WSL2-Linux-Kernel/drivers/iio/adc/ad7768-1.c

656 строки
16 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Analog Devices AD7768-1 SPI ADC driver
*
* Copyright 2017 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regulator/consumer.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
/* AD7768 registers definition */
#define AD7768_REG_CHIP_TYPE 0x3
#define AD7768_REG_PROD_ID_L 0x4
#define AD7768_REG_PROD_ID_H 0x5
#define AD7768_REG_CHIP_GRADE 0x6
#define AD7768_REG_SCRATCH_PAD 0x0A
#define AD7768_REG_VENDOR_L 0x0C
#define AD7768_REG_VENDOR_H 0x0D
#define AD7768_REG_INTERFACE_FORMAT 0x14
#define AD7768_REG_POWER_CLOCK 0x15
#define AD7768_REG_ANALOG 0x16
#define AD7768_REG_ANALOG2 0x17
#define AD7768_REG_CONVERSION 0x18
#define AD7768_REG_DIGITAL_FILTER 0x19
#define AD7768_REG_SINC3_DEC_RATE_MSB 0x1A
#define AD7768_REG_SINC3_DEC_RATE_LSB 0x1B
#define AD7768_REG_DUTY_CYCLE_RATIO 0x1C
#define AD7768_REG_SYNC_RESET 0x1D
#define AD7768_REG_GPIO_CONTROL 0x1E
#define AD7768_REG_GPIO_WRITE 0x1F
#define AD7768_REG_GPIO_READ 0x20
#define AD7768_REG_OFFSET_HI 0x21
#define AD7768_REG_OFFSET_MID 0x22
#define AD7768_REG_OFFSET_LO 0x23
#define AD7768_REG_GAIN_HI 0x24
#define AD7768_REG_GAIN_MID 0x25
#define AD7768_REG_GAIN_LO 0x26
#define AD7768_REG_SPI_DIAG_ENABLE 0x28
#define AD7768_REG_ADC_DIAG_ENABLE 0x29
#define AD7768_REG_DIG_DIAG_ENABLE 0x2A
#define AD7768_REG_ADC_DATA 0x2C
#define AD7768_REG_MASTER_STATUS 0x2D
#define AD7768_REG_SPI_DIAG_STATUS 0x2E
#define AD7768_REG_ADC_DIAG_STATUS 0x2F
#define AD7768_REG_DIG_DIAG_STATUS 0x30
#define AD7768_REG_MCLK_COUNTER 0x31
/* AD7768_REG_POWER_CLOCK */
#define AD7768_PWR_MCLK_DIV_MSK GENMASK(5, 4)
#define AD7768_PWR_MCLK_DIV(x) FIELD_PREP(AD7768_PWR_MCLK_DIV_MSK, x)
#define AD7768_PWR_PWRMODE_MSK GENMASK(1, 0)
#define AD7768_PWR_PWRMODE(x) FIELD_PREP(AD7768_PWR_PWRMODE_MSK, x)
/* AD7768_REG_DIGITAL_FILTER */
#define AD7768_DIG_FIL_FIL_MSK GENMASK(6, 4)
#define AD7768_DIG_FIL_FIL(x) FIELD_PREP(AD7768_DIG_FIL_FIL_MSK, x)
#define AD7768_DIG_FIL_DEC_MSK GENMASK(2, 0)
#define AD7768_DIG_FIL_DEC_RATE(x) FIELD_PREP(AD7768_DIG_FIL_DEC_MSK, x)
/* AD7768_REG_CONVERSION */
#define AD7768_CONV_MODE_MSK GENMASK(2, 0)
#define AD7768_CONV_MODE(x) FIELD_PREP(AD7768_CONV_MODE_MSK, x)
#define AD7768_RD_FLAG_MSK(x) (BIT(6) | ((x) & 0x3F))
#define AD7768_WR_FLAG_MSK(x) ((x) & 0x3F)
enum ad7768_conv_mode {
AD7768_CONTINUOUS,
AD7768_ONE_SHOT,
AD7768_SINGLE,
AD7768_PERIODIC,
AD7768_STANDBY
};
enum ad7768_pwrmode {
AD7768_ECO_MODE = 0,
AD7768_MED_MODE = 2,
AD7768_FAST_MODE = 3
};
enum ad7768_mclk_div {
AD7768_MCLK_DIV_16,
AD7768_MCLK_DIV_8,
AD7768_MCLK_DIV_4,
AD7768_MCLK_DIV_2
};
enum ad7768_dec_rate {
AD7768_DEC_RATE_32 = 0,
AD7768_DEC_RATE_64 = 1,
AD7768_DEC_RATE_128 = 2,
AD7768_DEC_RATE_256 = 3,
AD7768_DEC_RATE_512 = 4,
AD7768_DEC_RATE_1024 = 5,
AD7768_DEC_RATE_8 = 9,
AD7768_DEC_RATE_16 = 10
};
struct ad7768_clk_configuration {
enum ad7768_mclk_div mclk_div;
enum ad7768_dec_rate dec_rate;
unsigned int clk_div;
enum ad7768_pwrmode pwrmode;
};
static const struct ad7768_clk_configuration ad7768_clk_config[] = {
{ AD7768_MCLK_DIV_2, AD7768_DEC_RATE_8, 16, AD7768_FAST_MODE },
{ AD7768_MCLK_DIV_2, AD7768_DEC_RATE_16, 32, AD7768_FAST_MODE },
{ AD7768_MCLK_DIV_2, AD7768_DEC_RATE_32, 64, AD7768_FAST_MODE },
{ AD7768_MCLK_DIV_2, AD7768_DEC_RATE_64, 128, AD7768_FAST_MODE },
{ AD7768_MCLK_DIV_2, AD7768_DEC_RATE_128, 256, AD7768_FAST_MODE },
{ AD7768_MCLK_DIV_4, AD7768_DEC_RATE_128, 512, AD7768_MED_MODE },
{ AD7768_MCLK_DIV_4, AD7768_DEC_RATE_256, 1024, AD7768_MED_MODE },
{ AD7768_MCLK_DIV_4, AD7768_DEC_RATE_512, 2048, AD7768_MED_MODE },
{ AD7768_MCLK_DIV_4, AD7768_DEC_RATE_1024, 4096, AD7768_MED_MODE },
{ AD7768_MCLK_DIV_8, AD7768_DEC_RATE_1024, 8192, AD7768_MED_MODE },
{ AD7768_MCLK_DIV_16, AD7768_DEC_RATE_1024, 16384, AD7768_ECO_MODE },
};
static const struct iio_chan_spec ad7768_channels[] = {
{
.type = IIO_VOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.indexed = 1,
.channel = 0,
.scan_index = 0,
.scan_type = {
.sign = 'u',
.realbits = 24,
.storagebits = 32,
.shift = 8,
.endianness = IIO_BE,
},
},
};
struct ad7768_state {
struct spi_device *spi;
struct regulator *vref;
struct mutex lock;
struct clk *mclk;
unsigned int mclk_freq;
unsigned int samp_freq;
struct completion completion;
struct iio_trigger *trig;
struct gpio_desc *gpio_sync_in;
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
union {
__be32 d32;
u8 d8[2];
} data ____cacheline_aligned;
};
static int ad7768_spi_reg_read(struct ad7768_state *st, unsigned int addr,
unsigned int len)
{
unsigned int shift;
int ret;
shift = 32 - (8 * len);
st->data.d8[0] = AD7768_RD_FLAG_MSK(addr);
ret = spi_write_then_read(st->spi, st->data.d8, 1,
&st->data.d32, len);
if (ret < 0)
return ret;
return (be32_to_cpu(st->data.d32) >> shift);
}
static int ad7768_spi_reg_write(struct ad7768_state *st,
unsigned int addr,
unsigned int val)
{
st->data.d8[0] = AD7768_WR_FLAG_MSK(addr);
st->data.d8[1] = val & 0xFF;
return spi_write(st->spi, st->data.d8, 2);
}
static int ad7768_set_mode(struct ad7768_state *st,
enum ad7768_conv_mode mode)
{
int regval;
regval = ad7768_spi_reg_read(st, AD7768_REG_CONVERSION, 1);
if (regval < 0)
return regval;
regval &= ~AD7768_CONV_MODE_MSK;
regval |= AD7768_CONV_MODE(mode);
return ad7768_spi_reg_write(st, AD7768_REG_CONVERSION, regval);
}
static int ad7768_scan_direct(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
int readval, ret;
reinit_completion(&st->completion);
ret = ad7768_set_mode(st, AD7768_ONE_SHOT);
if (ret < 0)
return ret;
ret = wait_for_completion_timeout(&st->completion,
msecs_to_jiffies(1000));
if (!ret)
return -ETIMEDOUT;
readval = ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3);
if (readval < 0)
return readval;
/*
* Any SPI configuration of the AD7768-1 can only be
* performed in continuous conversion mode.
*/
ret = ad7768_set_mode(st, AD7768_CONTINUOUS);
if (ret < 0)
return ret;
return readval;
}
static int ad7768_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
if (readval) {
ret = ad7768_spi_reg_read(st, reg, 1);
if (ret < 0)
goto err_unlock;
*readval = ret;
ret = 0;
} else {
ret = ad7768_spi_reg_write(st, reg, writeval);
}
err_unlock:
mutex_unlock(&st->lock);
return ret;
}
static int ad7768_set_dig_fil(struct ad7768_state *st,
enum ad7768_dec_rate dec_rate)
{
unsigned int mode;
int ret;
if (dec_rate == AD7768_DEC_RATE_8 || dec_rate == AD7768_DEC_RATE_16)
mode = AD7768_DIG_FIL_FIL(dec_rate);
else
mode = AD7768_DIG_FIL_DEC_RATE(dec_rate);
ret = ad7768_spi_reg_write(st, AD7768_REG_DIGITAL_FILTER, mode);
if (ret < 0)
return ret;
/* A sync-in pulse is required every time the filter dec rate changes */
gpiod_set_value(st->gpio_sync_in, 1);
gpiod_set_value(st->gpio_sync_in, 0);
return 0;
}
static int ad7768_set_freq(struct ad7768_state *st,
unsigned int freq)
{
unsigned int diff_new, diff_old, pwr_mode, i, idx;
int res, ret;
diff_old = U32_MAX;
idx = 0;
res = DIV_ROUND_CLOSEST(st->mclk_freq, freq);
/* Find the closest match for the desired sampling frequency */
for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) {
diff_new = abs(res - ad7768_clk_config[i].clk_div);
if (diff_new < diff_old) {
diff_old = diff_new;
idx = i;
}
}
/*
* Set both the mclk_div and pwrmode with a single write to the
* POWER_CLOCK register
*/
pwr_mode = AD7768_PWR_MCLK_DIV(ad7768_clk_config[idx].mclk_div) |
AD7768_PWR_PWRMODE(ad7768_clk_config[idx].pwrmode);
ret = ad7768_spi_reg_write(st, AD7768_REG_POWER_CLOCK, pwr_mode);
if (ret < 0)
return ret;
ret = ad7768_set_dig_fil(st, ad7768_clk_config[idx].dec_rate);
if (ret < 0)
return ret;
st->samp_freq = DIV_ROUND_CLOSEST(st->mclk_freq,
ad7768_clk_config[idx].clk_div);
return 0;
}
static ssize_t ad7768_sampling_freq_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7768_state *st = iio_priv(indio_dev);
unsigned int freq;
int i, len = 0;
for (i = 0; i < ARRAY_SIZE(ad7768_clk_config); i++) {
freq = DIV_ROUND_CLOSEST(st->mclk_freq,
ad7768_clk_config[i].clk_div);
len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", freq);
}
buf[len - 1] = '\n';
return len;
}
static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(ad7768_sampling_freq_avail);
static int ad7768_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long info)
{
struct ad7768_state *st = iio_priv(indio_dev);
int scale_uv, ret;
switch (info) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad7768_scan_direct(indio_dev);
if (ret >= 0)
*val = ret;
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
scale_uv = regulator_get_voltage(st->vref);
if (scale_uv < 0)
return scale_uv;
*val = (scale_uv * 2) / 1000;
*val2 = chan->scan_type.realbits;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->samp_freq;
return IIO_VAL_INT;
}
return -EINVAL;
}
static int ad7768_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long info)
{
struct ad7768_state *st = iio_priv(indio_dev);
switch (info) {
case IIO_CHAN_INFO_SAMP_FREQ:
return ad7768_set_freq(st, val);
default:
return -EINVAL;
}
}
static struct attribute *ad7768_attributes[] = {
&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
NULL
};
static const struct attribute_group ad7768_group = {
.attrs = ad7768_attributes,
};
static const struct iio_info ad7768_info = {
.attrs = &ad7768_group,
.read_raw = &ad7768_read_raw,
.write_raw = &ad7768_write_raw,
.debugfs_reg_access = &ad7768_reg_access,
};
static int ad7768_setup(struct ad7768_state *st)
{
int ret;
/*
* Two writes to the SPI_RESET[1:0] bits are required to initiate
* a software reset. The bits must first be set to 11, and then
* to 10. When the sequence is detected, the reset occurs.
* See the datasheet, page 70.
*/
ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x3);
if (ret)
return ret;
ret = ad7768_spi_reg_write(st, AD7768_REG_SYNC_RESET, 0x2);
if (ret)
return ret;
st->gpio_sync_in = devm_gpiod_get(&st->spi->dev, "adi,sync-in",
GPIOD_OUT_LOW);
if (IS_ERR(st->gpio_sync_in))
return PTR_ERR(st->gpio_sync_in);
/* Set the default sampling frequency to 32000 kSPS */
return ad7768_set_freq(st, 32000);
}
static irqreturn_t ad7768_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
mutex_lock(&st->lock);
ret = spi_read(st->spi, &st->data.d32, 3);
if (ret < 0)
goto err_unlock;
iio_push_to_buffers_with_timestamp(indio_dev, &st->data.d32,
iio_get_time_ns(indio_dev));
iio_trigger_notify_done(indio_dev->trig);
err_unlock:
mutex_unlock(&st->lock);
return IRQ_HANDLED;
}
static irqreturn_t ad7768_interrupt(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct ad7768_state *st = iio_priv(indio_dev);
if (iio_buffer_enabled(indio_dev))
iio_trigger_poll(st->trig);
else
complete(&st->completion);
return IRQ_HANDLED;
};
static int ad7768_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
iio_triggered_buffer_postenable(indio_dev);
/*
* Write a 1 to the LSB of the INTERFACE_FORMAT register to enter
* continuous read mode. Subsequent data reads do not require an
* initial 8-bit write to query the ADC_DATA register.
*/
return ad7768_spi_reg_write(st, AD7768_REG_INTERFACE_FORMAT, 0x01);
}
static int ad7768_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad7768_state *st = iio_priv(indio_dev);
int ret;
/*
* To exit continuous read mode, perform a single read of the ADC_DATA
* reg (0x2C), which allows further configuration of the device.
*/
ret = ad7768_spi_reg_read(st, AD7768_REG_ADC_DATA, 3);
if (ret < 0)
return ret;
return iio_triggered_buffer_predisable(indio_dev);
}
static const struct iio_buffer_setup_ops ad7768_buffer_ops = {
.postenable = &ad7768_buffer_postenable,
.predisable = &ad7768_buffer_predisable,
};
static const struct iio_trigger_ops ad7768_trigger_ops = {
.validate_device = iio_trigger_validate_own_device,
};
static void ad7768_regulator_disable(void *data)
{
struct ad7768_state *st = data;
regulator_disable(st->vref);
}
static void ad7768_clk_disable(void *data)
{
struct ad7768_state *st = data;
clk_disable_unprepare(st->mclk);
}
static int ad7768_probe(struct spi_device *spi)
{
struct ad7768_state *st;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->spi = spi;
st->vref = devm_regulator_get(&spi->dev, "vref");
if (IS_ERR(st->vref))
return PTR_ERR(st->vref);
ret = regulator_enable(st->vref);
if (ret) {
dev_err(&spi->dev, "Failed to enable specified vref supply\n");
return ret;
}
ret = devm_add_action_or_reset(&spi->dev, ad7768_regulator_disable, st);
if (ret)
return ret;
st->mclk = devm_clk_get(&spi->dev, "mclk");
if (IS_ERR(st->mclk))
return PTR_ERR(st->mclk);
ret = clk_prepare_enable(st->mclk);
if (ret < 0)
return ret;
ret = devm_add_action_or_reset(&spi->dev, ad7768_clk_disable, st);
if (ret)
return ret;
st->mclk_freq = clk_get_rate(st->mclk);
spi_set_drvdata(spi, indio_dev);
mutex_init(&st->lock);
indio_dev->channels = ad7768_channels;
indio_dev->num_channels = ARRAY_SIZE(ad7768_channels);
indio_dev->dev.parent = &spi->dev;
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->info = &ad7768_info;
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
ret = ad7768_setup(st);
if (ret < 0) {
dev_err(&spi->dev, "AD7768 setup failed\n");
return ret;
}
st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d",
indio_dev->name, indio_dev->id);
if (!st->trig)
return -ENOMEM;
st->trig->ops = &ad7768_trigger_ops;
st->trig->dev.parent = &spi->dev;
iio_trigger_set_drvdata(st->trig, indio_dev);
ret = devm_iio_trigger_register(&spi->dev, st->trig);
if (ret)
return ret;
indio_dev->trig = iio_trigger_get(st->trig);
init_completion(&st->completion);
ret = devm_request_irq(&spi->dev, spi->irq,
&ad7768_interrupt,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
indio_dev->name, indio_dev);
if (ret)
return ret;
ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
&iio_pollfunc_store_time,
&ad7768_trigger_handler,
&ad7768_buffer_ops);
if (ret)
return ret;
return devm_iio_device_register(&spi->dev, indio_dev);
}
static const struct spi_device_id ad7768_id_table[] = {
{ "ad7768-1", 0 },
{}
};
MODULE_DEVICE_TABLE(spi, ad7768_id_table);
static const struct of_device_id ad7768_of_match[] = {
{ .compatible = "adi,ad7768-1" },
{ },
};
MODULE_DEVICE_TABLE(of, ad7768_of_match);
static struct spi_driver ad7768_driver = {
.driver = {
.name = "ad7768-1",
.of_match_table = ad7768_of_match,
},
.probe = ad7768_probe,
.id_table = ad7768_id_table,
};
module_spi_driver(ad7768_driver);
MODULE_AUTHOR("Stefan Popa <stefan.popa@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7768-1 ADC driver");
MODULE_LICENSE("GPL v2");