump shows the position=0xdbbc2a00 is freed.

  (gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
  $13 = {position = 0xdbbc2a00, generation = 0x2efd}

  0xdbbc2a00:     0xdbbc2e00      0x00000000      0xdbbc2800      0x00000100
  0xdbbc2a10:     0x00000200      0x78787878      0x00026218      0x00000000
  0xdbbc2a20:     0xdcad6000      0x00000001      0x78787800      0x00000000
  0xdbbc2a30:     0x78780000      0x00000000      0x0068fb84      0x78787878
  0xdbbc2a40:     0x78787878      0x78787878      0x78787878      0xe3fa5cc0
  0xdbbc2a50:     0x78787878      0x78787878      0x00000000      0x00000000
  0xdbbc2a60:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a70:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a80:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a90:     0x00000001      0x00000000      0x00000000      0x00100000
  0xdbbc2aa0:     0x00000001      0xdbbc2ac8      0x00000000      0x00000000
  0xdbbc2ab0:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2ac0:     0x00000000      0x00000000      0xe5b02618      0x00001000
  0xdbbc2ad0:     0x00000000      0x78787878      0x78787878      0x78787878
  0xdbbc2ae0:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2af0:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b00:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b10:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b20:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b30:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b40:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b50:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b60:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b70:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b80:     0x78787878      0x78787878      0x00000000      0x78787878
  0xdbbc2b90:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2ba0:     0x78787878      0x78787878      0x78787878      0x78787878

In the reclaim path, try_to_free_pages() does not setup
sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
shrink_node().

In mem_cgroup_iter(), root is set to root_mem_cgroup because
sc->target_mem_cgroup is NULL.  It is possible to assign a memcg to
root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter().

        try_to_free_pages
        	struct scan_control sc = {...}, target_mem_cgroup is 0x0;
        do_try_to_free_pages
        shrink_zones
        shrink_node
        	 mem_cgroup *root = sc->target_mem_cgroup;
        	 memcg = mem_cgroup_iter(root, NULL, &reclaim);
        mem_cgroup_iter()
        	if (!root)
        		root = root_mem_cgroup;
        	...

        	css = css_next_descendant_pre(css, &root->css);
        	memcg = mem_cgroup_from_css(css);
        	cmpxchg(&iter->position, pos, memcg);

My device uses memcg non-hierarchical mode.  When we release a memcg:
invalidate_reclaim_iterators() reaches only dead_memcg and its parents.
If non-hierarchical mode is used, invalidate_reclaim_iterators() never
reaches root_mem_cgroup.

  static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  {
        struct mem_cgroup *memcg = dead_memcg;

        for (; memcg; memcg = parent_mem_cgroup(memcg)
        ...
  }

So the use after free scenario looks like:

  CPU1						CPU2

  try_to_free_pages
  do_try_to_free_pages
  shrink_zones
  shrink_node
  mem_cgroup_iter()
      if (!root)
      	root = root_mem_cgroup;
      ...
      css = css_next_descendant_pre(css, &root->css);
      memcg = mem_cgroup_from_css(css);
      cmpxchg(&iter->position, pos, memcg);

        				invalidate_reclaim_iterators(memcg);
        				...
        				__mem_cgroup_free()
        					kfree(memcg);

  try_to_free_pages
  do_try_to_free_pages
  shrink_zones
  shrink_node
  mem_cgroup_iter()
      if (!root)
      	root = root_mem_cgroup;
      ...
      mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
      iter = &mz->iter[reclaim->priority];
      pos = READ_ONCE(iter->position);
      css_tryget(&pos->css) <- use after free

To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter
in invalidate_reclaim_iterators().

[cai@lca.pw: fix -Wparentheses compilation warning]
  Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com
Fixes: 5ac8fb31ad ("mm: memcontrol: convert reclaim iterator to simple css refcounting")
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Yafang Shao 766a4c19d8 mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones
After commit 815744d751 ("mm: memcontrol: don't batch updates of local
VM stats and events"), the local VM counter are not in sync with the
hierarchical ones.

Below is one example in a leaf memcg on my server (with 8 CPUs):

	inactive_file 3567570944
	total_inactive_file 3568029696

We find that the deviation is very great because the 'val' in
__mod_memcg_state() is in pages while the effective value in
memcg_stat_show() is in bytes.

So the maximum of this deviation between local VM stats and total VM
stats can be (32 * number_of_cpu * PAGE_SIZE), that may be an
unacceptably great value.

We should keep the local VM stats in sync with the total stats.  In
order to keep this behavior the same across counters, this patch updates
__mod_lruvec_state() and __count_memcg_events() as well.

Link: http://lkml.kernel.org/r/1562851979-10610-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-16 19:23:21 -07:00
Linus Torvalds fec88ab0af HMM patches for 5.3
Improvements and bug fixes for the hmm interface in the kernel:
 
 - Improve clarity, locking and APIs related to the 'hmm mirror' feature
   merged last cycle. In linux-next we now see AMDGPU and nouveau to be
   using this API.
 
 - Remove old or transitional hmm APIs. These are hold overs from the past
   with no users, or APIs that existed only to manage cross tree conflicts.
   There are still a few more of these cleanups that didn't make the merge
   window cut off.
 
 - Improve some core mm APIs:
   * export alloc_pages_vma() for driver use
   * refactor into devm_request_free_mem_region() to manage
     DEVICE_PRIVATE resource reservations
   * refactor duplicative driver code into the core dev_pagemap
     struct
 
 - Remove hmm wrappers of improved core mm APIs, instead have drivers use
   the simplified API directly
 
 - Remove DEVICE_PUBLIC
 
 - Simplify the kconfig flow for the hmm users and core code
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl0k1zkACgkQOG33FX4g
 mxrO+w//QF/yI/9Hh30RWEBq8W107cODkDlaT0Z/7cVEXfGetZzIUpqzxnJofRfQ
 xTw1XmYkc9WpJe/mTTuFZFewNQwWuMM6X0Xi25fV438/Y64EclevlcJTeD49TIH1
 CIMsz8bX7CnCEq5sz+UypLg9LPnaD9L/JLyuSbyjqjms/o+yzqa7ji7p/DSINuhZ
 Qva9OZL1ZSEDJfNGi8uGpYBqryHoBAonIL12R9sCF5pbJEnHfWrH7C06q7AWOAjQ
 4vjN/p3F4L9l/v2IQ26Kn/S0AhmN7n3GT//0K66e2gJPfXa8fxRKGuFn/Kd79EGL
 YPASn5iu3cM23up1XkbMNtzacL8yiIeTOcMdqw26OaOClojy/9OJduv5AChe6qL/
 VUQIAn1zvPsJTyC5U7mhmkrGuTpP6ivHpxtcaUp+Ovvi1cyK40nLCmSNvLnbN5ES
 bxbb0SjE4uupDG5qU6Yct/hFp6uVMSxMqXZOb9Xy8ZBkbMsJyVOLj71G1/rVIfPU
 hO1AChX5CRG1eJoMo6oBIpiwmSvcOaPp3dqIOQZvwMOqrO869LR8qv7RXyh/g9gi
 FAEKnwLl4GK3YtEO4Kt/1YI5DXYjSFUbfgAs0SPsRKS6hK2+RgRk2M/B/5dAX0/d
 lgOf9WPODPwiSXBYLtJB8qHVDX0DIY8faOyTx6BYIKClUtgbBI8=
 =wKvp
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma

Pull HMM updates from Jason Gunthorpe:
 "Improvements and bug fixes for the hmm interface in the kernel:

   - Improve clarity, locking and APIs related to the 'hmm mirror'
     feature merged last cycle. In linux-next we now see AMDGPU and
     nouveau to be using this API.

   - Remove old or transitional hmm APIs. These are hold overs from the
     past with no users, or APIs that existed only to manage cross tree
     conflicts. There are still a few more of these cleanups that didn't
     make the merge window cut off.

   - Improve some core mm APIs:
       - export alloc_pages_vma() for driver use
       - refactor into devm_request_free_mem_region() to manage
         DEVICE_PRIVATE resource reservations
       - refactor duplicative driver code into the core dev_pagemap
         struct

   - Remove hmm wrappers of improved core mm APIs, instead have drivers
     use the simplified API directly

   - Remove DEVICE_PUBLIC

   - Simplify the kconfig flow for the hmm users and core code"

* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits)
  mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR
  mm: remove the HMM config option
  mm: sort out the DEVICE_PRIVATE Kconfig mess
  mm: simplify ZONE_DEVICE page private data
  mm: remove hmm_devmem_add
  mm: remove hmm_vma_alloc_locked_page
  nouveau: use devm_memremap_pages directly
  nouveau: use alloc_page_vma directly
  PCI/P2PDMA: use the dev_pagemap internal refcount
  device-dax: use the dev_pagemap internal refcount
  memremap: provide an optional internal refcount in struct dev_pagemap
  memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag
  memremap: remove the data field in struct dev_pagemap
  memremap: add a migrate_to_ram method to struct dev_pagemap_ops
  memremap: lift the devmap_enable manipulation into devm_memremap_pages
  memremap: pass a struct dev_pagemap to ->kill and ->cleanup
  memremap: move dev_pagemap callbacks into a separate structure
  memremap: validate the pagemap type passed to devm_memremap_pages
  mm: factor out a devm_request_free_mem_region helper
  mm: export alloc_pages_vma
  ...
2019-07-14 19:42:11 -07:00
Shakeel Butt 6ba749ee78 mm, oom: remove redundant task_in_mem_cgroup() check
oom_unkillable_task() can be called from three different contexts i.e.
global OOM, memcg OOM and oom_score procfs interface.  At the moment
oom_unkillable_task() does a task_in_mem_cgroup() check on the given
process.  Since there is no reason to perform task_in_mem_cgroup()
check for global OOM and oom_score procfs interface, those contexts
provide NULL memcg and skips the task_in_mem_cgroup() check.  However
for memcg OOM context, the oom_unkillable_task() is always called from
mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes
redundant and effectively dead code.  So, just remove the
task_in_mem_cgroup() check altogether.

Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:47 -07:00
Tetsuo Handa f168a9a54e mm: memcontrol: use CSS_TASK_ITER_PROCS at mem_cgroup_scan_tasks()
Since commit c03cd7738a ("cgroup: Include dying leaders with live
threads in PROCS iterations") corrected how CSS_TASK_ITER_PROCS works,
mem_cgroup_scan_tasks() can use CSS_TASK_ITER_PROCS in order to check
only one thread from each thread group.

[penguin-kernel@I-love.SAKURA.ne.jp: remove thread group leader check in oom_evaluate_task()]
  Link: http://lkml.kernel.org/r/1560853257-14934-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Link: http://lkml.kernel.org/r/c763afc8-f0ae-756a-56a7-395f625b95fc@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:47 -07:00
Roman Gushchin fb2f2b0adb mm: memcg/slab: reparent memcg kmem_caches on cgroup removal
Let's reparent non-root kmem_caches on memcg offlining.  This allows us to
release the memory cgroup without waiting for the last outstanding kernel
object (e.g.  dentry used by another application).

Since the parent cgroup is already charged, everything we need to do is to
splice the list of kmem_caches to the parent's kmem_caches list, swap the
memcg pointer, drop the css refcounter for each kmem_cache and adjust the
parent's css refcounter.

Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer
anymore.  It's safe to read it under rcu_read_lock(), cgroup_mutex held,
or any other way that protects the memory cgroup from being released.

We can race with the slab allocation and deallocation paths.  It's not a
big problem: parent's charge and slab global stats are always correct, and
we don't care anymore about the child usage and global stats.  The child
cgroup is already offline, so we don't use or show it anywhere.

Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't
used anywhere except count_shadow_nodes().  But even there it won't break
anything: after reparenting "nodes" will be 0 on child level (because
we're already reparenting shrinker lists), and on parent level page stats
always were 0, and this patch won't change anything.

[guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup]
  Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com
Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin 4d96ba3530 mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages
Every slab page charged to a non-root memory cgroup has a pointer to the
memory cgroup and holds a reference to it, which protects a non-empty
memory cgroup from being released.  At the same time the page has a
pointer to the corresponding kmem_cache, and also hold a reference to the
kmem_cache.  And kmem_cache by itself holds a reference to the cgroup.

So there is clearly some redundancy, which allows to stop setting the
page->mem_cgroup pointer and rely on getting memcg pointer indirectly via
kmem_cache.  Further it will allow to change this pointer easier, without
a need to go over all charged pages.

So let's stop setting page->mem_cgroup pointer for slab pages, and stop
using the css refcounter directly for protecting the memory cgroup from
going away.  Instead rely on kmem_cache as an intermediate object.

Make sure that vmstats and shrinker lists are working as previously, as
well as /proc/kpagecgroup interface.

Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin f0a3a24b53 mm: memcg/slab: rework non-root kmem_cache lifecycle management
Currently each charged slab page holds a reference to the cgroup to which
it's charged.  Kmem_caches are held by the memcg and are released all
together with the memory cgroup.  It means that none of kmem_caches are
released unless at least one reference to the memcg exists, which is very
far from optimal.

Let's rework it in a way that allows releasing individual kmem_caches as
soon as the cgroup is offline, the kmem_cache is empty and there are no
pending allocations.

To make it possible, let's introduce a new percpu refcounter for non-root
kmem caches.  The counter is initialized to the percpu mode, and is
switched to the atomic mode during kmem_cache deactivation.  The counter
is bumped for every charged page and also for every running allocation.
So the kmem_cache can't be released unless all allocations complete.

To shutdown non-active empty kmem_caches, let's reuse the work queue,
previously used for the kmem_cache deactivation.  Once the reference
counter reaches 0, let's schedule an asynchronous kmem_cache release.

* I used the following simple approach to test the performance
(stolen from another patchset by T. Harding):

    time find / -name fname-no-exist
    echo 2 > /proc/sys/vm/drop_caches
    repeat 10 times

Results:

        orig		patched

real	0m1.455s	real	0m1.355s
user	0m0.206s	user	0m0.219s
sys	0m0.855s	sys	0m0.807s

real	0m1.487s	real	0m1.699s
user	0m0.221s	user	0m0.256s
sys	0m0.806s	sys	0m0.948s

real	0m1.515s	real	0m1.505s
user	0m0.183s	user	0m0.215s
sys	0m0.876s	sys	0m0.858s

real	0m1.291s	real	0m1.380s
user	0m0.193s	user	0m0.198s
sys	0m0.843s	sys	0m0.786s

real	0m1.364s	real	0m1.374s
user	0m0.180s	user	0m0.182s
sys	0m0.868s	sys	0m0.806s

real	0m1.352s	real	0m1.312s
user	0m0.201s	user	0m0.212s
sys	0m0.820s	sys	0m0.761s

real	0m1.302s	real	0m1.349s
user	0m0.205s	user	0m0.203s
sys	0m0.803s	sys	0m0.792s

real	0m1.334s	real	0m1.301s
user	0m0.194s	user	0m0.201s
sys	0m0.806s	sys	0m0.779s

real	0m1.426s	real	0m1.434s
user	0m0.216s	user	0m0.181s
sys	0m0.824s	sys	0m0.864s

real	0m1.350s	real	0m1.295s
user	0m0.200s	user	0m0.190s
sys	0m0.842s	sys	0m0.811s

So it looks like the difference is not noticeable in this test.

[cai@lca.pw: fix an use-after-free in kmemcg_workfn()]
  Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin 49a18eae2e mm: memcg/slab: introduce __memcg_kmem_uncharge_memcg()
Let's separate the page counter modification code out of
__memcg_kmem_uncharge() in a way similar to what
__memcg_kmem_charge() and __memcg_kmem_charge_memcg() work.

This will allow to reuse this code later using a new
memcg_kmem_uncharge_memcg() wrapper, which calls
__memcg_kmem_uncharge_memcg() if memcg_kmem_enabled()
check is passed.

Link: http://lkml.kernel.org/r/20190611231813.3148843-5-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Johannes Weiner c8713d0b23 mm: memcontrol: dump memory.stat during cgroup OOM
The current cgroup OOM memory info dump doesn't include all the memory
we are tracking, nor does it give insight into what the VM tried to do
leading up to the OOM. All that useful info is in memory.stat.

Furthermore, the recursive printing for every child cgroup can
generate absurd amounts of data on the console for larger cgroup
trees, and it's not like we provide a per-cgroup breakdown during
global OOM kills.

When an OOM kill is triggered, print one set of recursive memory.stat
items at the level whose limit triggered the OOM condition.

Example output:

    stress invoked oom-killer: gfp_mask=0x100cca(GFP_HIGHUSER_MOVABLE), order=0, oom_score_adj=0
    CPU: 2 PID: 210 Comm: stress Not tainted 5.2.0-rc2-mm1-00247-g47d49835983c #135
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
    Call Trace:
     dump_stack+0x46/0x60
     dump_header+0x4c/0x2d0
     oom_kill_process.cold.10+0xb/0x10
     out_of_memory+0x200/0x270
     ? try_to_free_mem_cgroup_pages+0xdf/0x130
     mem_cgroup_out_of_memory+0xb7/0xc0
     try_charge+0x680/0x6f0
     mem_cgroup_try_charge+0xb5/0x160
     __add_to_page_cache_locked+0xc6/0x300
     ? list_lru_destroy+0x80/0x80
     add_to_page_cache_lru+0x45/0xc0
     pagecache_get_page+0x11b/0x290
     filemap_fault+0x458/0x6d0
     ext4_filemap_fault+0x27/0x36
     __do_fault+0x2f/0xb0
     __handle_mm_fault+0x9c5/0x1140
     ? apic_timer_interrupt+0xa/0x20
     handle_mm_fault+0xc5/0x180
     __do_page_fault+0x1ab/0x440
     ? page_fault+0x8/0x30
     page_fault+0x1e/0x30
    RIP: 0033:0x55c32167fc10
    Code: Bad RIP value.
    RSP: 002b:00007fff1d031c50 EFLAGS: 00010206
    RAX: 000000000dc00000 RBX: 00007fd2db000010 RCX: 00007fd2db000010
    RDX: 0000000000000000 RSI: 0000000010001000 RDI: 0000000000000000
    RBP: 000055c321680a54 R08: 00000000ffffffff R09: 0000000000000000
    R10: 0000000000000022 R11: 0000000000000246 R12: ffffffffffffffff
    R13: 0000000000000002 R14: 0000000000001000 R15: 0000000010000000
    memory: usage 1024kB, limit 1024kB, failcnt 75131
    swap: usage 0kB, limit 9007199254740988kB, failcnt 0
    Memory cgroup stats for /foo:
    anon 0
    file 0
    kernel_stack 36864
    slab 274432
    sock 0
    shmem 0
    file_mapped 0
    file_dirty 0
    file_writeback 0
    anon_thp 0
    inactive_anon 126976
    active_anon 0
    inactive_file 0
    active_file 0
    unevictable 0
    slab_reclaimable 0
    slab_unreclaimable 274432
    pgfault 59466
    pgmajfault 1617
    workingset_refault 2145
    workingset_activate 0
    workingset_nodereclaim 0
    pgrefill 98952
    pgscan 200060
    pgsteal 59340
    pgactivate 40095
    pgdeactivate 96787
    pglazyfree 0
    pglazyfreed 0
    thp_fault_alloc 0
    thp_collapse_alloc 0
    Tasks state (memory values in pages):
    [  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name
    [    200]     0   200     1121      884    53248       29             0 bash
    [    209]     0   209      905      246    45056       19             0 stress
    [    210]     0   210    66442       56   499712    56349             0 stress
    oom-kill:constraint=CONSTRAINT_NONE,nodemask=(null),oom_memcg=/foo,task_memcg=/foo,task=stress,pid=210,uid=0
    Memory cgroup out of memory: Killed process 210 (stress) total-vm:265768kB, anon-rss:0kB, file-rss:224kB, shmem-rss:0kB
    oom_reaper: reaped process 210 (stress), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

[hannes@cmpxchg.org: s/kvmalloc/kmalloc/ per Michal]
  Link: http://lkml.kernel.org/r/20190605161133.GA12453@cmpxchg.org
Link: http://lkml.kernel.org/r/20190604210509.9744-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Shakeel Butt 1e577f970f mm, memcg: introduce memory.events.local
The memory controller in cgroup v2 exposes memory.events file for each
memcg which shows the number of times events like low, high, max, oom
and oom_kill have happened for the whole tree rooted at that memcg.
Users can also poll or register notification to monitor the changes in
that file.  Any event at any level of the tree rooted at memcg will
notify all the listeners along the path till root_mem_cgroup.  There are
existing users which depend on this behavior.

However there are users which are only interested in the events
happening at a specific level of the memcg tree and not in the events in
the underlying tree rooted at that memcg.  One such use-case is a
centralized resource monitor which can dynamically adjust the limits of
the jobs running on a system.  The jobs can create their sub-hierarchy
for their own sub-tasks.  The centralized monitor is only interested in
the events at the top level memcgs of the jobs as it can then act and
adjust the limits of the jobs.  Using the current memory.events for such
centralized monitor is very inconvenient.  The monitor will keep
receiving events which it is not interested and to find if the received
event is interesting, it has to read memory.event files of the next
level and compare it with the top level one.  So, let's introduce
memory.events.local to the memcg which shows and notify for the events
at the memcg level.

Now, does memory.stat and memory.pressure need their local versions.  IMHO
no due to the no internal process contraint of the cgroup v2.  The
memory.stat file of the top level memcg of a job shows the stats and
vmevents of the whole tree.  The local stats or vmevents of the top level
memcg will only change if there is a process running in that memcg but v2
does not allow that.  Similarly for memory.pressure there will not be any
process in the internal nodes and thus no chance of local pressure.

Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Shakeel Butt 38d384932e memcg, oom: no oom-kill for __GFP_RETRY_MAYFAIL
The documentation of __GFP_RETRY_MAYFAIL clearly mentioned that the OOM
killer will not be triggered and indeed the page alloc does not invoke OOM
killer for such allocations.  However we do trigger memcg OOM killer for
__GFP_RETRY_MAYFAIL.  Fix that.  This flag will used later to not trigger
oom-killer in the charging path for fanotify and inotify event
allocations.

Link: http://lkml.kernel.org/r/20190514212259.156585-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:43 -07:00
Yafang Shao dd9239900e mm/memcontrol: fix wrong statistics in memory.stat
When we calculate total statistics for memcg1_stats and memcg1_events,
we use the the index 'i' in the for loop as the events index.  Actually
we should use memcg1_stats[i] and memcg1_events[i] as the events index.

Link: http://lkml.kernel.org/r/1562116978-19539-1-git-send-email-laoar.shao@gmail.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty").
Signed-off-by: Yafang Shao <laoar.shao@gmail.com
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:40 -07:00
Christoph Hellwig 25b2995a35 mm: remove MEMORY_DEVICE_PUBLIC support
The code hasn't been used since it was added to the tree, and doesn't
appear to actually be usable.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-07-02 14:32:43 -03:00
Johannes Weiner 815744d751 mm: memcontrol: don't batch updates of local VM stats and events
The kernel test robot noticed a 26% will-it-scale pagefault regression
from commit 42a3003535 ("mm: memcontrol: fix recursive statistics
correctness & scalabilty").  This appears to be caused by bouncing the
additional cachelines from the new hierarchical statistics counters.

We can fix this by getting rid of the batched local counters instead.

Originally, there were *only* group-local counters, and they were fully
maintained per cpu.  A reader of a stats file high up in the cgroup tree
would have to walk the entire subtree and collect each level's per-cpu
counters to get the recursive view.  This was prohibitively expensive,
and so we switched to per-cpu batched updates of the local counters
during a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting"), reducing the complexity from nr_subgroups *
nr_cpus to nr_subgroups.

With growing machines and cgroup trees, the tree walk itself became too
expensive for monitoring top-level groups, and this is when the culprit
patch added hierarchy counters on each cgroup level.  When the per-cpu
batch size would be reached, both the local and the hierarchy counters
would get batch-updated from the per-cpu delta simultaneously.

This makes local and hierarchical counter reads blazingly fast, but it
unfortunately makes the write-side too cache line intense.

Since local counter reads were never a problem - we only centralized
them to accelerate the hierarchy walk - and use of the local counters
are becoming rarer due to replacement with hierarchical views (ongoing
rework in the page reclaim and workingset code), we can make those local
counters unbatched per-cpu counters again.

The scheme will then be as such:

   when a memcg statistic changes, the writer will:
   - update the local counter (per-cpu)
   - update the batch counter (per-cpu). If the batch is full:
   - spill the batch into the group's atomic_t
   - spill the batch into all ancestors' atomic_ts
   - empty out the batch counter (per-cpu)

   when a local memcg counter is read, the reader will:
   - collect the local counter from all cpus

   when a hiearchy memcg counter is read, the reader will:
   - read the atomic_t

We might be able to simplify this further and make the recursive
counters unbatched per-cpu counters as well (batch upward propagation,
but leave per-cpu collection to the readers), but that will require a
more in-depth analysis and testing of all the callsites.  Deal with the
immediate regression for now.

Link: http://lkml.kernel.org/r/20190521151647.GB2870@cmpxchg.org
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-06-13 17:34:56 -10:00
Thomas Gleixner c942fddf87 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
Based on 3 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [kishon] [vijay] [abraham]
  [i] [kishon]@[ti] [com] this program is distributed in the hope that
  it will be useful but without any warranty without even the implied
  warranty of merchantability or fitness for a particular purpose see
  the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [graeme] [gregory]
  [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
  [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
  [hk] [hemahk]@[ti] [com] this program is distributed in the hope
  that it will be useful but without any warranty without even the
  implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1105 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:37 -07:00
Johannes Weiner def0fdae81 mm: memcontrol: fix NUMA round-robin reclaim at intermediate level
When a cgroup is reclaimed on behalf of a configured limit, reclaim
needs to round-robin through all NUMA nodes that hold pages of the memcg
in question.  However, when assembling the mask of candidate NUMA nodes,
the code only consults the *local* cgroup LRU counters, not the
recursive counters for the entire subtree.  Cgroup limits are frequently
configured against intermediate cgroups that do not have memory on their
own LRUs.  In this case, the node mask will always come up empty and
reclaim falls back to scanning only the current node.

If a cgroup subtree has some memory on one node but the processes are
bound to another node afterwards, the limit reclaim will never age or
reclaim that memory anymore.

To fix this, use the recursive LRU counts for a cgroup subtree to
determine which nodes hold memory of that cgroup.

The code has been broken like this forever, so it doesn't seem to be a
problem in practice.  I just noticed it while reviewing the way the LRU
counters are used in general.

Link: http://lkml.kernel.org/r/20190412151507.2769-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner 42a3003535 mm: memcontrol: fix recursive statistics correctness & scalabilty
Right now, when somebody needs to know the recursive memory statistics
and events of a cgroup subtree, they need to walk the entire subtree and
sum up the counters manually.

There are two issues with this:

1. When a cgroup gets deleted, its stats are lost. The state counters
   should all be 0 at that point, of course, but the events are not.
   When this happens, the event counters, which are supposed to be
   monotonic, can go backwards in the parent cgroups.

2. During regular operation, we always have a certain number of lazily
   freed cgroups sitting around that have been deleted, have no tasks,
   but have a few cache pages remaining. These groups' statistics do not
   change until we eventually hit memory pressure, but somebody
   watching, say, memory.stat on an ancestor has to iterate those every
   time.

This patch addresses both issues by introducing recursive counters at
each level that are propagated from the write side when stats change.

Upward propagation happens when the per-cpu caches spill over into the
local atomic counter.  This is the same thing we do during charge and
uncharge, except that the latter uses atomic RMWs, which are more
expensive; stat changes happen at around the same rate.  In a sparse
file test (page faults and reclaim at maximum CPU speed) with 5 cgroup
nesting levels, perf shows __mod_memcg_page state at ~1%.

Link: http://lkml.kernel.org/r/20190412151507.2769-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner db9adbcbe7 mm: memcontrol: move stat/event counting functions out-of-line
These are getting too big to be inlined in every callsite.  They were
stolen from vmstat.c, which already out-of-lines them, and they have
only been growing since.  The callsites aren't that hot, either.

Move __mod_memcg_state()
     __mod_lruvec_state() and
     __count_memcg_events() out of line and add kerneldoc comments.

Link: http://lkml.kernel.org/r/20190412151507.2769-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Johannes Weiner 205b20cc5a mm: memcontrol: make cgroup stats and events query API explicitly local
Patch series "mm: memcontrol: memory.stat cost & correctness".

The cgroup memory.stat file holds recursive statistics for the entire
subtree.  The current implementation does this tree walk on-demand
whenever the file is read.  This is giving us problems in production.

1. The cost of aggregating the statistics on-demand is high.  A lot of
   system service cgroups are mostly idle and their stats don't change
   between reads, yet we always have to check them.  There are also always
   some lazily-dying cgroups sitting around that are pinned by a handful
   of remaining page cache; the same applies to them.

   In an application that periodically monitors memory.stat in our
   fleet, we have seen the aggregation consume up to 5% CPU time.

2. When cgroups die and disappear from the cgroup tree, so do their
   accumulated vm events.  The result is that the event counters at
   higher-level cgroups can go backwards and confuse some of our
   automation, let alone people looking at the graphs over time.

To address both issues, this patch series changes the stat
implementation to spill counts upwards when the counters change.

The upward spilling is batched using the existing per-cpu cache.  In a
sparse file stress test with 5 level cgroup nesting, the additional cost
of the flushing was negligible (a little under 1% of CPU at 100% CPU
utilization, compared to the 5% of reading memory.stat during regular
operation).

This patch (of 4):

memcg_page_state(), lruvec_page_state(), memcg_sum_events() are
currently returning the state of the local memcg or lruvec, not the
recursive state.

In practice there is a demand for both versions, although the callers
that want the recursive counts currently sum them up by hand.

Per default, cgroups are considered recursive entities and generally we
expect more users of the recursive counters, with the local counts being
special cases.  To reflect that in the name, add a _local suffix to the
current implementations.

The following patch will re-incarnate these functions with recursive
semantics, but with an O(1) implementation.

[hannes@cmpxchg.org: fix bisection hole]
  Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:53 -07:00
Chris Down 871789d4af mm, memcg: rename ambiguously named memory.stat counters and functions
I spent literally an hour trying to work out why an earlier version of
my memory.events aggregation code doesn't work properly, only to find
out I was calling memcg->events instead of memcg->memory_events, which
is fairly confusing.

This naming seems in need of reworking, so make it harder to do the
wrong thing by using vmevents instead of events, which makes it more
clear that these are vm counters rather than memcg-specific counters.

There are also a few other inconsistent names in both the percpu and
aggregated structs, so these are all cleaned up to be more coherent and
easy to understand.

This commit contains code cleanup only: there are no logic changes.

[akpm@linux-foundation.org: fix it for preceding changes]
Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:52 -07:00
Johannes Weiner 113b7dfd82 mm: memcontrol: quarantine the mem_cgroup_[node_]nr_lru_pages() API
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
group them together.

Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Johannes Weiner 21d89d151b mm: memcontrol: push down mem_cgroup_nr_lru_pages()
mem_cgroup_nr_lru_pages() is just a convenience wrapper around
memcg_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.

Replace callsites where the bitmask is simple enough with direct
memcg_page_state() call(s).

Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:47 -07:00
Johannes Weiner 2b487e59f0 mm: memcontrol: push down mem_cgroup_node_nr_lru_pages()
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.

Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.

This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.

Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner 22796c844f mm: memcontrol: replace node summing with memcg_page_state()
Instead of adding up the node counters, use memcg_page_state() to get the
memcg state directly.  This is a bit cheaper and more stream-lined.

Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Johannes Weiner 1a61ab8038 mm: memcontrol: replace zone summing with lruvec_page_state()
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly.  This is a bit cheaper and more stream-lined.

Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Greg Thelen 0b3d6e6f2d mm: writeback: use exact memcg dirty counts
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:

 1) per-memcg per-cpu values in range of [-32..32]

 2) per-memcg atomic counter

When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic.  Stat readers only check the atomic.  Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.

Assuming 100 cpus:
   4k x86 page_size:  13 MiB error per memcg
  64k ppc page_size: 200 MiB error per memcg

Considering that dirty+writeback are used together for some decisions the
errors double.

This inaccuracy can lead to undeserved oom kills.  One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e.  per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages.  If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.

It could be argued that tiny containers are not supported, but it's more
subtle.  It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.

The following test reliably ooms without this patch.  This patch avoids
oom kills.

  $ cat test
  mount -t cgroup2 none /dev/cgroup
  cd /dev/cgroup
  echo +io +memory > cgroup.subtree_control
  mkdir test
  cd test
  echo 10M > memory.max
  (echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
  (echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)

  $ cat memcg-writeback-stress.c
  /*
   * Dirty pages from all but one cpu.
   * Clean pages from the non dirtying cpu.
   * This is to stress per cpu counter imbalance.
   * On a 100 cpu machine:
   * - per memcg per cpu dirty count is 32 pages for each of 99 cpus
   * - per memcg atomic is -99*32 pages
   * - thus the complete dirty limit: sum of all counters 0
   * - balance_dirty_pages() only sees atomic count -99*32 pages, which
   *   it max()s to 0.
   * - So a workload can dirty -99*32 pages before balance_dirty_pages()
   *   cares.
   */
  #define _GNU_SOURCE
  #include <err.h>
  #include <fcntl.h>
  #include <sched.h>
  #include <stdlib.h>
  #include <stdio.h>
  #include <sys/stat.h>
  #include <sys/sysinfo.h>
  #include <sys/types.h>
  #include <unistd.h>

  static char *buf;
  static int bufSize;

  static void set_affinity(int cpu)
  {
  	cpu_set_t affinity;

  	CPU_ZERO(&affinity);
  	CPU_SET(cpu, &affinity);
  	if (sched_setaffinity(0, sizeof(affinity), &affinity))
  		err(1, "sched_setaffinity");
  }

  static void dirty_on(int output_fd, int cpu)
  {
  	int i, wrote;

  	set_affinity(cpu);
  	for (i = 0; i < 32; i++) {
  		for (wrote = 0; wrote < bufSize; ) {
  			int ret = write(output_fd, buf+wrote, bufSize-wrote);
  			if (ret == -1)
  				err(1, "write");
  			wrote += ret;
  		}
  	}
  }

  int main(int argc, char **argv)
  {
  	int cpu, flush_cpu = 1, output_fd;
  	const char *output;

  	if (argc != 2)
  		errx(1, "usage: output_file");

  	output = argv[1];
  	bufSize = getpagesize();
  	buf = malloc(getpagesize());
  	if (buf == NULL)
  		errx(1, "malloc failed");

  	output_fd = open(output, O_CREAT|O_RDWR);
  	if (output_fd == -1)
  		err(1, "open(%s)", output);

  	for (cpu = 0; cpu < get_nprocs(); cpu++) {
  		if (cpu != flush_cpu)
  			dirty_on(output_fd, cpu);
  	}

  	set_affinity(flush_cpu);
  	if (fsync(output_fd))
  		err(1, "fsync(%s)", output);
  	if (close(output_fd))
  		err(1, "close(%s)", output);
  	free(buf);
  }

Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters.  This avoids the aforementioned oom
kills.

This does not affect the overhead of memory.stat, which still reads the
single atomic counter.

Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter.  And the percpu_counter
spinlocks are more heavyweight than is required.

It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports.  But that is saved for later.

Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org>	[4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-05 16:02:31 -10:00
Qian Cai 82ede7ee38 mm/memcontrol.c: fix bad line in comment
Commit 230671533d ("mm: memory.low hierarchical behavior") missed an
asterisk in one of the comments.

  mm/memcontrol.c:5774: warning: bad line:                | 0, otherwise.

Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Andrey Ryabinin f4b7e272b5 mm: remove zone_lru_lock() function, access ->lru_lock directly
We have common pattern to access lru_lock from a page pointer:
	zone_lru_lock(page_zone(page))

Which is silly, because it unfolds to this:
	&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
	&NODE_DATA(page_to_nid(page))->lru_lock

Remove zone_lru_lock() function, since it's only complicate things.  Use
'page_pgdat(page)->lru_lock' pattern instead.

[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
  Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Alexey Dobriyan b9726c26dc numa: make "nr_node_ids" unsigned int
Number of NUMA nodes can't be negative.

This saves a few bytes on x86_64:

	add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238)
	Function                                     old     new   delta
	hv_synic_alloc.cold                           88     110     +22
	prealloc_shrinker                            260     262      +2
	bootstrap                                    249     251      +2
	sched_init_numa                             1566    1567      +1
	show_slab_objects                            778     777      -1
	s_show                                      1201    1200      -1
	kmem_cache_init                              346     345      -1
	__alloc_workqueue_key                       1146    1145      -1
	mem_cgroup_css_alloc                        1614    1612      -2
	__do_sys_swapon                             4702    4699      -3
	__list_lru_init                              655     651      -4
	nic_probe                                   2379    2374      -5
	store_user_store                             118     111      -7
	red_zone_store                               106      99      -7
	poison_store                                 106      99      -7
	wq_numa_init                                 348     338     -10
	__kmem_cache_empty                            75      65     -10
	task_numa_free                               186     173     -13
	merge_across_nodes_store                     351     336     -15
	irq_create_affinity_masks                   1261    1246     -15
	do_numa_crng_init                            343     321     -22
	task_numa_fault                             4760    4737     -23
	swapfile_init                                179     156     -23
	hv_synic_alloc                               536     492     -44
	apply_wqattrs_prepare                        746     695     -51

Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Chris Down 1ff9e6e179 mm: memcontrol: expose THP events on a per-memcg basis
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide.  This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.

For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic].  This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page.  It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.

[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
  Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Tetsuo Handa 7775face20 memcg: killed threads should not invoke memcg OOM killer
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem.  The race looks as
follows:

P1				oom_reaper		P2
try_charge						try_charge
  mem_cgroup_out_of_memory
    mutex_lock(oom_lock)
      out_of_memory
        oom_kill_process(P1,P2)
         wake_oom_reaper
    mutex_unlock(oom_lock)
    				oom_reap_task
							  mutex_lock(oom_lock)
							    select_bad_process # no victim

The problem is more visible with many threads.

Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.

The oom bypass is safe because we do the same early in the try_charge
path already.  The situation migh have changed in the mean time.  It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path.  "

Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Chris Down 677dc9731b mm, memcg: extract memcg maxable seq_file logic to seq_show_memcg_tunable
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.

This patch makes this generic by providing a single function to do this
work.  In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.

Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Chris Down aa9694bb78 mm, memcg: create mem_cgroup_from_seq
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).

There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css.  It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).

Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:17 -08:00
Gustavo A. R. Silva 67b8046f42 mm/memcontrol.c: use struct_size() in kmalloc()
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array.  For example:

  struct foo {
      int stuff;
      void *entry[];
  };

  instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);

Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:

  instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);

This code was detected with the help of Coccinelle.

Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
Shakeel Butt 60cd4bcd62 memcg: localize memcg_kmem_enabled() check
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.

This is purely code cleanup patch without any functional change.  Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same.  This should not matter as
memcg_charge_slab() is not in the hot path.

Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
Michal Hocko 7056d3a37d memcg, oom: notify on oom killer invocation from the charge path
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore.  The reason is that 29ef680ae7 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path.  While doing so the notification was left behind in
mem_cgroup_oom_synchronize.

Fix the issue by replicating the oom hierarchy locking and the
notification.

Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Burt Holzman <burt@fnal.gov>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Cc: <stable@vger.kernel.org>	[4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:52 -08:00
yuzhoujian f0c867d958 mm, oom: add oom victim's memcg to the oom context information
The current oom report doesn't display victim's memcg context during the
global OOM situation.  While this information is not strictly needed, it
can be really helpful for containerized environments to locate which
container has lost a process.  Now that we have a single line for the oom
context, we can trivially add both the oom memcg (this can be either
global_oom or a specific memcg which hits its hard limits) and task_memcg
which is the victim's memcg.

Below is the single line output in the oom report after this patch.

- global oom context information:

oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>

- memcg oom context information:

oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>

[penguin-kernel@I-love.SAKURA.ne.jp: use pr_cont() in mem_cgroup_print_oom_context()]
  Link: http://lkml.kernel.org/r/201812190723.wBJ7NdkN032628@www262.sakura.ne.jp
Link: http://lkml.kernel.org/r/1542799799-36184-2-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:48 -08:00
Roman Gushchin e68599a3c3 mm: handle no memcg case in memcg_kmem_charge() properly
Mike Galbraith reported a regression caused by the commit 9b6f7e163c
("mm: rework memcg kernel stack accounting") on a system with
"cgroup_disable=memory" boot option: the system panics with the following
stack trace:

  BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8
  PGD 0 P4D 0
  Oops: 0002 [#1] PREEMPT SMP PTI
  CPU: 0 PID: 1 Comm: systemd Not tainted 4.19.0-preempt+ #410
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20180531_142017-buildhw-08.phx2.fed4
  RIP: 0010:page_counter_try_charge+0x22/0xc0
  Code: 41 5d c3 c3 0f 1f 40 00 0f 1f 44 00 00 48 85 ff 0f 84 a7 00 00 00 41 56 48 89 f8 49 89 fe 49
  Call Trace:
   try_charge+0xcb/0x780
   memcg_kmem_charge_memcg+0x28/0x80
   memcg_kmem_charge+0x8b/0x1d0
   copy_process.part.41+0x1ca/0x2070
   _do_fork+0xd7/0x3d0
   do_syscall_64+0x5a/0x180
   entry_SYSCALL_64_after_hwframe+0x49/0xbe

The problem occurs because get_mem_cgroup_from_current() returns the NULL
pointer if memory controller is disabled.  Let's check if this is a case
at the beginning of memcg_kmem_charge() and just return 0 if
mem_cgroup_disabled() returns true.  This is how we handle this case in
many other places in the memory controller code.

Link: http://lkml.kernel.org/r/20181029215123.17830-1-guro@fb.com
Fixes: 9b6f7e163c ("mm: rework memcg kernel stack accounting")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-03 10:09:37 -07:00
Linus Torvalds dad4f140ed Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
Pull XArray conversion from Matthew Wilcox:
 "The XArray provides an improved interface to the radix tree data
  structure, providing locking as part of the API, specifying GFP flags
  at allocation time, eliminating preloading, less re-walking the tree,
  more efficient iterations and not exposing RCU-protected pointers to
  its users.

  This patch set

   1. Introduces the XArray implementation

   2. Converts the pagecache to use it

   3. Converts memremap to use it

  The page cache is the most complex and important user of the radix
  tree, so converting it was most important. Converting the memremap
  code removes the only other user of the multiorder code, which allows
  us to remove the radix tree code that supported it.

  I have 40+ followup patches to convert many other users of the radix
  tree over to the XArray, but I'd like to get this part in first. The
  other conversions haven't been in linux-next and aren't suitable for
  applying yet, but you can see them in the xarray-conv branch if you're
  interested"

* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
  radix tree: Remove multiorder support
  radix tree test: Convert multiorder tests to XArray
  radix tree tests: Convert item_delete_rcu to XArray
  radix tree tests: Convert item_kill_tree to XArray
  radix tree tests: Move item_insert_order
  radix tree test suite: Remove multiorder benchmarking
  radix tree test suite: Remove __item_insert
  memremap: Convert to XArray
  xarray: Add range store functionality
  xarray: Move multiorder_check to in-kernel tests
  xarray: Move multiorder_shrink to kernel tests
  xarray: Move multiorder account test in-kernel
  radix tree test suite: Convert iteration test to XArray
  radix tree test suite: Convert tag_tagged_items to XArray
  radix tree: Remove radix_tree_clear_tags
  radix tree: Remove radix_tree_maybe_preload_order
  radix tree: Remove split/join code
  radix tree: Remove radix_tree_update_node_t
  page cache: Finish XArray conversion
  dax: Convert page fault handlers to XArray
  ...
2018-10-28 11:35:40 -07:00
Roman Gushchin 7a1adfddaf mm: don't raise MEMCG_OOM event due to failed high-order allocation
It was reported that on some of our machines containers were restarted
with OOM symptoms without an obvious reason.  Despite there were almost no
memory pressure and plenty of page cache, MEMCG_OOM event was raised
occasionally, causing the container management software to think, that OOM
has happened.  However, no tasks have been killed.

The following investigation showed that the problem is caused by a failing
attempt to charge a high-order page.  In such case, the OOM killer is
never invoked.  As shown below, it can happen under conditions, which are
very far from a real OOM: e.g.  there is plenty of clean page cache and no
memory pressure.

There is no sense in raising an OOM event in this case, as it might
confuse a user and lead to wrong and excessive actions (e.g.  restart the
workload, as in my case).

Let's look at the charging path in try_charge().  If the memory usage is
about memory.max, which is absolutely natural for most memory cgroups, we
try to reclaim some pages.  Even if we were able to reclaim enough memory
for the allocation, the following check can fail due to a race with
another concurrent allocation:

    if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
        goto retry;

For regular pages the following condition will save us from triggering
the OOM:

   if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
       goto retry;

But for high-order allocation this condition will intentionally fail.  The
reason behind is that we'll likely fall to regular pages anyway, so it's
ok and even preferred to return ENOMEM.

In this case the idea of raising MEMCG_OOM looks dubious.

Fix this by moving MEMCG_OOM raising to mem_cgroup_oom() after allocation
order check, so that the event won't be raised for high order allocations.
This change doesn't affect regular pages allocation and charging.

Link: http://lkml.kernel.org/r/20181004214050.7417-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:38:14 -07:00
Kirill Tkhai 1c2d479a11 mm/memcontrol.c: convert mem_cgroup_id::ref to refcount_t type
This will allow to use generic refcount_t interfaces to check counters
overflow instead of currently existing VM_BUG_ON().  The only difference
after the patch is VM_BUG_ON() may cause BUG(), while refcount_t fires
with WARN().  But this seems not to be significant here, since such the
problems are usually caught by syzbot with panic-on-warn enabled.

Link: http://lkml.kernel.org/r/153910718919.7006.13400779039257185427.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:35 -07:00
Shakeel Butt 85cfb24506 memcg: remove memcg_kmem_skip_account
The flag memcg_kmem_skip_account was added during the era of opt-out kmem
accounting.  There is no need for such flag in the opt-in world as there
aren't any __GFP_ACCOUNT allocations within memcg_create_cache_enqueue().

Link: http://lkml.kernel.org/r/20180919004501.178023-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Johannes Weiner e9b257ed15 mm/memcontrol.c: fix memory.stat item ordering
The refault stats go better with the page fault stats, and are of
higher interest than the stats on LRU operations. In fact they used to
be grouped together; when the LRU operation stats were added later on,
they were wedged in between.

Move them back together. Documentation/admin-guide/cgroup-v2.rst
already lists them in the right order.

Link: http://lkml.kernel.org/r/20181010140239.GA2527@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Roman Gushchin 591edfb10a mm: drain memcg stocks on css offlining
Memcg charge is batched using per-cpu stocks, so an offline memcg can be
pinned by a cached charge up to a moment, when a process belonging to some
other cgroup will charge some memory on the same cpu.  In other words,
cached charges can prevent a memory cgroup from being reclaimed for some
time, without any clear need.

Let's optimize it by explicit draining of all stocks on css offlining.  As
draining is performed asynchronously, and is skipped if any parallel
draining is happening, it's cheap.

Link: http://lkml.kernel.org/r/20180827162621.30187-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Matthew Wilcox 3159f943aa xarray: Replace exceptional entries
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries.  This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry).  It is also a change in emphasis; exceptional entries are
intimidating and different.  As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.

Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
2018-09-29 22:47:49 -04:00
Johannes Weiner 3100dab2aa mm: memcontrol: print proper OOM header when no eligible victim left
When the memcg OOM killer runs out of killable tasks, it currently
prints a WARN with no further OOM context.  This has caused some user
confusion.

Warnings indicate a kernel problem.  In a reported case, however, the
situation was triggered by a nonsensical memcg configuration (hard limit
set to 0).  But without any VM context this wasn't obvious from the
report, and it took some back and forth on the mailing list to identify
what is actually a trivial issue.

Handle this OOM condition like we handle it in the global OOM killer:
dump the full OOM context and tell the user we ran out of tasks.

This way the user can identify misconfigurations easily by themselves
and rectify the problem - without having to go through the hassle of
running into an obscure but unsettling warning, finding the appropriate
kernel mailing list and waiting for a kernel developer to remote-analyze
that the memcg configuration caused this.

If users cannot make sense of why the OOM killer was triggered or why it
failed, they will still report it to the mailing list, we know that from
experience.  So in case there is an actual kernel bug causing this,
kernel developers will very likely hear about it.

Link: http://lkml.kernel.org/r/20180821160406.22578-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-04 16:45:02 -07:00
Roman Gushchin 3d8b38eb81 mm, oom: introduce memory.oom.group
For some workloads an intervention from the OOM killer can be painful.
Killing a random task can bring the workload into an inconsistent state.

Historically, there are two common solutions for this
problem:
1) enabling panic_on_oom,
2) using a userspace daemon to monitor OOMs and kill
   all outstanding processes.

Both approaches have their downsides: rebooting on each OOM is an obvious
waste of capacity, and handling all in userspace is tricky and requires a
userspace agent, which will monitor all cgroups for OOMs.

In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate
the necessity of enabling panic_on_oom.  Also, it can simplify the cgroup
management for userspace applications.

This commit introduces a new knob for cgroup v2 memory controller:
memory.oom.group.  The knob determines whether the cgroup should be
treated as an indivisible workload by the OOM killer.  If set, all tasks
belonging to the cgroup or to its descendants (if the memory cgroup is not
a leaf cgroup) are killed together or not at all.

To determine which cgroup has to be killed, we do traverse the cgroup
hierarchy from the victim task's cgroup up to the OOMing cgroup (or root)
and looking for the highest-level cgroup with memory.oom.group set.

Tasks with the OOM protection (oom_score_adj set to -1000) are treated as
an exception and are never killed.

This patch doesn't change the OOM victim selection algorithm.

Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Shakeel Butt 8de7ecc648 memcg: reduce memcg tree traversals for stats collection
Currently cgroup-v1's memcg_stat_show traverses the memcg tree ~17 times
to collect the stats while cgroup-v2's memory_stat_show traverses the
memcg tree thrice.  On a large machine, a couple thousand memcgs is very
normal and if the churn is high and memcgs stick around during to several
reasons, tens of thousands of nodes in memcg tree can exist.  This patch
has refactored and shared the stat collection code between cgroup-v1 and
cgroup-v2 and has reduced the tree traversal to just one.

I ran a simple benchmark which reads the root_mem_cgroup's stat file
1000 times in the presense of 2500 memcgs on cgroup-v1. The results are:

Without the patch:
$ time ./read-root-stat-1000-times

real    0m1.663s
user    0m0.000s
sys     0m1.660s

With the patch:
$ time ./read-root-stat-1000-times

real    0m0.468s
user    0m0.000s
sys     0m0.467s

Link: http://lkml.kernel.org/r/20180724224635.143944-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Bruce Merry <bmerry@ska.ac.za>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Kirill Tkhai f90280d6b7 mm/vmscan.c: clear shrinker bit if there are no objects related to memcg
To avoid further unneed calls of do_shrink_slab() for shrinkers, which
already do not have any charged objects in a memcg, their bits have to
be cleared.

This patch introduces a lockless mechanism to do that without races
without parallel list lru add.  After do_shrink_slab() returns
SHRINK_EMPTY the first time, we clear the bit and call it once again.
Then we restore the bit, if the new return value is different.

Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers
two situations:

1)list_lru_add()     shrink_slab_memcg
    list_add_tail()    for_each_set_bit() <--- read bit
                         do_shrink_slab() <--- missed list update (no barrier)
    <MB>                 <MB>
    set_bit()            do_shrink_slab() <--- seen list update

This situation, when the first do_shrink_slab() sees set bit, but it
doesn't see list update (i.e., race with the first element queueing), is
rare.  So we don't add <MB> before the first call of do_shrink_slab()
instead of this to do not slow down generic case.  Also, it's need the
second call as seen in below in (2).

2)list_lru_add()      shrink_slab_memcg()
    list_add_tail()     ...
    set_bit()           ...
  ...                   for_each_set_bit()
  do_shrink_slab()        do_shrink_slab()
    clear_bit()           ...
  ...                     ...
  list_lru_add()          ...
    list_add_tail()       clear_bit()
    <MB>                  <MB>
    set_bit()             do_shrink_slab()

The barriers guarantee that the second do_shrink_slab() in the right
side task sees list update if really cleared the bit.  This case is
drawn in the code comment.

[Results/performance of the patchset]

After the whole patchset applied the below test shows signify increase
of performance:

  $echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
  $mkdir /sys/fs/cgroup/memory/ct
  $echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
      $for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i;
			    echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
			    mkdir -p s/$i; mount -t tmpfs $i s/$i;
			    touch s/$i/file; done

Then, 5 sequential calls of drop caches:

  $time echo 3 > /proc/sys/vm/drop_caches

1)Before:
  0.00user 13.78system 0:13.78elapsed 99%CPU
  0.00user 5.59system 0:05.60elapsed 99%CPU
  0.00user 5.48system 0:05.48elapsed 99%CPU
  0.00user 8.35system 0:08.35elapsed 99%CPU
  0.00user 8.34system 0:08.35elapsed 99%CPU

2)After
  0.00user 1.10system 0:01.10elapsed 99%CPU
  0.00user 0.00system 0:00.01elapsed 64%CPU
  0.00user 0.01system 0:00.01elapsed 82%CPU
  0.00user 0.00system 0:00.01elapsed 64%CPU
  0.00user 0.01system 0:00.01elapsed 82%CPU

The results show the performance increases at least in 548 times.

Shakeel Butt tested this patchset with fork-bomb on his configuration:

 > I created 255 memcgs, 255 ext4 mounts and made each memcg create a
 > file containing few KiBs on corresponding mount. Then in a separate
 > memcg of 200 MiB limit ran a fork-bomb.
 >
 > I ran the "perf record -ag -- sleep 60" and below are the results:
 >
 > Without the patch series:
 > Samples: 4M of event 'cycles', Event count (approx.): 3279403076005
 > +  36.40%            fb.sh  [kernel.kallsyms]    [k] shrink_slab
 > +  18.97%            fb.sh  [kernel.kallsyms]    [k] list_lru_count_one
 > +   6.75%            fb.sh  [kernel.kallsyms]    [k] super_cache_count
 > +   0.49%            fb.sh  [kernel.kallsyms]    [k] down_read_trylock
 > +   0.44%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_iter
 > +   0.27%            fb.sh  [kernel.kallsyms]    [k] up_read
 > +   0.21%            fb.sh  [kernel.kallsyms]    [k] osq_lock
 > +   0.13%            fb.sh  [kernel.kallsyms]    [k] shmem_unused_huge_count
 > +   0.08%            fb.sh  [kernel.kallsyms]    [k] shrink_node_memcg
 > +   0.08%            fb.sh  [kernel.kallsyms]    [k] shrink_node
 >
 > With the patch series:
 > Samples: 4M of event 'cycles', Event count (approx.): 2756866824946
 > +  47.49%            fb.sh  [kernel.kallsyms]    [k] down_read_trylock
 > +  30.72%            fb.sh  [kernel.kallsyms]    [k] up_read
 > +   9.51%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_iter
 > +   1.69%            fb.sh  [kernel.kallsyms]    [k] shrink_node_memcg
 > +   1.35%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_protected
 > +   1.05%            fb.sh  [kernel.kallsyms]    [k] queued_spin_lock_slowpath
 > +   0.85%            fb.sh  [kernel.kallsyms]    [k] _raw_spin_lock
 > +   0.78%            fb.sh  [kernel.kallsyms]    [k] lruvec_lru_size
 > +   0.57%            fb.sh  [kernel.kallsyms]    [k] shrink_node
 > +   0.54%            fb.sh  [kernel.kallsyms]    [k] queue_work_on
 > +   0.46%            fb.sh  [kernel.kallsyms]    [k] shrink_slab_memcg

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00