torchgeo/README.md

102 строки
4.7 KiB
Markdown
Исходник Обычный вид История

2021-08-30 22:55:20 +03:00
<img src="logo/logo-color.svg" width="400" alt="TorchGeo"/>
2021-05-21 05:40:24 +03:00
2021-09-02 23:41:20 +03:00
TorchGeo is a [PyTorch](https://pytorch.org/) domain library, similar to [torchvision](https://pytorch.org/vision), that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.
2021-08-31 23:34:13 +03:00
2021-09-02 23:41:20 +03:00
The goal of this library is to make it simple:
1. for machine learning experts to use geospatial data in their workflows, and
2. for remote sensing experts to use their data in machine learning workflows.
2021-08-31 23:34:13 +03:00
See our [installation instructions](#installation-instructions), [documentation](#documentation), and [examples](#example-usage) to learn how to use torchgeo.
2021-07-05 01:03:27 +03:00
2021-09-03 00:10:45 +03:00
External links:
[![docs](https://readthedocs.org/projects/torchgeo/badge/?version=latest)](https://torchgeo.readthedocs.io/en/latest/?badge=latest)
Tests:
2021-07-05 01:29:51 +03:00
[![docs](https://github.com/microsoft/torchgeo/actions/workflows/docs.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/docs.yaml)
[![style](https://github.com/microsoft/torchgeo/actions/workflows/style.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/style.yaml)
[![tests](https://github.com/microsoft/torchgeo/actions/workflows/tests.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/tests.yaml)
2021-05-21 05:40:24 +03:00
2021-08-31 23:34:13 +03:00
## Installation instructions
Until the first release, you can install an environment compatible with torchgeo with `conda`, `pip`, or `spack` as shown below.
2021-06-25 00:49:31 +03:00
2021-07-05 01:03:27 +03:00
### Conda
2021-06-25 00:49:31 +03:00
2021-09-02 23:41:20 +03:00
**Note**: if you do not have access to a GPU or are running on macOS, replace `pytorch-gpu` with `pytorch-cpu` in the `environment.yml` file.
2021-09-02 23:41:20 +03:00
```console
$ conda config --set channel_priority strict
$ conda env create --file environment.yml
$ conda activate torchgeo
```
2021-08-31 23:34:13 +03:00
### Pip
With Python 3.6 or later:
2021-09-02 23:41:20 +03:00
```console
$ pip install -r requirements.txt
```
2021-08-31 23:34:13 +03:00
### Spack
2021-09-02 23:41:20 +03:00
```console
$ spack env activate .
$ spack install
```
2021-08-31 23:34:13 +03:00
## Documentation
2021-09-03 00:10:45 +03:00
You can find the documentation for torchgeo on [ReadTheDocs](https://torchgeo.readthedocs.io).
2021-08-31 23:34:13 +03:00
## Example usage
2021-09-03 00:10:45 +03:00
The following sections give basic examples of what you can do with torchgeo. For more examples, check out our [tutorials](https://torchgeo.readthedocs.io/en/latest/tutorials/getting_started.html).
2021-08-31 23:34:13 +03:00
### Train and test models using our PyTorch Lightning based training script
2021-08-31 23:51:37 +03:00
We provide a script, `train.py` for training models using a subset of the datasets. We do this with the PyTorch Lightning `LightningModule`s and `LightningDataModule`s implemented under the `torchgeo.trainders` namespace.
The `train.py` script is configurable via the command line and/or via YAML configuration files. See the [conf/](conf/) directory for example configuration files that can be customized for different training runs.
2021-09-02 23:41:20 +03:00
```console
$ python train.py config_file=conf/landcoverai.yaml
2021-06-25 00:49:31 +03:00
```
2021-08-31 23:34:13 +03:00
### Download and use the Tropical Cyclone Wind Estimation Competition dataset
2021-08-31 23:51:37 +03:00
This dataset is from a competition hosted by [Driven Data](https://www.drivendata.org/) in collaboration with [Radiant Earth](https://www.radiant.earth/). See [here](https://www.drivendata.org/competitions/72/predict-wind-speeds/) for more information.
2021-08-31 23:34:13 +03:00
2021-08-31 23:51:37 +03:00
Using this dataset in torchgeo is as simple as importing and instantiating the appropriate class.
```python
import torchgeo.datasets
2021-08-31 23:34:13 +03:00
2021-08-31 23:51:37 +03:00
dataset = torchgeo.datasets.TropicalCycloneWindEstimation(split="train", download=True)
print(dataset[0]["image"].shape)
print(dataset[0]["wind_speed"])
2021-08-31 23:34:13 +03:00
```
2021-07-08 03:16:06 +03:00
2021-05-21 19:35:58 +03:00
## Contributing
This project welcomes contributions and suggestions. Most contributions require you to agree to a
Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us
the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.
When you submit a pull request, a CLA bot will automatically determine whether you need to provide
a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions
provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft
trademarks or logos is subject to and must follow
[Microsoft's Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks/usage/general).
Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship.
Any use of third-party trademarks or logos are subject to those third-party's policies.