information for declarations that were referenced via a qualified-id,
e.g., N::C::value. We keep track of the location of the start of the
nested-name-specifier. Note that the difference between
QualifiedDeclRefExpr and DeclRefExpr does have an effect on the
semantics of function calls in two ways:
1) The use of a qualified-id instead of an unqualified-id suppresses
argument-dependent lookup
2) If the name refers to a virtual function, the qualified-id
version will call the function determined statically while the
unqualified-id version will call the function determined dynamically
(by looking up the appropriate function in the vtable).
Neither of these features is implemented yet, but we do print out
qualified names for QualifiedDeclRefExprs as part of the AST printing.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61789 91177308-0d34-0410-b5e6-96231b3b80d8
Make C++ classes track the POD property (C++ [class]p4)
Track the existence of a copy assignment operator.
Implicitly declare the copy assignment operator if none is provided.
Implement most of the parsing job for the G++ type traits extension.
Fully implement the low-hanging fruit of the type traits:
__is_pod: Whether a type is a POD.
__is_class: Whether a type is a (non-union) class.
__is_union: Whether a type is a union.
__is_enum: Whether a type is an enum.
__is_polymorphic: Whether a type is polymorphic (C++ [class.virtual]p1).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61746 91177308-0d34-0410-b5e6-96231b3b80d8
DeclContexts whose members are visible from enclosing DeclContexts up
to (and including) the innermost enclosing non-transparent
DeclContexts. Transparent DeclContexts unify the mechanism to be used
for various language features, including C enumerations, anonymous
unions, C++0x inline namespaces, and C++ linkage
specifications. Please refer to the documentation in the Clang
internals manual for more information.
Only enumerations and linkage specifications currently use transparent
DeclContexts.
Still to do: use transparent DeclContexts to implement anonymous
unions and GCC's anonymous structs extension, and, later, the C++0x
features. We also need to tighten up the DeclContext/ScopedDecl link
to ensure that every ScopedDecl is in a single DeclContext, which
will ensure that we can then enforce ownership and reduce the memory
footprint of DeclContext.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61735 91177308-0d34-0410-b5e6-96231b3b80d8
semantics and improve our handling of default arguments. Specifically,
we follow this order:
- As soon as the see the '}' in the class definition, the class is
complete and we add any implicit declarations (default constructor,
copy constructor, etc.) to the class.
- If there are any default function arguments, parse them
- If there were any inline member function definitions, parse them
As part of this change, we now keep track of the the fact that we've
seen unparsed default function arguments within the AST. See the new
ParmVarDecl::hasUnparsedDefaultArg member. This allows us to properly
cope with calls inside default function arguments to other functions
where we're making use of the default arguments.
Made some C++ error messages regarding failed initializations more
specific.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61406 91177308-0d34-0410-b5e6-96231b3b80d8
attached to an identifier. Instead, all overloaded functions will be
pushed into scope, and we'll synthesize an OverloadedFunctionDecl on
the fly when we need it.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61386 91177308-0d34-0410-b5e6-96231b3b80d8
DeclContext. Instead, just keep the list of currently-active
declarations and only build the OverloadedFunctionDecl when we
absolutely need it.
This is a half-step toward eliminating the need to explicitly build
OverloadedFunctionDecls that store sets of overloaded
functions. This was suggested by Argiris a while back, and it's a good
thing for several reasons: first, it eliminates the messy logic that
currently tries to keep the OverloadedFunctionDecl in sync with the
declarations that are being added. Second, it will (eventually)
eliminate the need to allocate memory for overload sets, which could
help performance. Finally, it helps set us up for when name lookup can
return multiple (possibly ambiguous) results, as can happen with
lookup of class members in C++.
Next steps: make the IdentifierResolver store overloads as separate
entries in its list rather than replacing them with an
OverloadedFunctionDecl now, then see how far we can go toward
eliminating OverloadedFunctionDecl entirely.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61357 91177308-0d34-0410-b5e6-96231b3b80d8
Note that one test duplicate-ivar-check.m will fail because I
need to re-implement duplicate ivar checking.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61154 91177308-0d34-0410-b5e6-96231b3b80d8
is completely defined (C++ [class.mem]p2).
Reverse the order in which we process the definitions of member
functions specified inline. This way, we'll get diagnostics in the
order in which the member functions were declared in the class.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61103 91177308-0d34-0410-b5e6-96231b3b80d8
specifiers. Specifically:
* Determine when an out-of-line function definition does not match
any declaration within the class or namespace (including coping
with overloaded functions).
* Complain about typedefs and parameters that have scope specifiers.
* Complain about out-of-line declarations that aren't also
definitions.
* Complain about non-static data members being declared out-of-line.
* Allow cv-qualifiers on out-of-line member function definitions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61058 91177308-0d34-0410-b5e6-96231b3b80d8
just like all other members, and remove the special variables in
CXXRecordDecl to store them. This eliminates a lot of special-case
code for constructors and destructors, including
ActOnConstructor/ActOnDeclarator and special lookup rules in
LookupDecl. The result is far more uniform and manageable.
Diagnose the redeclaration of member functions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61048 91177308-0d34-0410-b5e6-96231b3b80d8
together in the same way that we link RecordDecl/CXXRecordDecl nodes.
Unify ActOnTag and ActOnTagStruct.
Fixes PR clang/2753.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@61034 91177308-0d34-0410-b5e6-96231b3b80d8
the type of the enumeration once the enumeration has been defined.
Fix the overloading test-case to properly create enums that promote
the way we want them to.
Implement C++0x promotions from enumeration types to long
long/unsigned long long. We're using these promotions in Carbon.h
(since long long is a common extension).
Fixes PR clang/2954: http://llvm.org/bugs/show_bug.cgi?id=2954
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@60917 91177308-0d34-0410-b5e6-96231b3b80d8
and separates lexical name lookup from qualified name lookup. In
particular:
* Make DeclContext the central data structure for storing and
looking up declarations within existing declarations, e.g., members
of structs/unions/classes, enumerators in C++0x enums, members of
C++ namespaces, and (later) members of Objective-C
interfaces/implementations. DeclContext uses a lazily-constructed
data structure optimized for fast lookup (array for small contexts,
hash table for larger contexts).
* Implement C++ qualified name lookup in terms of lookup into
DeclContext.
* Implement C++ unqualified name lookup in terms of
qualified+unqualified name lookup (since unqualified lookup is not
purely lexical in C++!)
* Limit the use of the chains of declarations stored in
IdentifierInfo to those names declared lexically.
* Eliminate CXXFieldDecl, collapsing its behavior into
FieldDecl. (FieldDecl is now a ScopedDecl).
* Make RecordDecl into a DeclContext and eliminates its
Members/NumMembers fields (since one can just iterate through the
DeclContext to get the fields).
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@60878 91177308-0d34-0410-b5e6-96231b3b80d8
expressions, and value-dependent expressions. This permits us to parse
some template definitions.
This is not a complete solution; we're missing type- and
value-dependent computations for most of the expression types, and
we're missing checks for dependent types and type-dependent
expressions throughout Sema.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@60615 91177308-0d34-0410-b5e6-96231b3b80d8
parameters, with some semantic analysis:
- Template parameters are introduced into template parameter scope
- Complain about template parameter shadowing (except in Microsoft mode)
Note that we leak template parameter declarations like crazy, a
problem we'll remedy once we actually create proper declarations for
templates.
Next up: dependent types and value-dependent/type-dependent
expressions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@60597 91177308-0d34-0410-b5e6-96231b3b80d8
instead of converting them to strings first. This also fixes a
bunch of minor inconsistencies in the diagnostics emitted by clang
and adds a bunch of FIXME's to DiagnosticKinds.def.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59948 91177308-0d34-0410-b5e6-96231b3b80d8
uses of getName() with uses of getDeclName(). This upgrades a bunch of
diags to take DeclNames instead of std::strings.
This also tweaks a couple of diagnostics to be cleaner and changes
CheckInitializerTypes/PerformInitializationByConstructor to pass
around DeclarationNames instead of std::strings.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59947 91177308-0d34-0410-b5e6-96231b3b80d8
with implicit quotes around them. This has a bunch of follow-on
effects and requires tweaking to a whole lot of code. This causes
a regression in two tests (xfailed) by causing it to emit things like:
Line 10: duplicate interface declaration for category 'MyClass1' ('Category1')
instead of:
Line 10: duplicate interface declaration for category 'MyClass1(Category1)'
I will fix this in a follow-up commit.
As part of this, I had to start switching stuff to use ->getDeclName() instead
of Decl::getName() for consistency. This is good, but I was planning to do this
as an independent patch. There will be several follow-on patches
to clean up some of the mess, but this patch is already too big.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59917 91177308-0d34-0410-b5e6-96231b3b80d8
without calling getAsString(). This implicitly puts quotes around the
name, so diagnostics need to be tweaked to accommodate this.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59916 91177308-0d34-0410-b5e6-96231b3b80d8
looking up the "std" identifier is trivial. Just do it, particularly
since this is only done if the namespace hasn't already been looked up.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59710 91177308-0d34-0410-b5e6-96231b3b80d8
struct A {
struct B;
};
struct A::B {
void m() {} // Assertion failed: getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
};
Introduce DeclContext::getLexicalParent which may be different from DeclContext::getParent when nested-names are involved, e.g:
namespace A {
struct S;
}
struct A::S {}; // getParent() == namespace 'A'
// getLexicalParent() == translation unit
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59650 91177308-0d34-0410-b5e6-96231b3b80d8
__builtin_prefetch code to only emit one diagnostic per builtin_prefetch.
While this has nothing to do with the rest of the patch, the code seemed
like overkill when I was updating it.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59588 91177308-0d34-0410-b5e6-96231b3b80d8
operator+, directly, using the same mechanism as all other special
names.
Removed the "special" identifiers for the overloaded operators from
the identifier table and IdentifierInfo data structure. IdentifierInfo
is back to representing only real identifiers.
Added a new Action, ActOnOperatorFunctionIdExpr, that builds an
expression from an parsed operator-function-id (e.g., "operator
+"). ActOnIdentifierExpr used to do this job, but
operator-function-ids are no longer represented by IdentifierInfo's.
Extended Declarator to store overloaded operator names.
Sema::GetNameForDeclarator now knows how to turn the operator
name into a DeclarationName for the overloaded operator.
Except for (perhaps) consolidating the functionality of
ActOnIdentifier, ActOnOperatorFunctionIdExpr, and
ActOnConversionFunctionExpr into a common routine that builds an
appropriate DeclRefExpr by looking up a DeclarationName, all of the
work on normalizing declaration names should be complete with this
commit.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59526 91177308-0d34-0410-b5e6-96231b3b80d8
destructors, and conversion functions. The placeholders were used to
work around the fact that the parser and some of Sema really wanted
declarators to have simple identifiers; now, the code that deals with
declarators will use DeclarationNames.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59469 91177308-0d34-0410-b5e6-96231b3b80d8
C++ constructors, destructors, and conversion functions now have a
FETokenInfo field that IdentifierResolver can access, so that these
special names are handled just like ordinary identifiers. A few other
Sema routines now use DeclarationNames instead of IdentifierInfo*'s.
To validate this design, this code also implements parsing and
semantic analysis for id-expressions that name conversion functions,
e.g.,
return operator bool();
The new parser action ActOnConversionFunctionExpr takes the result of
parsing "operator type-id" and turning it into an expression, using
the IdentifierResolver with the DeclarationName of the conversion
function. ActOnDeclarator pushes those conversion function names into
scope so that the IdentifierResolver can find them, of course.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59462 91177308-0d34-0410-b5e6-96231b3b80d8
representing the names of declarations in the C family of
languages. DeclarationName is used in NamedDecl to store the name of
the declaration (naturally), and ObjCMethodDecl is now a NamedDecl.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59441 91177308-0d34-0410-b5e6-96231b3b80d8
function call created in response to the use of operator syntax that
resolves to an overloaded operator in C++, e.g., "str1 +
str2" that resolves to std::operator+(str1, str2)". We now build a
CXXOperatorCallExpr in C++ when we pick an overloaded operator. (But
only for binary operators, where we actually implement overloading)
I decided *not* to refactor the current CallExpr to make it abstract
(with FunctionCallExpr and CXXOperatorCallExpr as derived
classes). Doing so would allow us to make CXXOperatorCallExpr a little
bit smaller, at the cost of making the argument and callee accessors
virtual. We won't know if this is going to be a win until we can parse
lots of C++ code to determine how much memory we'll save by making
this change vs. the performance penalty due to the extra virtual
calls.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59306 91177308-0d34-0410-b5e6-96231b3b80d8
conversion functions. Instead, we just use a placeholder identifier
for these (e.g., "<constructor>") and override NamedDecl::getName() to
provide a human-readable name.
This is one potential solution to the problem; another solution would
be to replace the use of IdentifierInfo* in NamedDecl with a different
class that deals with identifiers better. I'm also prototyping that to
see how it compares, but this commit is better than what we had
previously.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59193 91177308-0d34-0410-b5e6-96231b3b80d8
functions for built-in operators, e.g., the builtin
bool operator==(int const*, int const*)
can be used for the expression "x1 == x2" given:
struct X {
operator int const*();
} x1, x2;
The scheme for handling these built-in operators is relatively simple:
for each candidate required by the standard, create a special kind of
candidate function for the built-in. If overload resolution picks the
built-in operator, we perform the appropriate conversions on the
arguments and then let the normal built-in operator take care of it.
There may be some optimization opportunity left: if we can reduce the
number of built-in operator overloads we generate, overload resolution
for these cases will go faster. However, one must be careful when
doing this: GCC generates too few operator overloads in our little
test program, and fails to compile it because none of the overloads it
generates match.
Note that we only support operator overload for non-member binary
operators at the moment. The other operators will follow.
As part of this change, ImplicitCastExpr can now be an lvalue.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@59148 91177308-0d34-0410-b5e6-96231b3b80d8
-When parsing declarators, don't depend on "CurScope->isCXXClassScope() == true" for constructors/destructors
-For C++ member declarations, don't depend on "Declarator.getContext() == Declarator::MemberContext"
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58866 91177308-0d34-0410-b5e6-96231b3b80d8
functions in C++, e.g.,
struct X {
operator bool() const;
};
Note that these conversions don't actually do anything, since we don't
yet have the ability to use them for implicit or explicit conversions.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58860 91177308-0d34-0410-b5e6-96231b3b80d8
operators in C++. Overloaded operators can be called directly via
their operator-function-ids, e.g., "operator+(foo, bar)", but we don't
yet implement the semantics of operator overloading to handle, e.g.,
"foo + bar".
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58817 91177308-0d34-0410-b5e6-96231b3b80d8
Implicit declaration of destructors (when necessary).
Extended Declarator to store information about parsed constructors
and destructors; this will be extended to deal with declarators that
name overloaded operators (e.g., "operator +") and user-defined
conversion operators (e.g., "operator int").
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58767 91177308-0d34-0410-b5e6-96231b3b80d8
duplication in the handling of copy-initialization by constructor,
which occurs both for initialization of a declaration and for
overloading. The initialization code is due for some refactoring.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58756 91177308-0d34-0410-b5e6-96231b3b80d8
Notes:
- Constructors are never found by name lookup, so they'll never get
pushed into any scope. Instead, they are stored as an
OverloadedFunctionDecl in CXXRecordDecl for easy overloading.
- There's a new action isCurrentClassName that determines whether an
identifier is the name of the innermost class currently being defined;
we use this to identify the declarator-id grammar rule that refers to
a type-name.
- MinimalAction does *not* support parsing constructors.
- We now handle virtual and explicit function specifiers.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58499 91177308-0d34-0410-b5e6-96231b3b80d8
- Allows definitions of overloaded functions :)
- Eliminates extraneous error messages when we have a definition of a
function that isn't an overload but doesn't have exactly the same type
as the original.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@58382 91177308-0d34-0410-b5e6-96231b3b80d8