ort-customops/docs/new_operator.md

48 строки
2.5 KiB
Markdown

# Add a Custom Operator in ONNXRuntime-Extensions
Before implement a custom operator, you get the ONNX model with one or more ORT custom operators, created by ONNX converters, [ONNX-Script](https://github.com/microsoft/onnx-script), or [ONNX model API](https://onnx.ai/onnx/api/helper.html) and etc..
## 1. Quick verification with PythonOp (optional)
Before you actually develop a custom operator for the work, if you want to quickly verify the ONNX model with Python, you can wrap the custom operator with **[PyOp](docs/pyop.md)**.
```python
import numpy
from onnxruntime_extensions import PyOp, onnx_op
# Implement the CustomOp by decorating a function with onnx_op
@onnx_op(op_type="Inverse", inputs=[PyOp.dt_float])
def inverse(x):
# the user custom op implementation here:
return numpy.linalg.inv(x)
# Run the model with this custom op
# model_func = PyOrtFunction(model_path)
# outputs = model_func(inputs)
# ...
```
## 2. Generate the C++ template code of the Custom operator from the ONNX Model (optional)
python -m onnxruntime-extensions.cmd --cpp-gen <model_path> <repository_dir>`
If you are familiar with the ONNX model detail, you create the custom operator C++ classes directly.
## 3. Implement the CustomOp Kernel Compute method in the generated C++ files.
the custom operator kernel C++ code example can be found [operators](../operators/) folder, like [gaussian_blur](../operators/cv2/imgproc/gaussian_blur.hpp). All C++ APIs that can be used in the kernel implementation are listed below
* [ONNXRuntime Custom API docs](https://onnxruntime.ai/docs/api/c/struct_ort_custom_op.html)
* the third libraries API docs integrated in ONNXRuntime Extensions the can be used in C++ code
- OpenCV API docs https://docs.opencv.org/4.x/
- Google SentencePiece Library docs https://github.com/google/sentencepiece/blob/master/doc/api.md
- dlib(matrix and ML library) C++ API docs http://dlib.net/algorithms.html
- BlingFire Library https://github.com/microsoft/BlingFire
- Google RE2 Library https://github.com/google/re2/wiki/CplusplusAPI
- JSON library https://json.nlohmann.me/api/basic_json/
## 3. Build and Test
- The unit tests can be implemented as Python or C++, check [test](../test) folder for more examples
- Check [build-package](./development.md) on how to build the different language package to be used for production.
Please check the [contribution](../README.md#contributing) to see if it is possible to contribute the custom operator to onnxruntime-extensions.