зеркало из https://github.com/microsoft/clang-1.git
Change the btree algorithm to split nodes bottom-up instead of top-down.
This results in an (IMO) simpler algorithm, results in fewer splits, and is more amenable to delta handling (there is no reason to mutate the tree at all when adding a delta to a position that already exists in the tree). git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@49609 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Родитель
b169e903c5
Коммит
3b7ff0d143
|
@ -14,6 +14,7 @@
|
|||
#include "clang/Rewrite/DeltaTree.h"
|
||||
#include "llvm/Support/Casting.h"
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
using namespace clang;
|
||||
using llvm::cast;
|
||||
using llvm::dyn_cast;
|
||||
|
@ -60,7 +61,6 @@ namespace {
|
|||
struct InsertResult {
|
||||
DeltaTreeNode *LHS, *RHS;
|
||||
SourceDelta Split;
|
||||
InsertResult() : LHS(0) {}
|
||||
};
|
||||
|
||||
|
||||
|
@ -109,13 +109,15 @@ namespace {
|
|||
return Values[i];
|
||||
}
|
||||
|
||||
/// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
|
||||
/// this node. If insertion is easy, do it and return false. Otherwise,
|
||||
/// split the node, populate InsertRes with info about the split, and return
|
||||
/// true.
|
||||
bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
|
||||
|
||||
void DoSplit(InsertResult &InsertRes);
|
||||
|
||||
|
||||
/// AddDeltaNonFull - Add a delta to this tree and/or it's children, knowing
|
||||
/// that this node is not currently full.
|
||||
void AddDeltaNonFull(unsigned FileIndex, int Delta);
|
||||
|
||||
/// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
|
||||
/// local walk over our contained deltas.
|
||||
void RecomputeFullDeltaLocally();
|
||||
|
@ -145,6 +147,15 @@ namespace {
|
|||
Children[0] = FirstChild;
|
||||
}
|
||||
|
||||
DeltaTreeInteriorNode(const InsertResult &IR)
|
||||
: DeltaTreeNode(false /*nonleaf*/) {
|
||||
Children[0] = IR.LHS;
|
||||
Children[1] = IR.RHS;
|
||||
Values[0] = IR.Split;
|
||||
FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
|
||||
NumValuesUsed = 1;
|
||||
}
|
||||
|
||||
const DeltaTreeNode *getChild(unsigned i) const {
|
||||
assert(i < getNumValuesUsed()+1 && "Invalid child");
|
||||
return Children[i];
|
||||
|
@ -156,8 +167,6 @@ namespace {
|
|||
|
||||
static inline bool classof(const DeltaTreeInteriorNode *) { return true; }
|
||||
static inline bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
|
||||
private:
|
||||
void SplitChild(unsigned ChildNo);
|
||||
};
|
||||
}
|
||||
|
||||
|
@ -182,12 +191,12 @@ void DeltaTreeNode::RecomputeFullDeltaLocally() {
|
|||
FullDelta = NewFullDelta;
|
||||
}
|
||||
|
||||
|
||||
/// AddDeltaNonFull - Add a delta to this tree and/or it's children, knowing
|
||||
/// that this node is not currently full.
|
||||
void DeltaTreeNode::AddDeltaNonFull(unsigned FileIndex, int Delta) {
|
||||
assert(!isFull() && "AddDeltaNonFull on a full tree?");
|
||||
|
||||
/// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
|
||||
/// this node. If insertion is easy, do it and return false. Otherwise,
|
||||
/// split the node, populate InsertRes with info about the split, and return
|
||||
/// true.
|
||||
bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
|
||||
InsertResult *InsertRes) {
|
||||
// Maintain full delta for this node.
|
||||
FullDelta += Delta;
|
||||
|
||||
|
@ -197,77 +206,109 @@ void DeltaTreeNode::AddDeltaNonFull(unsigned FileIndex, int Delta) {
|
|||
++i;
|
||||
|
||||
// If we found an a record for exactly this file index, just merge this
|
||||
// value into the preexisting record and finish early.
|
||||
// value into the pre-existing record and finish early.
|
||||
if (i != e && getValue(i).FileLoc == FileIndex) {
|
||||
// NOTE: Delta could drop to zero here. This means that the next delta
|
||||
// entry is useless and could be removed. Supporting erases is
|
||||
// significantly more complex though, so we just leave an entry with
|
||||
// Delta=0 in the tree.
|
||||
// NOTE: Delta could drop to zero here. This means that the delta entry is
|
||||
// useless and could be removed. Supporting erases is more complex than
|
||||
// leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
|
||||
// the tree.
|
||||
Values[i].Delta += Delta;
|
||||
return;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (DeltaTreeInteriorNode *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
|
||||
// Insertion into an interior node propagates the value down to a child.
|
||||
DeltaTreeNode *Child = IN->getChild(i);
|
||||
|
||||
// If the child tree is full, split it, pulling an element up into our
|
||||
// node.
|
||||
if (Child->isFull()) {
|
||||
IN->SplitChild(i);
|
||||
SourceDelta &MedianVal = getValue(i);
|
||||
|
||||
// If the median value we pulled up is exactly our insert position, add
|
||||
// the delta and return.
|
||||
if (MedianVal.FileLoc == FileIndex) {
|
||||
MedianVal.Delta += Delta;
|
||||
return;
|
||||
}
|
||||
|
||||
// If the median value pulled up is less than our current search point,
|
||||
// include those deltas and search down the RHS now.
|
||||
if (MedianVal.FileLoc < FileIndex)
|
||||
Child = IN->getChild(i+1);
|
||||
|
||||
// Otherwise, we found an insertion point, and we know that the value at the
|
||||
// specified index is > FileIndex. Handle the leaf case first.
|
||||
if (isLeaf()) {
|
||||
if (!isFull()) {
|
||||
// For an insertion into a non-full leaf node, just insert the value in
|
||||
// its sorted position. This requires moving later values over.
|
||||
if (i != e)
|
||||
memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
|
||||
Values[i] = SourceDelta::get(FileIndex, Delta);
|
||||
++NumValuesUsed;
|
||||
return false;
|
||||
}
|
||||
|
||||
Child->AddDeltaNonFull(FileIndex, Delta);
|
||||
} else {
|
||||
// For an insertion into a non-full leaf node, just insert the value in
|
||||
// its sorted position. This requires moving later values over.
|
||||
if (i != e)
|
||||
memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
|
||||
Values[i] = SourceDelta::get(FileIndex, Delta);
|
||||
++NumValuesUsed;
|
||||
// Otherwise, if this is leaf is full, split the node at its median, insert
|
||||
// the value into one of the children, and return the result.
|
||||
assert(InsertRes && "No result location specified");
|
||||
DoSplit(*InsertRes);
|
||||
|
||||
if (InsertRes->Split.FileLoc > FileIndex)
|
||||
InsertRes->LHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
|
||||
else
|
||||
InsertRes->RHS->DoInsertion(FileIndex, Delta, 0 /*can't fail*/);
|
||||
return true;
|
||||
}
|
||||
|
||||
// Otherwise, this is an interior node. Send the request down the tree.
|
||||
DeltaTreeInteriorNode *IN = cast<DeltaTreeInteriorNode>(this);
|
||||
if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
|
||||
return false; // If there was space in the child, just return.
|
||||
|
||||
// Okay, this split the subtree, producing a new value and two children to
|
||||
// insert here. If this node is non-full, we can just insert it directly.
|
||||
if (!isFull()) {
|
||||
// Now that we have two nodes and a new element, insert the perclated value
|
||||
// into ourself by moving all the later values/children down, then inserting
|
||||
// the new one.
|
||||
if (i != e)
|
||||
memmove(&IN->Children[i+2], &IN->Children[i+1],
|
||||
(e-i)*sizeof(IN->Children[0]));
|
||||
IN->Children[i] = InsertRes->LHS;
|
||||
IN->Children[i+1] = InsertRes->RHS;
|
||||
|
||||
if (e != i)
|
||||
memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
|
||||
Values[i] = InsertRes->Split;
|
||||
++NumValuesUsed;
|
||||
return false;
|
||||
}
|
||||
|
||||
// Finally, if this interior node was full and a node is percolated up, split
|
||||
// ourself and return that up the chain. Start by saving all our info to
|
||||
// avoid having the split clobber it.
|
||||
IN->Children[i] = InsertRes->LHS;
|
||||
DeltaTreeNode *SubRHS = InsertRes->RHS;
|
||||
SourceDelta SubSplit = InsertRes->Split;
|
||||
|
||||
// Do the split.
|
||||
DoSplit(*InsertRes);
|
||||
|
||||
// Figure out where to insert SubRHS/NewSplit.
|
||||
DeltaTreeInteriorNode *InsertSide;
|
||||
if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
|
||||
InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
|
||||
else
|
||||
InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
|
||||
|
||||
// We now have a non-empty interior node 'InsertSide' to insert
|
||||
// SubRHS/SubSplit into. Find out where to insert SubSplit.
|
||||
|
||||
// Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
|
||||
i = 0; e = InsertSide->getNumValuesUsed();
|
||||
while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
|
||||
++i;
|
||||
|
||||
// Now we know that i is the place to insert the split value into. Insert it
|
||||
// and the child right after it.
|
||||
if (i != e)
|
||||
memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
|
||||
(e-i)*sizeof(IN->Children[0]));
|
||||
InsertSide->Children[i+1] = SubRHS;
|
||||
|
||||
if (e != i)
|
||||
memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
|
||||
(e-i)*sizeof(Values[0]));
|
||||
InsertSide->Values[i] = SubSplit;
|
||||
++InsertSide->NumValuesUsed;
|
||||
InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
|
||||
return true;
|
||||
}
|
||||
|
||||
/// SplitChild - At this point, we know that the current node is not full and
|
||||
/// that the specified child of this node is. Split the child in half at its
|
||||
/// median, propagating one value up into us. Child may be either an interior
|
||||
/// or leaf node.
|
||||
void DeltaTreeInteriorNode::SplitChild(unsigned ChildNo) {
|
||||
DeltaTreeNode *Child = getChild(ChildNo);
|
||||
assert(!isFull() && Child->isFull() && "Inconsistent constraints");
|
||||
|
||||
InsertResult SplitRes;
|
||||
Child->DoSplit(SplitRes);
|
||||
|
||||
// Now that we have two nodes and a new element, insert the median value
|
||||
// into ourself by moving all the later values/children down, then inserting
|
||||
// the new one.
|
||||
if (getNumValuesUsed() != ChildNo)
|
||||
memmove(&Children[ChildNo+2], &Children[ChildNo+1],
|
||||
(getNumValuesUsed()-ChildNo)*sizeof(Children[0]));
|
||||
Children[ChildNo] = SplitRes.LHS;
|
||||
Children[ChildNo+1] = SplitRes.RHS;
|
||||
|
||||
if (getNumValuesUsed() != ChildNo)
|
||||
memmove(&Values[ChildNo+1], &Values[ChildNo],
|
||||
(getNumValuesUsed()-ChildNo)*sizeof(Values[0]));
|
||||
Values[ChildNo] = SplitRes.Split;
|
||||
++NumValuesUsed;
|
||||
}
|
||||
|
||||
/// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
|
||||
/// into two subtrees each with "WidthFactor-1" values and a pivot value.
|
||||
/// Return the pieces in InsertRes.
|
||||
void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
|
||||
assert(isFull() && "Why split a non-full node?");
|
||||
|
||||
|
@ -423,7 +464,6 @@ int DeltaTree::getDeltaAt(unsigned FileIndex) const {
|
|||
// NOT REACHED.
|
||||
}
|
||||
|
||||
|
||||
/// AddDelta - When a change is made that shifts around the text buffer,
|
||||
/// this method is used to record that info. It inserts a delta of 'Delta'
|
||||
/// into the current DeltaTree at offset FileIndex.
|
||||
|
@ -431,12 +471,10 @@ void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
|
|||
assert(Delta && "Adding a noop?");
|
||||
DeltaTreeNode *MyRoot = getRoot(Root);
|
||||
|
||||
// If the root is full, create a new dummy (non-empty) interior node that
|
||||
// points to it, allowing the old root to be split.
|
||||
if (MyRoot->isFull())
|
||||
Root = MyRoot = new DeltaTreeInteriorNode(MyRoot);
|
||||
|
||||
MyRoot->AddDeltaNonFull(FileIndex, Delta);
|
||||
InsertResult InsertRes;
|
||||
if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
|
||||
Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
|
||||
}
|
||||
|
||||
#ifdef VERIFY_TREE
|
||||
VerifyTree(MyRoot);
|
||||
|
|
Загрузка…
Ссылка в новой задаче