scene_graph_benchmark/tools/train_sg_net.py

226 строки
7.4 KiB
Python

# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Copyright (c) 2021 Microsoft Corporation. Licensed under the MIT license.
r"""
Basic training script for PyTorch
"""
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import torch
from maskrcnn_benchmark.config import cfg
from scene_graph_benchmark.config import sg_cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.data.datasets.utils.load_files import config_dataset_file
from maskrcnn_benchmark.solver import make_lr_scheduler
from maskrcnn_benchmark.solver import make_optimizer, make_optimizer_d2
from maskrcnn_benchmark.engine.inference import inference
from maskrcnn_benchmark.engine.trainer import do_train
from maskrcnn_benchmark.modeling.detector import build_detection_model
from scene_graph_benchmark.scene_parser import SceneParser
from scene_graph_benchmark.AttrRCNN import AttrRCNN
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank
from maskrcnn_benchmark.utils.imports import import_file
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.metric_logger import MetricLogger
from maskrcnn_benchmark.utils.miscellaneous import mkdir, save_config
from tools.test_sg_net import run_test
import random
import numpy as np
torch.manual_seed(1000)
torch.cuda.manual_seed(1000)
torch.cuda.manual_seed_all(1000) # if you are using multi-GPU.
np.random.seed(1000) # Numpy module.
random.seed(1000) # Python random module.
torch.manual_seed(1000)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def train(cfg, local_rank, distributed):
if cfg.MODEL.META_ARCHITECTURE == "SceneParser":
model = SceneParser(cfg)
elif cfg.MODEL.META_ARCHITECTURE == "AttrRCNN":
model = AttrRCNN(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
if cfg.MODEL.BACKBONE.CONV_BODY.startswith("ViL"):
optimizer = make_optimizer_d2(cfg, model)
else:
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False, find_unused_parameters=True
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
test_period = cfg.SOLVER.TEST_PERIOD
if test_period > 0:
data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed, is_for_period=True)
else:
data_loader_val = None
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
meters = MetricLogger(delimiter=" ")
do_train(
cfg,
model,
data_loader,
data_loader_val,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
test_period,
arguments,
meters
)
return model
def run_test(cfg, model, distributed):
if distributed:
model = model.module
torch.cuda.empty_cache() # TODO check if it helps
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
if cfg.MODEL.KEYPOINT_ON:
iou_types = iou_types + ("keypoints",)
output_folders = [None] * len(cfg.DATASETS.TEST)
dataset_names = cfg.DATASETS.TEST
if cfg.OUTPUT_DIR:
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
labelmap_file = config_dataset_file(cfg.DATA_DIR, cfg.DATASETS.LABELMAP_FILE)
for output_folder, dataset_name, data_loader_val in zip(output_folders, dataset_names, data_loaders_val):
inference(
model,
cfg,
data_loader_val,
dataset_name=dataset_name,
iou_types=iou_types,
box_only=False if cfg.MODEL.RETINANET_ON else cfg.MODEL.RPN_ONLY,
bbox_aug=cfg.TEST.BBOX_AUG.ENABLED,
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
skip_performance_eval=cfg.TEST.SKIP_PERFORMANCE_EVAL,
labelmap_file=labelmap_file,
save_predictions=cfg.TEST.SAVE_PREDICTIONS,
)
synchronize()
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.set_new_allowed(True)
cfg.merge_from_other_cfg(sg_cfg)
cfg.set_new_allowed(False)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
output_config_path = os.path.join(cfg.OUTPUT_DIR, 'config.yml')
logger.info("Saving config into: {}".format(output_config_path))
# save overloaded model config in the output directory
save_config(cfg, output_config_path)
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed, model_name="model_final")
if __name__ == "__main__":
main()