зеркало из https://github.com/microsoft/msccl.git
all protocols work
This commit is contained in:
Родитель
007fc390c7
Коммит
d83e777ac3
|
@ -14,6 +14,6 @@ ncclResult_t ncclAllToAll(const void* sendbuff, void* recvbuff, size_t sendcount
|
|||
NVTX3_FUNC_RANGE_IN(nccl_domain);
|
||||
struct ncclInfo info = { ncclFuncAllToAll, "AllToAll",
|
||||
sendbuff, recvbuff, sendcount, datatype, ncclSum, 0, comm, stream, /* Args */
|
||||
ALLTOALL_CHUNKSTEPS, ALLTOALL_SLICESTEPS };
|
||||
SCKL_CHUNKSTEPS, SCKL_SLICESTEPS };
|
||||
return ncclEnqueueCheck(&info);
|
||||
}
|
||||
|
|
|
@ -132,7 +132,6 @@ class ncclFunction<ncclFuncAllGather, NCCL_ALGO_RING, NCCL_PROTO_LL, FUNC, T, UN
|
|||
}
|
||||
};
|
||||
|
||||
#include "prims_ll128.h"
|
||||
template<class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllGather, NCCL_ALGO_RING, NCCL_PROTO_LL128, FUNC, T, UNROLL> {
|
||||
public:
|
||||
|
@ -207,11 +206,29 @@ class ncclFunction<ncclFuncAllGather, NCCL_ALGO_COLLNET, PROTO, FUNC, T, UNROLL>
|
|||
__device__ void run(struct ncclWorkElem* args) {}
|
||||
};
|
||||
|
||||
template<int PROTO, class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllGather, NCCL_ALGO_SCKL, PROTO, FUNC, T, UNROLL> {
|
||||
template<class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllGather, NCCL_ALGO_SCKL, NCCL_PROTO_SIMPLE, FUNC, T, UNROLL> {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
SCKLFunctions<PROTO, FUNC, T, UNROLL> scklfunc;
|
||||
SCKLFunctionSimple<FUNC, T, UNROLL> scklfunc;
|
||||
scklfunc.run(args);
|
||||
}
|
||||
};
|
||||
|
||||
template<class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllGather, NCCL_ALGO_SCKL, NCCL_PROTO_LL128, FUNC, T, UNROLL> {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
SCKLFunctionLL128<FUNC, T, UNROLL> scklfunc;
|
||||
scklfunc.run(args);
|
||||
}
|
||||
};
|
||||
|
||||
template<class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllGather, NCCL_ALGO_SCKL, NCCL_PROTO_LL, FUNC, T, UNROLL> {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
SCKLFunctionLL<FUNC, T, UNROLL> scklfunc;
|
||||
scklfunc.run(args);
|
||||
}
|
||||
};
|
|
@ -9,11 +9,29 @@
|
|||
#include "collectives.h"
|
||||
#include "sckl_interpreter.h"
|
||||
|
||||
template<int ALGO, int PROTO, class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllToAll, ALGO, PROTO, FUNC, T, UNROLL> {
|
||||
template<int ALGO, class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllToAll, ALGO, NCCL_PROTO_SIMPLE, FUNC, T, UNROLL> {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
SCKLFunctions<PROTO, FUNC, T, UNROLL> scklfunc;
|
||||
SCKLFunctionSimple<FUNC, T, UNROLL> scklfunc;
|
||||
scklfunc.run(args);
|
||||
}
|
||||
};
|
||||
|
||||
template<int ALGO, class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllToAll, ALGO, NCCL_PROTO_LL128, FUNC, T, UNROLL> {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
SCKLFunctionLL128<FUNC, T, UNROLL> scklfunc;
|
||||
scklfunc.run(args);
|
||||
}
|
||||
};
|
||||
|
||||
template<int ALGO, class FUNC, typename T, int UNROLL>
|
||||
class ncclFunction<ncclFuncAllToAll, ALGO, NCCL_PROTO_LL, FUNC, T, UNROLL> {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
SCKLFunctionLL<FUNC, T, UNROLL> scklfunc;
|
||||
scklfunc.run(args);
|
||||
}
|
||||
};
|
||||
|
|
|
@ -106,7 +106,6 @@ __device__ void ncclKernel(struct ncclWorkElem first) {
|
|||
w->index += NCCL_MAX_OPS;
|
||||
}
|
||||
}
|
||||
|
||||
if (w->funcIndex == FINDEX) {
|
||||
f.run(w);
|
||||
} else {
|
||||
|
|
|
@ -14,8 +14,8 @@
|
|||
#define COMPUTE_FLAG(__WORKINDEX__,__GRIDOFFSET_ITER__,__STEP__) \
|
||||
SCKL_MAX_ITER*SCKL_MAX_NUM_STEPS*__WORKINDEX__ + (__GRIDOFFSET_ITER__ * SCKL_MAX_NUM_STEPS + __STEP__)
|
||||
|
||||
template<int PROTO, class FUNC, typename T, int UNROLL>
|
||||
class SCKLFunctions {
|
||||
template<class FUNC, typename T, int UNROLL>
|
||||
class SCKLFunctionSimple {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
struct ncclDevComm* comm = args->comm;
|
||||
|
@ -24,7 +24,6 @@ class SCKLFunctions {
|
|||
const int nthreads = args->nThreads-WARP_SIZE;
|
||||
const int sync_tid = args->nThreads-1; // last thread is most likely not doing anthing and used for sckl cross thread synchronization
|
||||
const int bid = blockIdx.x;
|
||||
// const int nChannels = args->coll.nChannels;
|
||||
const int scklNBlocks = scklAlgo->nBlocks;
|
||||
const int rscklbid = bid % scklNBlocks; // bid within a sckl algo
|
||||
const int scklIndex = bid / scklNBlocks; // which instance of sckl algo
|
||||
|
@ -33,10 +32,9 @@ class SCKLFunctions {
|
|||
const int channelId = scklIndex * scklAlgo->nChannels + scklTB->channelId;
|
||||
struct ncclChannel* channel = comm->channels+channelId;
|
||||
const int stepSize = comm->buffSizes[NCCL_PROTO_SIMPLE] / (sizeof(T)*NCCL_STEPS);
|
||||
const int chunkSize = stepSize * ALLTOALL_CHUNKSTEPS;
|
||||
const int chunkSize = stepSize * SCKL_CHUNKSTEPS;
|
||||
const int nranks = comm->nRanks;
|
||||
const int nchunksPerLoopPerRank = scklAlgo->nchunksPerLoop/nranks;
|
||||
// const int totalNChunksPerLoopPerRank = nScklInstnaces*nchunksPerLoopPerRank;
|
||||
const ssize_t loopSize = (ssize_t)chunkSize*nScklInstnaces;
|
||||
const ssize_t size = args->coll.count;
|
||||
const ssize_t sizePerScklChunk = size/nchunksPerLoopPerRank;
|
||||
|
@ -47,11 +45,10 @@ class SCKLFunctions {
|
|||
// Compute pointers
|
||||
T * thisInput = (T*)args->sendbuff;
|
||||
T * thisOutput = (T*)args->recvbuff;
|
||||
// int myRank = channel->ring.devUserRanks[0];
|
||||
int recvPeer = scklTB->recvpeer;
|
||||
int sendPeer = scklTB->sendpeer;
|
||||
|
||||
ncclPrimitives<UNROLL, ALLTOALL_CHUNKSTEPS/ALLTOALL_SLICESTEPS, ALLTOALL_SLICESTEPS, T, 1, 1, 1, FUNC>
|
||||
ncclPrimitives<UNROLL, SCKL_CHUNKSTEPS/SCKL_SLICESTEPS, SCKL_SLICESTEPS, T, 1, 1, 1, FUNC>
|
||||
prims(tid, nthreads, &recvPeer, &sendPeer, thisOutput, stepSize, channel, comm, ncclShmem->ptrs, 0);
|
||||
for (ssize_t gridOffset = 0, iter = 0; gridOffset < sizePerScklChunk; gridOffset += loopSize, iter++) {
|
||||
int realChunkSize = min(chunkSize, DIVUP(sizePerScklChunk-gridOffset,nScklInstnaces));
|
||||
|
@ -101,3 +98,169 @@ class SCKLFunctions {
|
|||
}
|
||||
}
|
||||
};
|
||||
|
||||
#include "prims_ll128.h"
|
||||
template<class FUNC, typename T, int UNROLL>
|
||||
class SCKLFunctionLL128 {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
struct ncclDevComm* comm = args->comm;
|
||||
struct scklAlgorithm* scklAlgo = &comm->scklAlgo;
|
||||
const int tid = threadIdx.x;
|
||||
const int nthreads = args->nThreads;
|
||||
const int sync_tid = args->nThreads-1; // last thread is most likely not doing anthing and used for sckl cross thread synchronization
|
||||
const int bid = blockIdx.x;
|
||||
const int scklNBlocks = scklAlgo->nBlocks;
|
||||
const int rscklbid = bid % scklNBlocks; // bid within a sckl algo
|
||||
const int scklIndex = bid / scklNBlocks; // which instance of sckl algo
|
||||
const int nScklInstnaces = gridDim.x / scklAlgo->nBlocks; // number of sckl aglos
|
||||
struct scklThreadBlock* scklTB = &scklAlgo->scklTB[rscklbid];
|
||||
const int channelId = scklIndex * scklAlgo->nChannels + scklTB->channelId;
|
||||
struct ncclChannel* channel = comm->channels+channelId;
|
||||
const int stepSize = comm->buffSizes[NCCL_PROTO_LL128] / (sizeof(uint64_t)*NCCL_STEPS);
|
||||
ssize_t chunkSize = stepSize*NCCL_LL128_DATAELEMS*sizeof(uint64_t) / (NCCL_LL128_LINEELEMS*sizeof(T));
|
||||
const ssize_t minChunkSize = (NCCL_LL128_SHMEM_ELEMS_PER_THREAD*nthreads*NCCL_LL128_DATAELEMS*sizeof(uint64_t))/(NCCL_LL128_LINEELEMS*sizeof(T))/2;
|
||||
const int nranks = comm->nRanks;
|
||||
const int nchunksPerLoopPerRank = scklAlgo->nchunksPerLoop/nranks;
|
||||
const ssize_t loopSize = (ssize_t)chunkSize*nScklInstnaces;
|
||||
const ssize_t size = args->coll.count;
|
||||
const ssize_t sizePerScklChunk = size/nchunksPerLoopPerRank;
|
||||
// sckl flags all start out with 0. this is used as a part of the flag to make sure different work items deal with different synchronization flags
|
||||
// this still needs more work. when we make a way around the queue, the flag might have been set to undesired values. will be fixed in subsequent versions.
|
||||
const int workIndex = args->index+1;
|
||||
volatile struct scklFlag* scklFlags = comm->scklFlags;
|
||||
// Compute pointers
|
||||
T * thisInput = (T*)args->sendbuff;
|
||||
T * thisOutput = (T*)args->recvbuff;
|
||||
int recvPeer = scklTB->recvpeer;
|
||||
int sendPeer = scklTB->sendpeer;
|
||||
|
||||
ncclLL128Primitives<T, FUNC, 1, 1> prims(tid, nthreads, &recvPeer, &sendPeer, stepSize, channel, comm);
|
||||
for (ssize_t gridOffset = 0, iter = 0; gridOffset < sizePerScklChunk; gridOffset += loopSize, iter++) {
|
||||
chunkSize = min(chunkSize, DIVUP(sizePerScklChunk-gridOffset,nScklInstnaces*minChunkSize)*minChunkSize);
|
||||
ssize_t chunkOffset = gridOffset + scklIndex*chunkSize;
|
||||
ssize_t srcoffset, dstoffset;
|
||||
T* srcPointer, * dstPointer;
|
||||
int nelem = min(chunkSize, sizePerScklChunk-chunkOffset);
|
||||
for (int i = 0; i < scklTB->nsteps; i++){
|
||||
struct scklTransfer* sckltran = &scklTB->transfers[i];
|
||||
if (sckltran->type == SCKL_NO_OP) continue;
|
||||
// first wait if there is a dependence
|
||||
int8_t dependentBid = sckltran->dependentBid + scklIndex * scklNBlocks;
|
||||
int8_t dependentStep = sckltran->dependentStep;
|
||||
if (sckltran->dependentBid >= 0){
|
||||
if (tid == sync_tid){
|
||||
uint64_t goalFlag = COMPUTE_FLAG(workIndex, iter, dependentStep);
|
||||
while ((scklFlags + dependentBid)->flag < goalFlag){};
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
srcPointer = (sckltran->srcbuffer == SCKL_INPUT_BUFFER) ? thisInput : thisOutput;
|
||||
srcoffset = chunkOffset + (ssize_t) sckltran->srcoffset * sizePerScklChunk;
|
||||
dstPointer = (sckltran->dstbuffer == SCKL_INPUT_BUFFER) ? thisInput : thisOutput;
|
||||
dstoffset = chunkOffset + (ssize_t) sckltran->dstoffset * sizePerScklChunk;
|
||||
switch (sckltran->type) {
|
||||
case SCKL_SEND:
|
||||
prims.send(srcPointer + srcoffset, nelem);
|
||||
break;
|
||||
case SCKL_RECV:
|
||||
prims.recv(dstPointer + dstoffset, nelem);
|
||||
break;
|
||||
case SCKL_RECV_COPY_SEND:
|
||||
prims.recvCopySend(dstPointer + dstoffset, nelem);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
if (tid == sync_tid){
|
||||
__threadfence();
|
||||
uint64_t curFlag = COMPUTE_FLAG(workIndex, iter, i);
|
||||
scklFlags[bid].flag = curFlag;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template<class FUNC, typename T, int UNROLL>
|
||||
class SCKLFunctionLL {
|
||||
public:
|
||||
__device__ void run(struct ncclWorkElem* args) {
|
||||
struct ncclDevComm* comm = args->comm;
|
||||
struct scklAlgorithm* scklAlgo = &comm->scklAlgo;
|
||||
const int tid = threadIdx.x;
|
||||
const int nthreads = args->nThreads;
|
||||
const int sync_tid = args->nThreads-1; // last thread is most likely not doing anthing and used for sckl cross thread synchronization
|
||||
const int bid = blockIdx.x;
|
||||
const int scklNBlocks = scklAlgo->nBlocks;
|
||||
const int rscklbid = bid % scklNBlocks; // bid within a sckl algo
|
||||
const int scklIndex = bid / scklNBlocks; // which instance of sckl algo
|
||||
const int nScklInstnaces = gridDim.x / scklAlgo->nBlocks; // number of sckl aglos
|
||||
struct scklThreadBlock* scklTB = &scklAlgo->scklTB[rscklbid];
|
||||
const int channelId = scklIndex * scklAlgo->nChannels + scklTB->channelId;
|
||||
struct ncclChannel* channel = comm->channels+channelId;
|
||||
const int stepLines = comm->buffSizes[NCCL_PROTO_LL] / (sizeof(union ncclLLFifoLine)*NCCL_STEPS);
|
||||
ssize_t chunkSize = stepLines * sizeof(uint64_t) / sizeof(T);
|
||||
const int nranks = comm->nRanks;
|
||||
const int nchunksPerLoopPerRank = scklAlgo->nchunksPerLoop/nranks;
|
||||
const ssize_t loopSize = (ssize_t)chunkSize*nScklInstnaces;
|
||||
const ssize_t size = args->coll.count;
|
||||
const ssize_t sizePerScklChunk = size/nchunksPerLoopPerRank;
|
||||
// sckl flags all start out with 0. this is used as a part of the flag to make sure different work items deal with different synchronization flags
|
||||
// this still needs more work. when we make a way around the queue, the flag might have been set to undesired values. will be fixed in subsequent versions.
|
||||
const int workIndex = args->index+1;
|
||||
volatile struct scklFlag* scklFlags = comm->scklFlags;
|
||||
// Compute pointers
|
||||
T * thisInput = (T*)args->sendbuff;
|
||||
T * thisOutput = (T*)args->recvbuff;
|
||||
int recvPeer = scklTB->recvpeer;
|
||||
int sendPeer = scklTB->sendpeer;
|
||||
|
||||
ncclLLPrimitives<T, FUNC, 1, 1> prims(tid, nthreads, &recvPeer, &sendPeer, stepLines, channel, comm);
|
||||
for (ssize_t gridOffset = 0, iter = 0; gridOffset < sizePerScklChunk; gridOffset += loopSize, iter++) {
|
||||
ssize_t chunkOffset = gridOffset + scklIndex*chunkSize;
|
||||
ssize_t srcoffset, dstoffset;
|
||||
T* srcPointer, * dstPointer;
|
||||
int nelem = min(chunkSize, sizePerScklChunk-chunkOffset);
|
||||
for (int i = 0; i < scklTB->nsteps; i++){
|
||||
struct scklTransfer* sckltran = &scklTB->transfers[i];
|
||||
if (sckltran->type == SCKL_NO_OP) continue;
|
||||
// first wait if there is a dependence
|
||||
int8_t dependentBid = sckltran->dependentBid + scklIndex * scklNBlocks;
|
||||
int8_t dependentStep = sckltran->dependentStep;
|
||||
if (sckltran->dependentBid >= 0){
|
||||
if (tid == sync_tid){
|
||||
uint64_t goalFlag = COMPUTE_FLAG(workIndex, iter, dependentStep);
|
||||
while ((scklFlags + dependentBid)->flag < goalFlag){};
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
srcPointer = (sckltran->srcbuffer == SCKL_INPUT_BUFFER) ? thisInput : thisOutput;
|
||||
srcoffset = chunkOffset + (ssize_t) sckltran->srcoffset * sizePerScklChunk;
|
||||
dstPointer = (sckltran->dstbuffer == SCKL_INPUT_BUFFER) ? thisInput : thisOutput;
|
||||
dstoffset = chunkOffset + (ssize_t) sckltran->dstoffset * sizePerScklChunk;
|
||||
switch (sckltran->type) {
|
||||
case SCKL_SEND:
|
||||
prims.send(srcPointer + srcoffset, nelem);
|
||||
break;
|
||||
case SCKL_RECV:
|
||||
prims.recv(dstPointer + dstoffset, nelem);
|
||||
break;
|
||||
case SCKL_RECV_COPY_SEND:
|
||||
prims.recvCopySend(dstPointer + dstoffset, nelem);
|
||||
break;
|
||||
default:
|
||||
return;
|
||||
}
|
||||
if (tid == sync_tid){
|
||||
__threadfence();
|
||||
uint64_t curFlag = COMPUTE_FLAG(workIndex, iter, i);
|
||||
scklFlags[bid].flag = curFlag;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
|
@ -121,7 +121,7 @@ ncclResult_t ncclTopoTuneModel(struct ncclComm* comm, int minCompCap, int maxCom
|
|||
// Only sckl alltoall functions with simple protocol is implemented
|
||||
// SCKL algorithm is dynamic and busBw/latency can only be determined by the input XML algorithm. An analysis will be added later.
|
||||
for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
|
||||
if ((coll == ncclFuncAllToAll || coll == ncclFuncAllGather) && a == NCCL_ALGO_SCKL && p == NCCL_PROTO_SIMPLE){
|
||||
if ((coll == ncclFuncAllToAll || coll == ncclFuncAllGather) && a == NCCL_ALGO_SCKL){
|
||||
// Setting the bandwidth and latency values to 1.0 (some arbitrary value) so that they don't get skipped by ncclTopoGetAlgoTime
|
||||
comm->bandwidths[coll][a][p] = 1.0;
|
||||
comm->latencies[coll][a][p] = 1.0;
|
||||
|
@ -215,7 +215,7 @@ ncclResult_t ncclTopoTuneModel(struct ncclComm* comm, int minCompCap, int maxCom
|
|||
}
|
||||
if (pEnable == 0) comm->bandwidths[c][a][p] = 0;
|
||||
// Only disable algo for Allreduce since others only have one
|
||||
if (c == ncclFuncAllReduce && algoEnable[a] == 0) comm->bandwidths[c][a][p] = 0;
|
||||
if ((c == ncclFuncAllReduce || c == ncclFuncAllGather) && algoEnable[a] == 0) comm->bandwidths[c][a][p] = 0;
|
||||
}
|
||||
|
||||
if (comm->rank == 0) {
|
||||
|
|
|
@ -74,8 +74,8 @@ DECL_ALL
|
|||
#define BROADCAST_CHUNKSTEPS 1
|
||||
#define REDUCE_SLICESTEPS 1
|
||||
#define REDUCE_CHUNKSTEPS 1
|
||||
#define ALLTOALL_SLICESTEPS (NCCL_STEPS/4)
|
||||
#define ALLTOALL_CHUNKSTEPS (NCCL_STEPS/2)
|
||||
#define SCKL_SLICESTEPS (NCCL_STEPS/4)
|
||||
#define SCKL_CHUNKSTEPS (NCCL_STEPS/2)
|
||||
#define SENDRECV_SLICEFACTOR 4
|
||||
|
||||
#endif
|
||||
|
|
|
@ -118,7 +118,7 @@ struct ncclRing {
|
|||
};
|
||||
|
||||
#define SCKL_MAX_NUM_STEPS 16
|
||||
#define SCKL_MAX_NUM_THREAD_BLOCKS_PER_CHANNEL 128
|
||||
#define SCKL_MAX_NUM_THREAD_BLOCKS_PER_CHANNEL 8
|
||||
|
||||
#define SCKL_INPUT_BUFFER 0
|
||||
#define SCKL_OUTPUT_BUFFER 1
|
||||
|
@ -199,7 +199,7 @@ struct ncclWorkElem {
|
|||
uint16_t funcIndex;
|
||||
uint16_t index;
|
||||
// in SCKL algorithms, ncclWorkElem.active element from workFifo is replicated for for all other thread blocks
|
||||
uint16_t active[SCKL_MAX_NUM_THREAD_BLOCKS_PER_CHANNEL];
|
||||
uint8_t active[SCKL_MAX_NUM_THREAD_BLOCKS_PER_CHANNEL];
|
||||
uint8_t isScklAlgorithm; // right now, 0 indicates not a sckl algorithm and 1 indicates it is. In future versions, this will be the index into arrays of scklAlgorithms.
|
||||
uint8_t nActives; // if it is a sckl algorithm, it must be set to associated channel number of thread blocks. if not a sckl algorithm, it is 1.
|
||||
|
||||
|
@ -221,13 +221,13 @@ struct ncclWorkElem {
|
|||
int32_t delta;
|
||||
uint16_t nThreads;
|
||||
} p2p;
|
||||
uint64_t align[28];
|
||||
uint64_t align[3];
|
||||
};
|
||||
};
|
||||
struct ncclWork {
|
||||
struct ncclWorkElem elems[NCCL_MAX_WORK_ELEMENTS];
|
||||
};
|
||||
static_assert(sizeof(struct ncclWorkElem) == (0x80*sizeof(int)), "ncclWorkElem must have a pow2 size");
|
||||
static_assert(sizeof(struct ncclWorkElem) == (0x10*sizeof(int)), "ncclWorkElem must have a pow2 size");
|
||||
|
||||
struct ncclChannel {
|
||||
union {
|
||||
|
|
Загрузка…
Ссылка в новой задаче