зеркало из https://github.com/microsoft/caffe.git
Merge pull request #3613 from longjon/py-coord-map
Python/net spec coordinate map and crop offset computation
This commit is contained in:
Коммит
74cc4970c8
|
@ -0,0 +1,185 @@
|
|||
"""
|
||||
Determine spatial relationships between layers to relate their coordinates.
|
||||
Coordinates are mapped from input-to-output (forward), but can
|
||||
be mapped output-to-input (backward) by the inverse mapping too.
|
||||
This helps crop and align feature maps among other uses.
|
||||
"""
|
||||
|
||||
from __future__ import division
|
||||
import numpy as np
|
||||
from caffe import layers as L
|
||||
|
||||
PASS_THROUGH_LAYERS = ['AbsVal', 'BatchNorm', 'Bias', 'BNLL', 'Dropout',
|
||||
'Eltwise', 'ELU', 'Log', 'LRN', 'Exp', 'MVN', 'Power',
|
||||
'ReLU', 'PReLU', 'Scale', 'Sigmoid', 'Split', 'TanH',
|
||||
'Threshold']
|
||||
|
||||
|
||||
def conv_params(fn):
|
||||
"""
|
||||
Extract the spatial parameters that determine the coordinate mapping:
|
||||
kernel size, stride, padding, and dilation.
|
||||
|
||||
Implementation detail: Convolution, Deconvolution, and Im2col layers
|
||||
define these in the convolution_param message, while Pooling has its
|
||||
own fields in pooling_param. This method deals with these details to
|
||||
extract canonical parameters.
|
||||
"""
|
||||
params = fn.params.get('convolution_param', fn.params)
|
||||
axis = params.get('axis', 1)
|
||||
ks = np.array(params['kernel_size'], ndmin=1)
|
||||
dilation = np.array(params.get('dilation', 1), ndmin=1)
|
||||
assert len({'pad_h', 'pad_w', 'kernel_h', 'kernel_w', 'stride_h',
|
||||
'stride_w'} & set(fn.params)) == 0, \
|
||||
'cropping does not support legacy _h/_w params'
|
||||
return (axis, np.array(params.get('stride', 1), ndmin=1),
|
||||
(ks - 1) * dilation + 1,
|
||||
np.array(params.get('pad', 0), ndmin=1))
|
||||
|
||||
|
||||
def crop_params(fn):
|
||||
"""
|
||||
Extract the crop layer parameters with defaults.
|
||||
"""
|
||||
params = fn.params.get('crop_param', fn.params)
|
||||
axis = params.get('axis', 2) # default to spatial crop for N, C, H, W
|
||||
offset = np.array(params.get('offset', 0), ndmin=1)
|
||||
return (axis, offset)
|
||||
|
||||
|
||||
class UndefinedMapException(Exception):
|
||||
"""
|
||||
Exception raised for layers that do not have a defined coordinate mapping.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def coord_map(fn):
|
||||
"""
|
||||
Define the coordinate mapping by its
|
||||
- axis
|
||||
- scale: output coord[i * scale] <- input_coord[i]
|
||||
- shift: output coord[i] <- output_coord[i + shift]
|
||||
s.t. the identity mapping, as for pointwise layers like ReLu, is defined by
|
||||
(None, 1, 0) since it is independent of axis and does not transform coords.
|
||||
"""
|
||||
if fn.type_name in ['Convolution', 'Pooling', 'Im2col']:
|
||||
axis, stride, ks, pad = conv_params(fn)
|
||||
return axis, 1 / stride, (pad - (ks - 1) / 2) / stride
|
||||
elif fn.type_name == 'Deconvolution':
|
||||
axis, stride, ks, pad = conv_params(fn)
|
||||
return axis, stride, (ks - 1) / 2 - pad
|
||||
elif fn.type_name in PASS_THROUGH_LAYERS:
|
||||
return None, 1, 0
|
||||
elif fn.type_name == 'Crop':
|
||||
axis, offset = crop_params(fn)
|
||||
axis -= 1 # -1 for last non-coordinate dim.
|
||||
return axis, 1, - offset
|
||||
else:
|
||||
raise UndefinedMapException
|
||||
|
||||
|
||||
class AxisMismatchException(Exception):
|
||||
"""
|
||||
Exception raised for mappings with incompatible axes.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def compose(base_map, next_map):
|
||||
"""
|
||||
Compose a base coord map with scale a1, shift b1 with a further coord map
|
||||
with scale a2, shift b2. The scales multiply and the further shift, b2,
|
||||
is scaled by base coord scale a1.
|
||||
"""
|
||||
ax1, a1, b1 = base_map
|
||||
ax2, a2, b2 = next_map
|
||||
if ax1 is None:
|
||||
ax = ax2
|
||||
elif ax2 is None or ax1 == ax2:
|
||||
ax = ax1
|
||||
else:
|
||||
raise AxisMismatchException
|
||||
return ax, a1 * a2, a1 * b2 + b1
|
||||
|
||||
|
||||
def inverse(coord_map):
|
||||
"""
|
||||
Invert a coord map by de-scaling and un-shifting;
|
||||
this gives the backward mapping for the gradient.
|
||||
"""
|
||||
ax, a, b = coord_map
|
||||
return ax, 1 / a, -b / a
|
||||
|
||||
|
||||
def coord_map_from_to(top_from, top_to):
|
||||
"""
|
||||
Determine the coordinate mapping betweeen a top (from) and a top (to).
|
||||
Walk the graph to find a common ancestor while composing the coord maps for
|
||||
from and to until they meet. As a last step the from map is inverted.
|
||||
"""
|
||||
# We need to find a common ancestor of top_from and top_to.
|
||||
# We'll assume that all ancestors are equivalent here (otherwise the graph
|
||||
# is an inconsistent state (which we could improve this to check for)).
|
||||
# For now use a brute-force algorithm.
|
||||
|
||||
def collect_bottoms(top):
|
||||
"""
|
||||
Collect the bottoms to walk for the coordinate mapping.
|
||||
The general rule is that all the bottoms of a layer can be mapped, as
|
||||
most layers have the same coordinate mapping for each bottom.
|
||||
Crop layer is a notable exception. Only the first/cropped bottom is
|
||||
mappable; the second/dimensions bottom is excluded from the walk.
|
||||
"""
|
||||
bottoms = top.fn.inputs
|
||||
if top.fn.type_name == 'Crop':
|
||||
bottoms = bottoms[:1]
|
||||
return bottoms
|
||||
|
||||
# walk back from top_from, keeping the coord map as we go
|
||||
from_maps = {top_from: (None, 1, 0)}
|
||||
frontier = {top_from}
|
||||
while frontier:
|
||||
top = frontier.pop()
|
||||
try:
|
||||
bottoms = collect_bottoms(top)
|
||||
for bottom in bottoms:
|
||||
from_maps[bottom] = compose(from_maps[top], coord_map(top.fn))
|
||||
frontier.add(bottom)
|
||||
except UndefinedMapException:
|
||||
pass
|
||||
|
||||
# now walk back from top_to until we hit a common blob
|
||||
to_maps = {top_to: (None, 1, 0)}
|
||||
frontier = {top_to}
|
||||
while frontier:
|
||||
top = frontier.pop()
|
||||
if top in from_maps:
|
||||
return compose(to_maps[top], inverse(from_maps[top]))
|
||||
try:
|
||||
bottoms = collect_bottoms(top)
|
||||
for bottom in bottoms:
|
||||
to_maps[bottom] = compose(to_maps[top], coord_map(top.fn))
|
||||
frontier.add(bottom)
|
||||
except UndefinedMapException:
|
||||
continue
|
||||
|
||||
# if we got here, we did not find a blob in common
|
||||
raise RuntimeError('Could not compute map between tops; are they '
|
||||
'connected by spatial layers?')
|
||||
|
||||
|
||||
def crop(top_from, top_to):
|
||||
"""
|
||||
Define a Crop layer to crop a top (from) to another top (to) by
|
||||
determining the coordinate mapping between the two and net spec'ing
|
||||
the axis and shift parameters of the crop.
|
||||
"""
|
||||
ax, a, b = coord_map_from_to(top_from, top_to)
|
||||
assert (a == 1).all(), 'scale mismatch on crop (a = {})'.format(a)
|
||||
assert (b <= 0).all(), 'cannot crop negative offset (b = {})'.format(b)
|
||||
assert (np.round(b) == b).all(), 'cannot crop noninteger offset ' \
|
||||
'(b = {})'.format(b)
|
||||
return L.Crop(top_from, top_to,
|
||||
crop_param=dict(axis=ax + 1, # +1 for first cropping dim.
|
||||
offset=list(-np.round(b).astype(int))))
|
|
@ -0,0 +1,192 @@
|
|||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
import caffe
|
||||
from caffe import layers as L
|
||||
from caffe import params as P
|
||||
from caffe.coord_map import coord_map_from_to, crop
|
||||
|
||||
|
||||
def coord_net_spec(ks=3, stride=1, pad=0, pool=2, dstride=2, dpad=0):
|
||||
"""
|
||||
Define net spec for simple conv-pool-deconv pattern common to all
|
||||
coordinate mapping tests.
|
||||
"""
|
||||
n = caffe.NetSpec()
|
||||
n.data = L.Input(shape=dict(dim=[2, 1, 100, 100]))
|
||||
n.aux = L.Input(shape=dict(dim=[2, 1, 20, 20]))
|
||||
n.conv = L.Convolution(
|
||||
n.data, num_output=10, kernel_size=ks, stride=stride, pad=pad)
|
||||
n.pool = L.Pooling(
|
||||
n.conv, pool=P.Pooling.MAX, kernel_size=pool, stride=pool, pad=0)
|
||||
# for upsampling kernel size is 2x stride
|
||||
try:
|
||||
deconv_ks = [s*2 for s in dstride]
|
||||
except:
|
||||
deconv_ks = dstride*2
|
||||
n.deconv = L.Deconvolution(
|
||||
n.pool, num_output=10, kernel_size=deconv_ks, stride=dstride, pad=dpad)
|
||||
return n
|
||||
|
||||
|
||||
class TestCoordMap(unittest.TestCase):
|
||||
def setUp(self):
|
||||
pass
|
||||
|
||||
def test_conv_pool_deconv(self):
|
||||
"""
|
||||
Map through conv, pool, and deconv.
|
||||
"""
|
||||
n = coord_net_spec()
|
||||
# identity for 2x pool, 2x deconv
|
||||
ax, a, b = coord_map_from_to(n.deconv, n.data)
|
||||
self.assertEquals(ax, 1)
|
||||
self.assertEquals(a, 1)
|
||||
self.assertEquals(b, 0)
|
||||
# shift-by-one for 4x pool, 4x deconv
|
||||
n = coord_net_spec(pool=4, dstride=4)
|
||||
ax, a, b = coord_map_from_to(n.deconv, n.data)
|
||||
self.assertEquals(ax, 1)
|
||||
self.assertEquals(a, 1)
|
||||
self.assertEquals(b, -1)
|
||||
|
||||
def test_pass(self):
|
||||
"""
|
||||
A pass-through layer (ReLU) and conv (1x1, stride 1, pad 0)
|
||||
both do identity mapping.
|
||||
"""
|
||||
n = coord_net_spec()
|
||||
ax, a, b = coord_map_from_to(n.deconv, n.data)
|
||||
n.relu = L.ReLU(n.deconv)
|
||||
n.conv1x1 = L.Convolution(
|
||||
n.relu, num_output=10, kernel_size=1, stride=1, pad=0)
|
||||
for top in [n.relu, n.conv1x1]:
|
||||
ax_pass, a_pass, b_pass = coord_map_from_to(top, n.data)
|
||||
self.assertEquals(ax, ax_pass)
|
||||
self.assertEquals(a, a_pass)
|
||||
self.assertEquals(b, b_pass)
|
||||
|
||||
def test_padding(self):
|
||||
"""
|
||||
Padding conv adds offset while padding deconv subtracts offset.
|
||||
"""
|
||||
n = coord_net_spec()
|
||||
ax, a, b = coord_map_from_to(n.deconv, n.data)
|
||||
pad = random.randint(0, 10)
|
||||
# conv padding
|
||||
n = coord_net_spec(pad=pad)
|
||||
_, a_pad, b_pad = coord_map_from_to(n.deconv, n.data)
|
||||
self.assertEquals(a, a_pad)
|
||||
self.assertEquals(b - pad, b_pad)
|
||||
# deconv padding
|
||||
n = coord_net_spec(dpad=pad)
|
||||
_, a_pad, b_pad = coord_map_from_to(n.deconv, n.data)
|
||||
self.assertEquals(a, a_pad)
|
||||
self.assertEquals(b + pad, b_pad)
|
||||
# pad both to cancel out
|
||||
n = coord_net_spec(pad=pad, dpad=pad)
|
||||
_, a_pad, b_pad = coord_map_from_to(n.deconv, n.data)
|
||||
self.assertEquals(a, a_pad)
|
||||
self.assertEquals(b, b_pad)
|
||||
|
||||
def test_multi_conv(self):
|
||||
"""
|
||||
Multiple bottoms/tops of a layer are identically mapped.
|
||||
"""
|
||||
n = coord_net_spec()
|
||||
# multi bottom/top
|
||||
n.conv_data, n.conv_aux = L.Convolution(
|
||||
n.data, n.aux, ntop=2, num_output=10, kernel_size=5, stride=2,
|
||||
pad=0)
|
||||
ax1, a1, b1 = coord_map_from_to(n.conv_data, n.data)
|
||||
ax2, a2, b2 = coord_map_from_to(n.conv_aux, n.aux)
|
||||
self.assertEquals(ax1, ax2)
|
||||
self.assertEquals(a1, a2)
|
||||
self.assertEquals(b1, b2)
|
||||
|
||||
def test_rect(self):
|
||||
"""
|
||||
Anisotropic mapping is equivalent to its isotropic parts.
|
||||
"""
|
||||
n3x3 = coord_net_spec(ks=3, stride=1, pad=0)
|
||||
n5x5 = coord_net_spec(ks=5, stride=2, pad=10)
|
||||
n3x5 = coord_net_spec(ks=[3, 5], stride=[1, 2], pad=[0, 10])
|
||||
ax_3x3, a_3x3, b_3x3 = coord_map_from_to(n3x3.deconv, n3x3.data)
|
||||
ax_5x5, a_5x5, b_5x5 = coord_map_from_to(n5x5.deconv, n5x5.data)
|
||||
ax_3x5, a_3x5, b_3x5 = coord_map_from_to(n3x5.deconv, n3x5.data)
|
||||
self.assertTrue(ax_3x3 == ax_5x5 == ax_3x5)
|
||||
self.assertEquals(a_3x3, a_3x5[0])
|
||||
self.assertEquals(b_3x3, b_3x5[0])
|
||||
self.assertEquals(a_5x5, a_3x5[1])
|
||||
self.assertEquals(b_5x5, b_3x5[1])
|
||||
|
||||
def test_nd_conv(self):
|
||||
"""
|
||||
ND conv maps the same way in more dimensions.
|
||||
"""
|
||||
n = caffe.NetSpec()
|
||||
# define data with 3 spatial dimensions, otherwise the same net
|
||||
n.data = L.Input(shape=dict(dim=[2, 3, 100, 100, 100]))
|
||||
n.conv = L.Convolution(
|
||||
n.data, num_output=10, kernel_size=[3, 3, 3], stride=[1, 1, 1],
|
||||
pad=[0, 1, 2])
|
||||
n.pool = L.Pooling(
|
||||
n.conv, pool=P.Pooling.MAX, kernel_size=2, stride=2, pad=0)
|
||||
n.deconv = L.Deconvolution(
|
||||
n.pool, num_output=10, kernel_size=4, stride=2, pad=0)
|
||||
ax, a, b = coord_map_from_to(n.deconv, n.data)
|
||||
self.assertEquals(ax, 1)
|
||||
self.assertTrue(len(a) == len(b))
|
||||
self.assertTrue(np.all(a == 1))
|
||||
self.assertEquals(b[0] - 1, b[1])
|
||||
self.assertEquals(b[1] - 1, b[2])
|
||||
|
||||
def test_crop_of_crop(self):
|
||||
"""
|
||||
Map coordinates through Crop layer:
|
||||
crop an already-cropped output to the input and check change in offset.
|
||||
"""
|
||||
n = coord_net_spec()
|
||||
offset = random.randint(0, 10)
|
||||
ax, a, b = coord_map_from_to(n.deconv, n.data)
|
||||
n.crop = L.Crop(n.deconv, n.data, axis=2, offset=offset)
|
||||
ax_crop, a_crop, b_crop = coord_map_from_to(n.crop, n.data)
|
||||
self.assertEquals(ax, ax_crop)
|
||||
self.assertEquals(a, a_crop)
|
||||
self.assertEquals(b + offset, b_crop)
|
||||
|
||||
def test_crop_helper(self):
|
||||
"""
|
||||
Define Crop layer by crop().
|
||||
"""
|
||||
n = coord_net_spec()
|
||||
crop(n.deconv, n.data)
|
||||
|
||||
def test_catch_unconnected(self):
|
||||
"""
|
||||
Catch mapping spatially unconnected tops.
|
||||
"""
|
||||
n = coord_net_spec()
|
||||
n.ip = L.InnerProduct(n.deconv, num_output=10)
|
||||
with self.assertRaises(RuntimeError):
|
||||
coord_map_from_to(n.ip, n.data)
|
||||
|
||||
def test_catch_scale_mismatch(self):
|
||||
"""
|
||||
Catch incompatible scales, such as when the top to be cropped
|
||||
is mapped to a differently strided reference top.
|
||||
"""
|
||||
n = coord_net_spec(pool=3, dstride=2) # pool 3x but deconv 2x
|
||||
with self.assertRaises(AssertionError):
|
||||
crop(n.deconv, n.data)
|
||||
|
||||
def test_catch_negative_crop(self):
|
||||
"""
|
||||
Catch impossible offsets, such as when the top to be cropped
|
||||
is mapped to a larger reference top.
|
||||
"""
|
||||
n = coord_net_spec(dpad=10) # make output smaller than input
|
||||
with self.assertRaises(AssertionError):
|
||||
crop(n.deconv, n.data)
|
Загрузка…
Ссылка в новой задаче