Перейти к файлу
dependabot[bot] 66d127edf9
Bump word-wrap from 1.2.3 to 1.2.4 in /inst/htmlwidgets/js/src (#210)
* Bump word-wrap from 1.2.3 to 1.2.4 in /inst/htmlwidgets/js/src

Bumps [word-wrap](https://github.com/jonschlinkert/word-wrap) from 1.2.3 to 1.2.4.
- [Release notes](https://github.com/jonschlinkert/word-wrap/releases)
- [Commits](https://github.com/jonschlinkert/word-wrap/compare/1.2.3...1.2.4)

---
updated-dependencies:
- dependency-name: word-wrap
  dependency-type: indirect
...

Signed-off-by: dependabot[bot] <support@github.com>

* updated workflows

* numeric only for pandas version 2

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Chinmay Singh <chsingh@microsoft.com>
2023-07-19 14:14:43 -04:00
.github Bump word-wrap from 1.2.3 to 1.2.4 in /inst/htmlwidgets/js/src (#210) 2023-07-19 14:14:43 -04:00
.vscode Custom sum animation2 (#197) 2022-11-02 12:01:37 -04:00
R Numerical groups fix (#207) 2022-12-05 13:52:29 -05:00
data Added binary data, example visualizations 2022-02-15 20:01:34 -06:00
data-raw Median support (#171) 2022-05-24 12:14:55 -04:00
datamations Bump word-wrap from 1.2.3 to 1.2.4 in /inst/htmlwidgets/js/src (#210) 2023-07-19 14:14:43 -04:00
demo-app datamations demo application added 2022-03-31 20:44:53 -05:00
dist made datamations as npm package, wrote tests and made the whole code a single bundle. #158 2022-03-30 18:12:22 +04:00
inst Bump word-wrap from 1.2.3 to 1.2.4 in /inst/htmlwidgets/js/src (#210) 2023-07-19 14:14:43 -04:00
man readme updates 2022-03-28 22:04:02 -05:00
notebooks Three variables (#162) 2022-04-03 23:42:39 -04:00
renv will added 2022-03-16 12:34:50 +04:00
sandbox Issue190 fix (#194) 2022-07-21 14:29:38 -04:00
tests skip python tests for cran submission 2022-03-30 19:13:58 -05:00
vignettes Numerical groups fix (#207) 2022-12-05 13:52:29 -05:00
.Rbuildignore datamations demo application added 2022-03-31 20:44:53 -05:00
.Rprofile Set up renv 2021-04-06 09:50:10 -04:00
.gitignore Three variables (#162) 2022-04-03 23:42:39 -04:00
.pylintrc Pylint fix (#176) 2022-06-10 10:33:01 -04:00
DESCRIPTION dgg to description file 2022-07-11 14:10:58 -04:00
LICENSE Add MIT license 2021-07-15 10:29:03 -04:00
LICENSE.md Add MIT license 2021-07-15 10:29:03 -04:00
NAMESPACE R cmd check fixes 2021-06-15 16:18:13 -04:00
PythonSettings.json Groupby two columns (#127) 2021-12-09 20:53:00 -05:00
README.Rmd readme updates 2022-03-28 22:04:02 -05:00
README.md readme new md file 2022-03-28 22:20:48 -05:00
SECURITY.md Microsoft mandatory file (#172) 2022-05-24 12:16:25 -04:00
_pkgdown.yml data reference added in pkgdown yaml 2022-02-15 21:06:33 -06:00
app.R Add shiny app for datamation stages 2021-05-11 10:19:48 -04:00
azure-pipelines.yml Update azure-pipelines.yml for Azure Pipelines 2021-04-30 22:28:10 -04:00
datamations.Rproj vignette indexing, no multiarch check issues for cran submission 2022-03-30 18:20:44 -05:00
package-lock.json will added 2022-03-16 12:34:50 +04:00
renv.lock Update renv 2021-12-08 13:43:23 -05:00
setup.py Pylint fix (#176) 2022-06-10 10:33:01 -04:00

README.md

datamations

R-CMD-check

datamations is a framework for the automatic generation of explanation of the steps of an analysis pipeline. It automatically turns code into animations, showing the state of the data at each step of an analysis.

For more information, please visit the package website, which includes additional examples, defaults and conventions, and more.

Installation

You can install datamations from GitHub with:

# install.packages("devtools")
devtools::install_github("microsoft/datamations")

Usage

To get started, load datamations and dplyr:

A datamation shows a plot of what the data looks like at each step of a tidyverse pipeline, animated by the transitions that lead to each state. The following shows an example taking the built-in small_salary data set, grouping by Degree, and calculating the mean Salary.

First, define the code for the pipeline, then generate the datamation with datamation_sanddance():

library(datamations)
library(dplyr)

"small_salary %>% 
  group_by(Degree) %>%
  summarize(mean = mean(Salary))" %>%
  datamation_sanddance()

datamations supports the following dplyr functions:

  • group_by() (up to three grouping variables)
  • summarize()/summarise() (limited to summarizing one variable)
  • filter()
  • count()/tally