The dl_runtime_exceeded() function is supposed to ckeck if
a SCHED_DEADLINE task must be throttled, by checking if its
current runtime is <= 0. However, it also checks if the
scheduling deadline has been missed (the current time is
larger than the current scheduling deadline), further
decreasing the runtime if this happens.
This "double accounting" is wrong:
- In case of partitioned scheduling (or single CPU), this
happens if task_tick_dl() has been called later than expected
(due to small HZ values). In this case, the current runtime is
also negative, and replenish_dl_entity() can take care of the
deadline miss by recharging the current runtime to a value smaller
than dl_runtime
- In case of global scheduling on multiple CPUs, scheduling
deadlines can be missed even if the task did not consume more
runtime than expected, hence penalizing the task is wrong
This patch fix this problem by throttling a SCHED_DEADLINE task
only when its runtime becomes negative, and not modifying the runtime
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@gmail.com>
Cc: <stable@vger.kernel.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418813432-20797-3-git-send-email-luca.abeni@unitn.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
According to global EDF, tasks should be migrated between runqueues
without checking if their scheduling deadlines and runtimes are valid.
However, SCHED_DEADLINE currently performs such a check:
a migration happens doing:
deactivate_task(rq, next_task, 0);
set_task_cpu(next_task, later_rq->cpu);
activate_task(later_rq, next_task, 0);
which ends up calling dequeue_task_dl(), setting the new CPU, and then
calling enqueue_task_dl().
enqueue_task_dl() then calls enqueue_dl_entity(), which calls
update_dl_entity(), which can modify scheduling deadline and runtime,
breaking global EDF scheduling.
As a result, some of the properties of global EDF are not respected:
for example, a taskset {(30, 80), (40, 80), (120, 170)} scheduled on
two cores can have unbounded response times for the third task even
if 30/80+40/80+120/170 = 1.5809 < 2
This can be fixed by invoking update_dl_entity() only in case of
wakeup, or if this is a new SCHED_DEADLINE task.
Signed-off-by: Luca Abeni <luca.abeni@unitn.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@gmail.com>
Cc: <stable@vger.kernel.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1418813432-20797-2-git-send-email-luca.abeni@unitn.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Do not call dequeue_pushable_dl_task() when failing to push an eligible
task, as it remains pushable, merely not at this particular moment.
Actually the patch is the same behavior as commit 311e800e16 ("sched,
rt: Fix rq->rt.pushable_tasks bug in push_rt_task()" in -rt side.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415258564-8573-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move the p->nr_cpus_allowed check into kernel/sched/core.c: select_task_rq().
This change will make fair.c, rt.c, and deadline.c all start with the
same logic.
Suggested-and-Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: "pang.xunlei" <pang.xunlei@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1415150077-59053-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit d670ec1317 "posix-cpu-timers: Cure SMP wobbles" fixes one glibc
test case in cost of breaking another one. After that commit, calling
clock_nanosleep(TIMER_ABSTIME, X) and then clock_gettime(&Y) can result
of Y time being smaller than X time.
Reproducer/tester can be found further below, it can be compiled and ran by:
gcc -o tst-cpuclock2 tst-cpuclock2.c -pthread
while ./tst-cpuclock2 ; do : ; done
This reproducer, when running on a buggy kernel, will complain
about "clock_gettime difference too small".
Issue happens because on start in thread_group_cputimer() we initialize
sum_exec_runtime of cputimer with threads runtime not yet accounted and
then add the threads runtime to running cputimer again on scheduler
tick, making it's sum_exec_runtime bigger than actual threads runtime.
KOSAKI Motohiro posted a fix for this problem, but that patch was never
applied: https://lkml.org/lkml/2013/5/26/191 .
This patch takes different approach to cure the problem. It calls
update_curr() when cputimer starts, that assure we will have updated
stats of running threads and on the next schedule tick we will account
only the runtime that elapsed from cputimer start. That also assure we
have consistent state between cpu times of individual threads and cpu
time of the process consisted by those threads.
Full reproducer (tst-cpuclock2.c):
#define _GNU_SOURCE
#include <unistd.h>
#include <sys/syscall.h>
#include <stdio.h>
#include <time.h>
#include <pthread.h>
#include <stdint.h>
#include <inttypes.h>
/* Parameters for the Linux kernel ABI for CPU clocks. */
#define CPUCLOCK_SCHED 2
#define MAKE_PROCESS_CPUCLOCK(pid, clock) \
((~(clockid_t) (pid) << 3) | (clockid_t) (clock))
static pthread_barrier_t barrier;
/* Help advance the clock. */
static void *chew_cpu(void *arg)
{
pthread_barrier_wait(&barrier);
while (1) ;
return NULL;
}
/* Don't use the glibc wrapper. */
static int do_nanosleep(int flags, const struct timespec *req)
{
clockid_t clock_id = MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED);
return syscall(SYS_clock_nanosleep, clock_id, flags, req, NULL);
}
static int64_t tsdiff(const struct timespec *before, const struct timespec *after)
{
int64_t before_i = before->tv_sec * 1000000000ULL + before->tv_nsec;
int64_t after_i = after->tv_sec * 1000000000ULL + after->tv_nsec;
return after_i - before_i;
}
int main(void)
{
int result = 0;
pthread_t th;
pthread_barrier_init(&barrier, NULL, 2);
if (pthread_create(&th, NULL, chew_cpu, NULL) != 0) {
perror("pthread_create");
return 1;
}
pthread_barrier_wait(&barrier);
/* The test. */
struct timespec before, after, sleeptimeabs;
int64_t sleepdiff, diffabs;
const struct timespec sleeptime = {.tv_sec = 0,.tv_nsec = 100000000 };
/* The relative nanosleep. Not sure why this is needed, but its presence
seems to make it easier to reproduce the problem. */
if (do_nanosleep(0, &sleeptime) != 0) {
perror("clock_nanosleep");
return 1;
}
/* Get the current time. */
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &before) < 0) {
perror("clock_gettime[2]");
return 1;
}
/* Compute the absolute sleep time based on the current time. */
uint64_t nsec = before.tv_nsec + sleeptime.tv_nsec;
sleeptimeabs.tv_sec = before.tv_sec + nsec / 1000000000;
sleeptimeabs.tv_nsec = nsec % 1000000000;
/* Sleep for the computed time. */
if (do_nanosleep(TIMER_ABSTIME, &sleeptimeabs) != 0) {
perror("absolute clock_nanosleep");
return 1;
}
/* Get the time after the sleep. */
if (clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &after) < 0) {
perror("clock_gettime[3]");
return 1;
}
/* The time after sleep should always be equal to or after the absolute sleep
time passed to clock_nanosleep. */
sleepdiff = tsdiff(&sleeptimeabs, &after);
if (sleepdiff < 0) {
printf("absolute clock_nanosleep woke too early: %" PRId64 "\n", sleepdiff);
result = 1;
printf("Before %llu.%09llu\n", before.tv_sec, before.tv_nsec);
printf("After %llu.%09llu\n", after.tv_sec, after.tv_nsec);
printf("Sleep %llu.%09llu\n", sleeptimeabs.tv_sec, sleeptimeabs.tv_nsec);
}
/* The difference between the timestamps taken before and after the
clock_nanosleep call should be equal to or more than the duration of the
sleep. */
diffabs = tsdiff(&before, &after);
if (diffabs < sleeptime.tv_nsec) {
printf("clock_gettime difference too small: %" PRId64 "\n", diffabs);
result = 1;
}
pthread_cancel(th);
return result;
}
Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20141112155843.GA24803@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are both UP and SMP version of pull_dl_task(), so don't need
to check CONFIG_SMP in switched_from_dl();
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414708776-124078-6-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In switched_from_dl() we have to issue a resched if we successfully
pulled some task from other cpus. This patch also aligns the behavior
with -rt.
Suggested-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414708776-124078-5-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch pushes task away if the dealine of the task is equal
to current during wake up. The same behavior as rt class.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@arm.com>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414708776-124078-4-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The yield semantic of deadline class is to reduce remaining runtime to
zero, and then update_curr_dl() will stop it. However, comsumed bandwidth
is reduced from the budget of yield task again even if it has already been
set to zero which leads to artificial overrun. This patch fix it by make
sure we don't steal some more time from the task that yielded in update_curr_dl().
Suggested-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Kirill Tkhai <ktkhai@parallels.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414708776-124078-2-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently used hrtimer_try_to_cancel() is racy:
raw_spin_lock(&rq->lock)
... dl_task_timer raw_spin_lock(&rq->lock)
... raw_spin_lock(&rq->lock) ...
switched_from_dl() ... ...
hrtimer_try_to_cancel() ... ...
switched_to_fair() ... ...
... ... ...
... ... ...
raw_spin_unlock(&rq->lock) ... (asquired)
... ... ...
... ... ...
do_exit() ... ...
schedule() ... ...
raw_spin_lock(&rq->lock) ... raw_spin_unlock(&rq->lock)
... ... ...
raw_spin_unlock(&rq->lock) ... raw_spin_lock(&rq->lock)
... ... (asquired)
put_task_struct() ... ...
free_task_struct() ... ...
... ... raw_spin_unlock(&rq->lock)
... (asquired) ...
... ... ...
... (use after free) ...
So, let's implement 100% guaranteed way to cancel the timer and let's
be sure we are safe even in very unlikely situations.
rq unlocking does not limit the area of switched_from_dl() use, because
this has already been possible in pull_dl_task() below.
Let's consider the safety of of this unlocking. New code in the patch
is working when hrtimer_try_to_cancel() fails. This means the callback
is running. In this case hrtimer_cancel() is just waiting till the
callback is finished. Two
1) Since we are in switched_from_dl(), new class is not dl_sched_class and
new prio is not less MAX_DL_PRIO. So, the callback returns early; it's
right after !dl_task() check. After that hrtimer_cancel() returns back too.
The above is:
raw_spin_lock(rq->lock); ...
... dl_task_timer()
... raw_spin_lock(rq->lock);
switched_from_dl() ...
hrtimer_try_to_cancel() ...
raw_spin_unlock(rq->lock); ...
hrtimer_cancel() ...
... raw_spin_unlock(rq->lock);
... return HRTIMER_NORESTART;
... ...
raw_spin_lock(rq->lock); ...
2) But the below is also possible:
dl_task_timer()
raw_spin_lock(rq->lock);
...
raw_spin_unlock(rq->lock);
raw_spin_lock(rq->lock); ...
switched_from_dl() ...
hrtimer_try_to_cancel() ...
... return HRTIMER_NORESTART;
raw_spin_unlock(rq->lock); ...
hrtimer_cancel(); ...
raw_spin_lock(rq->lock); ...
In this case hrtimer_cancel() returns immediately. Very unlikely case,
just to mention.
Nobody can manipulate the task, because check_class_changed() is
always called with pi_lock locked. Nobody can force the task to
participate in (concurrent) priority inheritance schemes (the same reason).
All concurrent task operations require pi_lock, which is held by us.
No deadlocks with dl_task_timer() are possible, because it returns
right after !dl_task() check (it does nothing).
If we receive a new dl_task during the time of unlocked rq, we just
don't have to do pull_dl_task() in switched_from_dl() further.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
[ Added comments]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414420852.19914.186.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use nr_cpus_allowed to bail from select_task_rq() when only one cpu
can be used, and saves some cycles for pinned tasks.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413253360-5318-2-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There is no need to do balance during fork since SCHED_DEADLINE
tasks can't fork. This patch avoid the SD_BALANCE_FORK check.
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1413253360-5318-1-git-send-email-wanpeng.li@linux.intel.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Exclusive cpusets are the only way users can restrict SCHED_DEADLINE tasks
affinity (performing what is commonly called clustered scheduling).
Unfortunately, such thing is currently broken for two reasons:
- No check is performed when the user tries to attach a task to
an exlusive cpuset (recall that exclusive cpusets have an
associated maximum allowed bandwidth).
- Bandwidths of source and destination cpusets are not correctly
updated after a task is migrated between them.
This patch fixes both things at once, as they are opposite faces
of the same coin.
The check is performed in cpuset_can_attach(), as there aren't any
points of failure after that function. The updated is split in two
halves. We first reserve bandwidth in the destination cpuset, after
we pass the check in cpuset_can_attach(). And we then release
bandwidth from the source cpuset when the task's affinity is
actually changed. Even if there can be time windows when sched_setattr()
may erroneously fail in the source cpuset, we are fine with it, as
we can't perfom an atomic update of both cpusets at once.
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: michael@amarulasolutions.com
Cc: luca.abeni@unitn.it
Cc: Li Zefan <lizefan@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: cgroups@vger.kernel.org
Link: http://lkml.kernel.org/r/1411118561-26323-3-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As Kirill mentioned (https://lkml.org/lkml/2013/1/29/118):
| If rq has already had 2 or more pushable tasks and we try to add a
| pinned task then call of push_rt_task will just waste a time.
Just switched pinned task is not able to be pushed. If the rq has had
several dl tasks before they have already been considered as candidates
to be pushed (or pulled). This patch implements the same behavior as rt
class which introduced by commit 1044791755 ("sched/rt: Do not try to
push tasks if pinned task switches to RT").
Suggested-by: Kirill V Tkhai <tkhai@yandex.ru>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413938203-224610-1-git-send-email-wanpeng.li@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1) switched_to_dl() check is wrong. We reschedule only
if rq->curr is deadline task, and we do not reschedule
if it's a lower priority task. But we must always
preempt a task of other classes.
2) dl_task_timer():
Policy does not change in case of priority inheritance.
rt_mutex_setprio() changes prio, while policy remains old.
So we lose some balancing logic in dl_task_timer() and
switched_to_dl() when we check policy instead of priority. Boosted
task may be rq->curr.
(I didn't change switched_from_dl() because no check is necessary
there at all).
I've looked at this place(switched_to_dl) several times and even fixed
this function, but found just now... I suppose some performance tests
may work better after this.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1413909356.19914.128.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
dl_task_timer() is racy against several paths. Daniel noticed that
the replenishment timer may experience a race condition against an
enqueue_dl_entity() called from rt_mutex_setprio(). With his own
words:
rt_mutex_setprio() resets p->dl.dl_throttled. So the pattern is:
start_dl_timer() throttled = 1, rt_mutex_setprio() throlled = 0,
sched_switch() -> enqueue_task(), dl_task_timer-> enqueue_task()
throttled is 0
=> BUG_ON(on_dl_rq(dl_se)) fires as the scheduling entity is already
enqueued on the -deadline runqueue.
As we do for the other races, we just bail out in the replenishment
timer code.
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: vincent@legout.info
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1414142198-18552-5-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In the deboost path, right after the dl_boosted flag has been
reset, we can currently end up replenishing using -deadline
parameters of a !SCHED_DEADLINE entity. This of course causes
a bug, as those parameters are empty.
In the case depicted above it is safe to simply bail out, as
the deboosted task is going to be back to its original scheduling
class anyway.
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: vincent@legout.info
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Fabio Checconi <fchecconi@gmail.com>
Link: http://lkml.kernel.org/r/1414142198-18552-4-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
Users can perform clustered scheduling using the cpuset facility.
After an exclusive cpuset is created, task migrations happen only
between CPUs belonging to the same cpuset. Inter- cpuset migrations
can only happen when the user requires so, moving a task between
different cpusets. This behaviour is broken in SCHED_DEADLINE, as
currently spurious inter- cpuset migration may happen without user
intervention.
This patch fix the problem (and shuffles the code a bit to improve
clarity).
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: raistlin@linux.it
Cc: michael@amarulasolutions.com
Cc: fchecconi@gmail.com
Cc: daniel.wagner@bmw-carit.de
Cc: vincent@legout.info
Cc: luca.abeni@unitn.it
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1411118561-26323-4-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When a task is using SCHED_DEADLINE and the user setschedules it to a
different class its sched_dl_entity static parameters are not cleaned
up. This causes a bug if the user sets it back to SCHED_DEADLINE with
the same parameters again. The problem resides in the check we
perform at the very beginning of dl_overflow():
if (new_bw == p->dl.dl_bw)
return 0;
This condition is met in the case depicted above, so the function
returns and dl_b->total_bw is not updated (the p->dl.dl_bw is not
added to it). After this, admission control is broken.
This patch fixes the thing, properly clearing static parameters for a
task that ceases to use SCHED_DEADLINE.
Reported-by: Daniele Alessandrelli <daniele.alessandrelli@gmail.com>
Reported-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Reported-by: Vincent Legout <vincent@legout.info>
Tested-by: Luca Abeni <luca.abeni@unitn.it>
Tested-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Tested-by: Vincent Legout <vincent@legout.info>
Signed-off-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Fabio Checconi <fchecconi@gmail.com>
Cc: Dario Faggioli <raistlin@linux.it>
Cc: Michael Trimarchi <michael@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1411118561-26323-2-git-send-email-juri.lelli@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
1) Nobody calls pick_dl_task() with negative cpu, it's old RT leftover.
2) If p->nr_cpus_allowed is 1, than the affinity has just been changed
in set_cpus_allowed_ptr(); we'll pick it just earlier than migration
thread.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1410529340.3569.27.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
An overrun could happen in function start_hrtick_dl()
when a task with SCHED_DEADLINE runs in the microseconds
range.
For example, if a task with SCHED_DEADLINE has the following parameters:
Task runtime deadline period
P1 200us 500us 500us
The deadline and period from task P1 are less than 1ms.
In order to achieve microsecond precision, we need to enable HRTICK feature
by the next command:
PC#echo "HRTICK" > /sys/kernel/debug/sched_features
PC#trace-cmd record -e sched_switch &
PC#./schedtool -E -t 200000:500000:500000 -e ./test
The binary test is in an endless while(1) loop here.
Some pieces of trace.dat are as follows:
<idle>-0 157.603157: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.603203: sched_switch: 2481:R ==> 0:120: swapper/2
<idle>-0 157.605657: sched_switch: :R ==> 2481:4294967295: test
test-2481 157.608183: sched_switch: 2481:R ==> 2483:120: trace-cmd
trace-cmd-2483 157.609656: sched_switch:2483:R==>2481:4294967295: test
We can get the runtime of P1 from the information above:
runtime = 157.608183 - 157.605657
runtime = 0.002526(2.526ms)
The correct runtime should be less than or equal to 200us at some point.
The problem is caused by a conditional judgment "delta > 10000"
in function start_hrtick_dl().
Because no hrtimer start up to control the rest of runtime
when the reset of runtime is less than 10us.
So the process will continue to run until tick-period is coming.
Move the code with the limit of the least time slice
from hrtick_start_fair() to hrtick_start() because the
EDF schedule class also needs this function in start_hrtick_dl().
To fix this problem, we call hrtimer_start() unconditionally in
start_hrtick_dl(), and make sure the scheduling slice won't be smaller
than 10us in hrtimer_start().
Signed-off-by: Xiaofeng Yan <xiaofeng.yan@huawei.com>
Reviewed-by: Li Zefan <lizefan@huawei.com>
Acked-by: Juri Lelli <juri.lelli@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1409022941-5880-1-git-send-email-xiaofeng.yan@huawei.com
[ Massaged the changelog and the code. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__get_cpu_var can paper over differences in the definitions of
cpumask_var_t and either use the address of the cpumask variable
directly or perform a fetch of the address of the struct cpumask
allocated elsewhere. This is important particularly when using per cpu
cpumask_var_t declarations because in one case we have an offset into
a per cpu area to handle and in the other case we need to fetch a
pointer from the offset.
This patch introduces a new macro
this_cpu_cpumask_var_ptr()
that is defined where cpumask_var_t is defined and performs the proper
actions. All use cases where __get_cpu_var is used with cpumask_var_t
are converted to the use of this_cpu_cpumask_var_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Implement task_on_rq_queued() and use it everywhere instead of
on_rq check. No functional changes.
The only exception is we do not use the wrapper in
check_for_tasks(), because it requires to export
task_on_rq_queued() in global header files. Next patch in series
would return it back, so we do not twist it from here to there.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1408528052.23412.87.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We always use resched_task() with rq->curr argument.
It's not possible to reschedule any task but rq's current.
The patch introduces resched_curr(struct rq *) to
replace all of the repeating patterns. The main aim
is cleanup, but there is a little size profit too:
(before)
$ size kernel/sched/built-in.o
text data bss dec hex filename
155274 16445 7042 178761 2ba49 kernel/sched/built-in.o
$ size vmlinux
text data bss dec hex filename
7411490 1178376 991232 9581098 92322a vmlinux
(after)
$ size kernel/sched/built-in.o
text data bss dec hex filename
155130 16445 7042 178617 2b9b9 kernel/sched/built-in.o
$ size vmlinux
text data bss dec hex filename
7411362 1178376 991232 9580970 9231aa vmlinux
I was choosing between resched_curr() and resched_rq(),
and the first name looks better for me.
A little lie in Documentation/trace/ftrace.txt. I have not
actually collected the tracing again. With a hope the patch
won't make execution times much worse :)
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140628200219.1778.18735.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull more scheduler updates from Ingo Molnar:
"Second round of scheduler changes:
- try-to-wakeup and IPI reduction speedups, from Andy Lutomirski
- continued power scheduling cleanups and refactorings, from Nicolas
Pitre
- misc fixes and enhancements"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Delete extraneous extern for to_ratio()
sched/idle: Optimize try-to-wake-up IPI
sched/idle: Simplify wake_up_idle_cpu()
sched/idle: Clear polling before descheduling the idle thread
sched, trace: Add a tracepoint for IPI-less remote wakeups
cpuidle: Set polling in poll_idle
sched: Remove redundant assignment to "rt_rq" in update_curr_rt(...)
sched: Rename capacity related flags
sched: Final power vs. capacity cleanups
sched: Remove remaining dubious usage of "power"
sched: Let 'struct sched_group_power' care about CPU capacity
sched/fair: Disambiguate existing/remaining "capacity" usage
sched/fair: Change "has_capacity" to "has_free_capacity"
sched/fair: Remove "power" from 'struct numa_stats'
sched: Fix signedness bug in yield_to()
sched/fair: Use time_after() in record_wakee()
sched/balancing: Reduce the rate of needless idle load balancing
sched/fair: Fix unlocked reads of some cfs_b->quota/period
Now that 3.15 is released, this merges the 'next' branch into 'master',
bringing us to the normal situation where my 'master' branch is the
merge window.
* accumulated work in next: (6809 commits)
ufs: sb mutex merge + mutex_destroy
powerpc: update comments for generic idle conversion
cris: update comments for generic idle conversion
idle: remove cpu_idle() forward declarations
nbd: zero from and len fields in NBD_CMD_DISCONNECT.
mm: convert some level-less printks to pr_*
MAINTAINERS: adi-buildroot-devel is moderated
MAINTAINERS: add linux-api for review of API/ABI changes
mm/kmemleak-test.c: use pr_fmt for logging
fs/dlm/debug_fs.c: replace seq_printf by seq_puts
fs/dlm/lockspace.c: convert simple_str to kstr
fs/dlm/config.c: convert simple_str to kstr
mm: mark remap_file_pages() syscall as deprecated
mm: memcontrol: remove unnecessary memcg argument from soft limit functions
mm: memcontrol: clean up memcg zoneinfo lookup
mm/memblock.c: call kmemleak directly from memblock_(alloc|free)
mm/mempool.c: update the kmemleak stack trace for mempool allocations
lib/radix-tree.c: update the kmemleak stack trace for radix tree allocations
mm: introduce kmemleak_update_trace()
mm/kmemleak.c: use %u to print ->checksum
...
There was a prototype for it added to kernel/sched/sched.h
at the same time the extern was added, so the extern in
the C file was never really ever needed.
See commit 332ac17ef5
("sched/deadline: Add bandwidth management for SCHED_DEADLINE
tasks") for details.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dario Faggioli <raistlin@linux.it>
Link: http://lkml.kernel.org/r/1400013605-18717-1-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Throttled task is still on rq, and it may be moved to other cpu
if user is playing with sched_setaffinity(). Therefore, unlocked
task_rq() access makes the race.
Juri Lelli reports he got this race when dl_bandwidth_enabled()
was not set.
Other thing, pointed by Peter Zijlstra:
"Now I suppose the problem can still actually happen when
you change the root domain and trigger a effective affinity
change that way".
To fix that we do the same as made in __task_rq_lock(). We do not
use __task_rq_lock() itself, because it has a useful lockdep check,
which is not correct in case of dl_task_timer(). We do not need
pi_lock locked here. This case is an exception (PeterZ):
"The only reason we don't strictly need ->pi_lock now is because
we're guaranteed to have p->state == TASK_RUNNING here and are
thus free of ttwu races".
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org> # v3.14+
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/3056991400578422@web14g.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Two of the three prink_deferred uses are really printk_once style
uses, so add a printk_deferred_once macro to simplify those call
sites.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After learning we'll need some sort of deferred printk functionality in
the timekeeping core, Peter suggested we rename the printk_sched function
so it can be reused by needed subsystems.
This only changes the function name. No logic changes.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Bohac <jbohac@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes ->nr_running may cross 2 but interrupt is not being
sent to rq's cpu. In this case we don't reenable the timer.
Looks like this may be the reason for rare unexpected effects,
if nohz is enabled.
Patch replaces all places of direct changing of nr_running
and makes add_nr_running() caring about crossing border.
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140508225830.2469.97461.stgit@localhost
Signed-off-by: Ingo Molnar <mingo@kernel.org>
yield_task_dl() is broken:
o it forces current to be throttled setting its runtime to zero;
o it sets current's dl_se->dl_new to one, expecting that dl_task_timer()
will queue it back with proper parameters at replenish time.
Unfortunately, dl_task_timer() has this check at the very beginning:
if (!dl_task(p) || dl_se->dl_new)
goto unlock;
So, it just bails out and the task is never replenished. It actually
yielded forever.
To fix this, introduce a new flag indicating that the task properly yielded
the CPU before its current runtime expired. While this is a little overdoing
at the moment, the flag would be useful in the future to discriminate between
"good" jobs (of which remaining runtime could be reclaimed, i.e. recycled)
and "bad" jobs (for which dl_throttled task has been set) that needed to be
stopped.
Reported-by: yjay.kim <yjay.kim@lge.com>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140429103953.e68eba1b2ac3309214e3dc5a@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We need to do it like we do for the other higher priority classes..
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Cc: Michael wang <wangyun@linux.vnet.ibm.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/336561397137116@web27h.yandex.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The problems:
1) We check for rt_nr_running before call of put_prev_task().
If previous task is RT, its rt_rq may become throttled
and dequeued after this call.
In case of p is from rt->rq this just causes picking a task
from throttled queue, but in case of its rt_rq is child
we are guaranteed catch BUG_ON.
2) The same with deadline class. The only difference we operate
on only dl_rq.
This patch fixes all the above problems and it adds a small skip in the
DL update like we've already done for RT class:
if (unlikely((s64)delta_exec <= 0))
return;
This will optimize sequential update_curr_dl() calls a little.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/r/1393946746.3643.3.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Kirill Tkhai noted:
Since deadline tasks share rt bandwidth, we must care about
bandwidth timer set. Otherwise rt_time may grow up to infinity
in update_curr_dl(), if there are no other available RT tasks
on top level bandwidth.
RT task were in fact throttled right after they got enqueued,
and never executed again (rt_time never again went below rt_runtime).
Peter then proposed to accrue DL execution on rt_time only when
rt timer is active, and proposed a patch (this patch is a slight
modification of that) to implement that behavior. While this
solves Kirill problem, it has a drawback.
Indeed, Kirill noted again:
It looks we may get into a situation, when all CPU time is shared
between RT and DL tasks:
rt_runtime = n
rt_period = 2n
| RT working, DL sleeping | DL working, RT sleeping |
-----------------------------------------------------------
| (1) duration = n | (2) duration = n | (repeat)
|--------------------------|------------------------------|
| (rt_bw timer is running) | (rt_bw timer is not running) |
No time for fair tasks at all.
While this can happen during the first period, if rq is always backlogged,
RT tasks won't have the opportunity to execute anymore: rt_time reached
rt_runtime during (1), suppose after (2) RT is enqueued back, it gets
throttled since rt timer didn't fire, replenishment is from now on eaten up
by DL tasks that accrue their execution on rt_time (while rt timer is
active - we have an RT task waiting for replenishment). FAIR tasks are
not touched after this first period. Ok, this is not ideal, and the situation
is even worse!
What above (the nice case), practically never happens in reality, where
your rt timer is not aligned to tasks periods, tasks are in general not
periodic, etc.. Long story short, you always risk to overload your system.
This patch is based on Peter's idea, but exploits an additional fact:
if you don't have RT tasks enqueued, it makes little sense to continue
incrementing rt_time once you reached the upper limit (DL tasks have their
own mechanism for throttling).
This cures both problems:
- no matter how many DL instances in the past, you'll have an rt_time
slightly above rt_runtime when an RT task is enqueued, and from that
point on (after the first replenishment), the task will normally execute;
- you can still eat up all bandwidth during the first period, but not
anymore after that, remember that DL execution will increment rt_time
till the upper limit is reached.
The situation is still not perfect! But, we have a simple solution for now,
that limits how much you can jeopardize your system, as we keep working
towards the right answer: RT groups scheduled using deadline servers.
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20140225151515.617714e2f2cd6c558531ba61@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In deadline class we do not have group scheduling.
So, let's remove unnecessary
X = X;
equations.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Link: http://lkml.kernel.org/r/1393343543.4089.5.camel@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Remove a few gratuitous #ifdefs in pick_next_task*().
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-nnzddp5c4fijyzzxxrwlxghf@git.kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Dan Carpenter reported:
> kernel/sched/rt.c:1347 pick_next_task_rt() warn: variable dereferenced before check 'prev' (see line 1338)
> kernel/sched/deadline.c:1011 pick_next_task_dl() warn: variable dereferenced before check 'prev' (see line 1005)
Kirill also spotted that migrate_tasks() will have an instant NULL
deref because pick_next_task() will immediately deref prev.
Instead of fixing all the corner cases because migrate_tasks() can
pass in a NULL prev task in the unlikely case of hot-un-plug, provide
a fake task such that we can remove all the NULL checks from the far
more common paths.
A further problem; not previously spotted; is that because we pushed
pre_schedule() and idle_balance() into pick_next_task() we now need to
avoid those getting called and pulling more tasks on our dying CPU.
We avoid pull_{dl,rt}_task() by setting fake_task.prio to MAX_PRIO+1.
We also note that since we call pick_next_task() exactly the amount of
times we have runnable tasks present, we should never land in
idle_balance().
Fixes: 38033c37fa ("sched: Push down pre_schedule() and idle_balance()")
Cc: Juri Lelli <juri.lelli@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Kirill Tkhai <tkhai@yandex.ru>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140212094930.GB3545@laptop.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In deadline class we do not have group scheduling like in RT.
dl_nr_total is the same as dl_nr_running. So, one of them should
be removed.
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Kirill Tkhai <tkhai@yandex.ru>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/368631392675853@web20h.yandex.ru
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Rostedt writes:
My test suite was locking up hard when enabling mmiotracer. This was due
to the mmiotracer placing all but one CPU offline. I found this out
when I was able to reproduce the bug with just my stress-cpu-hotplug
test. This bug baffled me because it would not always trigger, and
would only trigger on the first run after boot up. The
stress-cpu-hotplug test would crash hard the first run, or never crash
at all. But a new reboot may cause it to crash on the first run again.
I spent all week bisecting this, as I couldn't find a consistent
reproducer. I finally narrowed it down to the sched deadline patches,
and even more peculiar, to the commit that added the sched
deadline boot up self test to the latency tracer. Then it dawned on me
to what the bug was.
All it took was to run a task under sched deadline to screw up the CPU
hot plugging. This explained why it would lock up only on the first run
of the stress-cpu-hotplug test. The bug happened when the boot up self
test of the schedule latency tracer would test a deadline task. The
deadline task would corrupt something that would cause CPU hotplug to
fail. If it didn't corrupt it, the stress test would always work
(there's no other sched deadline tasks that would run to cause
problems). If it did corrupt on boot up, the first test would lockup
hard.
I proved this theory by running my deadline test program on another box,
and then run the stress-cpu-hotplug test, and it would now consistently
lock up. I could run stress-cpu-hotplug over and over with no problem,
but once I ran the deadline test, the next run of the
stress-cpu-hotplug would lock hard.
After adding lots of tracing to the code, I found the cause. The
function tracer showed that migrate_tasks() was stuck in an infinite
loop, where rq->nr_running never equaled 1 to break out of it. When I
added a trace_printk() to see what that number was, it was 335 and
never decrementing!
Looking at the deadline code I found:
static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) {
dequeue_dl_entity(&p->dl);
dequeue_pushable_dl_task(rq, p);
}
static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) {
update_curr_dl(rq);
__dequeue_task_dl(rq, p, flags);
dec_nr_running(rq);
}
And this:
if (dl_runtime_exceeded(rq, dl_se)) {
__dequeue_task_dl(rq, curr, 0);
if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted)))
dl_se->dl_throttled = 1;
else
enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
if (!is_leftmost(curr, &rq->dl))
resched_task(curr);
}
Notice how we call __dequeue_task_dl() and in the else case we
call enqueue_task_dl()? Also notice that dequeue_task_dl() has
underscores where enqueue_task_dl() does not. The enqueue_task_dl()
calls inc_nr_running(rq), but __dequeue_task_dl() does not. This is
where we get nr_running out of sync.
[snip]
Another point where nr_running can get out of sync is when the dl_timer
fires:
dl_se->dl_throttled = 0;
if (p->on_rq) {
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
if (task_has_dl_policy(rq->curr))
check_preempt_curr_dl(rq, p, 0);
else
resched_task(rq->curr);
This patch does two things:
- correctly accounts for throttled tasks (that are now considered
!running);
- fixes the bug, updating nr_running from {inc,dec}_dl_tasks(),
since we risk to update it twice in some situations (e.g., a
task is dequeued while it has exceeded its budget).
Cc: mingo@redhat.com
Cc: torvalds@linux-foundation.org
Cc: akpm@linux-foundation.org
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1392884379-13744-1-git-send-email-juri.lelli@gmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch both merged idle_balance() and pre_schedule() and pushes
both of them into pick_next_task().
Conceptually pre_schedule() and idle_balance() are rather similar,
both are used to pull more work onto the current CPU.
We cannot however first move idle_balance() into pre_schedule_fair()
since there is no guarantee the last runnable task is a fair task, and
thus we would miss newidle balances.
Similarly, the dl and rt pre_schedule calls must be ran before
idle_balance() since their respective tasks have higher priority and
it would not do to delay their execution searching for less important
tasks first.
However, by noticing that pick_next_tasks() already traverses the
sched_class hierarchy in the right order, we can get the right
behaviour and do away with both calls.
We must however change the special case optimization to also require
that prev is of sched_class_fair, otherwise we can miss doing a dl or
rt pull where we needed one.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/n/tip-a8k6vvaebtn64nie345kx1je@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to avoid having to do put/set on a whole cgroup hierarchy
when we context switch, push the put into pick_next_task() so that
both operations are in the same function. Further changes then allow
us to possibly optimize away redundant work.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1328936700.2476.17.camel@laptop
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When p is current and it's not of dl class, then there are no other
dl taks in the rq. If we had had pushable tasks in some other rq,
they would have been pushed earlier. So, skip "p == rq->curr" case.
Signed-off-by: Kirill Tkhai <ktkhai@parallels.com>
Acked-by: Juri Lelli <juri.lelli@gmail.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20140128072421.32315.25300.stgit@tkhai
Signed-off-by: Ingo Molnar <mingo@kernel.org>