зеркало из https://github.com/microsoft/torchgeo.git
86 строки
4.6 KiB
Markdown
86 строки
4.6 KiB
Markdown
<img src="https://raw.githubusercontent.com/microsoft/torchgeo/main/logo/logo-color.svg" width="400" alt="TorchGeo"/>
|
|
|
|
TorchGeo is a [PyTorch](https://pytorch.org/) domain library, similar to [torchvision](https://pytorch.org/vision), that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.
|
|
|
|
The goal of this library is to make it simple:
|
|
|
|
1. for machine learning experts to use geospatial data in their workflows, and
|
|
2. for remote sensing experts to use their data in machine learning workflows.
|
|
|
|
See our [installation instructions](#installation-instructions), [documentation](#documentation), and [examples](#example-usage) to learn how to use torchgeo.
|
|
|
|
External links:
|
|
[![docs](https://readthedocs.org/projects/torchgeo/badge/?version=latest)](https://torchgeo.readthedocs.io/en/latest/?badge=latest)
|
|
[![codecov](https://codecov.io/gh/microsoft/torchgeo/branch/main/graph/badge.svg?token=oa3Z3PMVOg)](https://codecov.io/gh/microsoft/torchgeo)
|
|
[![pypi](https://badge.fury.io/py/torchgeo.svg)](https://pypi.org/project/torchgeo/)
|
|
[![conda](https://anaconda.org/conda-forge/torchgeo/badges/version.svg)](https://anaconda.org/conda-forge/torchgeo)
|
|
[![spack](https://img.shields.io/spack/v/py-torchgeo)](https://spack.readthedocs.io/en/latest/package_list.html#py-torchgeo)
|
|
|
|
Tests:
|
|
[![docs](https://github.com/microsoft/torchgeo/actions/workflows/docs.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/docs.yaml)
|
|
[![style](https://github.com/microsoft/torchgeo/actions/workflows/style.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/style.yaml)
|
|
[![tests](https://github.com/microsoft/torchgeo/actions/workflows/tests.yaml/badge.svg)](https://github.com/microsoft/torchgeo/actions/workflows/tests.yaml)
|
|
|
|
## Installation instructions
|
|
|
|
The recommended way to install TorchGeo is with [pip](https://pip.pypa.io/):
|
|
|
|
```console
|
|
$ pip install torchgeo
|
|
```
|
|
|
|
For [conda](https://docs.conda.io/) and [spack](https://spack.io/) installation instructions, see the [documentation](https://torchgeo.readthedocs.io/en/latest/user/installation.html).
|
|
|
|
## Documentation
|
|
|
|
You can find the documentation for torchgeo on [ReadTheDocs](https://torchgeo.readthedocs.io).
|
|
|
|
## Example usage
|
|
|
|
The following sections give basic examples of what you can do with torchgeo. For more examples, check out our [tutorials](https://torchgeo.readthedocs.io/en/latest/tutorials/getting_started.html).
|
|
|
|
### Train and test models using our PyTorch Lightning based training script
|
|
|
|
We provide a script, `train.py` for training models using a subset of the datasets. We do this with the PyTorch Lightning `LightningModule`s and `LightningDataModule`s implemented under the `torchgeo.trainers` namespace.
|
|
The `train.py` script is configurable via the command line and/or via YAML configuration files. See the [conf/](conf/) directory for example configuration files that can be customized for different training runs.
|
|
|
|
```console
|
|
$ python train.py config_file=conf/landcoverai.yaml
|
|
```
|
|
|
|
### Download and use the Tropical Cyclone Wind Estimation Competition dataset
|
|
|
|
This dataset is from a competition hosted by [Driven Data](https://www.drivendata.org/) in collaboration with [Radiant Earth](https://www.radiant.earth/). See [here](https://www.drivendata.org/competitions/72/predict-wind-speeds/) for more information.
|
|
|
|
Using this dataset in torchgeo is as simple as importing and instantiating the appropriate class.
|
|
|
|
```python
|
|
import torchgeo.datasets
|
|
|
|
dataset = torchgeo.datasets.TropicalCycloneWindEstimation(split="train", download=True)
|
|
print(dataset[0]["image"].shape)
|
|
print(dataset[0]["label"])
|
|
```
|
|
|
|
## Citation
|
|
|
|
If you use this software in your work, please cite [our paper](https://arxiv.org/abs/2111.08872):
|
|
```
|
|
@article{Stewart_TorchGeo_deep_learning_2021,
|
|
author = {Stewart, Adam J. and Robinson, Caleb and Corley, Isaac A. and Ortiz, Anthony and Lavista Ferres, Juan M. and Banerjee, Arindam},
|
|
journal = {arXiv preprint arXiv:2111.08872},
|
|
month = {11},
|
|
title = {{TorchGeo: deep learning with geospatial data}},
|
|
url = {https://github.com/microsoft/torchgeo},
|
|
year = {2021}
|
|
}
|
|
```
|
|
|
|
## Contributing
|
|
|
|
This project welcomes contributions and suggestions. If you would like to submit a pull request, see our [Contribution Guide](https://torchgeo.readthedocs.io/en/latest/user/contributing.html) for more information.
|
|
|
|
This project has adopted the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct/).
|
|
For more information see the [Code of Conduct FAQ](https://opensource.microsoft.com/codeofconduct/faq/) or
|
|
contact [opencode@microsoft.com](mailto:opencode@microsoft.com) with any additional questions or comments.
|