This commit is contained in:
Ross Girshick 2014-02-04 11:00:55 -08:00 коммит произвёл Evan Shelhamer
Родитель 9c7a993947
Коммит dfec9471ea
2 изменённых файлов: 13 добавлений и 42 удалений

Просмотреть файл

@ -1,4 +1,4 @@
function scores = matcaffe_demo(im, use_gpu)
function [scores, layers] = matcaffe_demo(im, use_gpu)
% scores = matcaffe_demo(im, use_gpu)
%
% Demo of the matlab wrapper using the ILSVRC network.
@ -11,7 +11,7 @@ function scores = matcaffe_demo(im, use_gpu)
% scores 1000-dimensional ILSVRC score vector
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
@ -20,12 +20,16 @@ function scores = matcaffe_demo(im, use_gpu)
% scores = matcaffe_demo(im, 1);
% [score, class] = max(scores);
model_def_file = '../../examples/imagenet/imagenet_deploy.prototxt';
% NOTE: you'll have to get the pre-trained ILSVRC network
model_file = '../../examples/imagenet/caffe_reference_imagenet_model';
% init caffe network (spews logging info)
caffe('init', model_def_file, model_file);
if caffe('is_initialized') == 0
model_def_file = '../../examples/imagenet/imagenet_deploy.prototxt';
model_file = '../../examples/imagenet/caffe_reference_imagenet_model';
if exist(model_file, 'file') == 0
% NOTE: you'll have to get the pre-trained ILSVRC network
error('You need a network model file');
end
caffe('init', model_def_file, model_file);
end
% set to use GPU or CPU
if exist('use_gpu', 'var') && use_gpu
@ -51,6 +55,8 @@ toc;
scores = reshape(scores{1}, [1000 10]);
scores = mean(scores, 2);
% you can also get network weights by calling
layers = caffe('get_weights');
% ------------------------------------------------------------------------
function images = prepare_image(im)

Просмотреть файл

@ -1,35 +0,0 @@
function layers = matcaffe_demo_weights(use_gpu)
% layers = matcaffe_demo_weights(use_gpu)
%
% Demo of how to extract network parameters ("weights") using the matlab
% wrapper.
%
% input
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% layers struct array of layers and their weights
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
% init caffe network (spews logging info)
if caffe('is_initialized') == 0
model_def_file = '../../examples/imagenet_deploy.prototxt';
model_file = '../../examples/alexnet_train_iter_470000';
caffe('init', model_def_file, model_file);
end
% set to use GPU or CPU
if exist('use_gpu', 'var') && use_gpu
caffe('set_mode_gpu');
else
caffe('set_mode_cpu');
end
% put into test mode
caffe('set_phase_test');
layers = caffe('get_weights');