torchgeo/docs/api/models.rst

148 строки
3.0 KiB
ReStructuredText

torchgeo.models
=================
.. module:: torchgeo.models
Change Star
^^^^^^^^^^^
.. autoclass:: ChangeStar
.. autoclass:: ChangeStarFarSeg
.. autoclass:: ChangeMixin
CROMA
^^^^^
.. autoclass:: CROMA
.. autofunction:: croma_base
.. autofunction:: croma_large
.. autoclass:: CROMABase_Weights
.. autoclass:: CROMALarge_Weights
DOFA
^^^^
.. autoclass:: DOFA
.. autofunction:: dofa_small_patch16_224
.. autofunction:: dofa_base_patch16_224
.. autofunction:: dofa_large_patch16_224
.. autofunction:: dofa_huge_patch16_224
.. autoclass:: DOFABase16_Weights
.. autoclass:: DOFALarge16_Weights
FarSeg
^^^^^^
.. autoclass:: FarSeg
Fully-convolutional Network
^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. autoclass:: FCN
FC Siamese Networks
^^^^^^^^^^^^^^^^^^^
.. autoclass:: FCSiamConc
.. autoclass:: FCSiamDiff
RCF Extractor
^^^^^^^^^^^^^
.. autoclass:: RCF
ResNet
^^^^^^
.. autofunction:: resnet18
.. autofunction:: resnet50
.. autofunction:: resnet152
.. autoclass:: ResNet18_Weights
.. autoclass:: ResNet50_Weights
.. autoclass:: ResNet152_Weights
Scale-MAE
^^^^^^^^^
.. autofunction:: ScaleMAE
.. autoclass:: ScaleMAELarge16_Weights
Swin Transformer
^^^^^^^^^^^^^^^^^^
.. autofunction:: swin_v2_t
.. autofunction:: swin_v2_b
.. autoclass:: Swin_V2_T_Weights
.. autoclass:: Swin_V2_B_Weights
Vision Transformer
^^^^^^^^^^^^^^^^^^
.. autofunction:: vit_small_patch16_224
.. autoclass:: ViTSmall16_Weights
Utility Functions
^^^^^^^^^^^^^^^^^
.. autofunction:: get_model
.. autofunction:: get_model_weights
.. autofunction:: get_weight
.. autofunction:: list_models
Pretrained Weights
^^^^^^^^^^^^^^^^^^
TorchGeo provides a number of pre-trained models and backbones, allowing you to perform transfer learning on small datasets without training a new model from scratch or relying on ImageNet weights. Depending on the satellite/sensor where your data comes from, choose from the following pre-trained weights based on which one has the best performance metrics.
Sensor-Agnostic
---------------
These weights can be used with imagery from any satellite/sensor. In addition to the usual performance metrics, there are also additional columns for dynamic spatial (resolution), temporal (time span), and/or spectral (wavelength) support, either via their training data (implicit) or via their model architecture (explicit).
.. csv-table::
:widths: 45 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
:header-rows: 1
:align: center
:file: weights/agnostic.csv
Landsat
-------
.. csv-table::
:widths: 65 10 10 10 10 10 10 10 10 10
:header-rows: 1
:align: center
:file: weights/landsat.csv
NAIP
----
.. csv-table::
:widths: 45 10 10 10 10
:header-rows: 1
:align: center
:file: weights/naip.csv
Sentinel-1
----------
.. csv-table::
:widths: 45 10 10 10 10
:header-rows: 1
:align: center
:file: weights/sentinel1.csv
Sentinel-2
----------
.. csv-table::
:widths: 45 10 10 10 10 15 10 10 10
:header-rows: 1
:align: center
:file: weights/sentinel2.csv