зеркало из https://github.com/microsoft/wpa.git
46 строки
1.4 KiB
R
46 строки
1.4 KiB
R
% Generated by roxygen2: do not edit by hand
|
|
% Please edit documentation in R/tm_cooc.R
|
|
\name{tm_cooc}
|
|
\alias{tm_cooc}
|
|
\title{Analyse word co-occurrence in subject lines and return a network plot}
|
|
\usage{
|
|
tm_cooc(data, stopwords = NULL, seed = 100, return = "plot", lmult = 0.05)
|
|
}
|
|
\arguments{
|
|
\item{data}{A Meeting Query dataset in the form of a data frame.}
|
|
|
|
\item{stopwords}{A single-column data frame labelled 'word' containing custom stopwords to remove.}
|
|
|
|
\item{seed}{A numeric vector to set seed for random generation.}
|
|
|
|
\item{return}{Character vector specifying what to return, defaults to "plot".
|
|
Valid inputs are "plot" and "table".}
|
|
|
|
\item{lmult}{A multiplier to adjust the line width in the output plot. Defaults to 0.05.}
|
|
}
|
|
\description{
|
|
This function generates a word co-occurence network plot,
|
|
with options to return a table.
|
|
This is a sub-function that feeds into \code{meeting_tm_report()}.
|
|
}
|
|
\details{
|
|
This function uses \code{tm_clean()} as the underlying data wrangling function.
|
|
There is an option to remove stopwords by passing a data frame into the \code{stopwords}
|
|
argument.
|
|
}
|
|
\examples{
|
|
# Demo using a subset of `mt_data`
|
|
mt_data \%>\%
|
|
dplyr::slice(1:20) \%>\%
|
|
tm_cooc(lmult = 0.01)
|
|
|
|
}
|
|
\seealso{
|
|
Other Text-mining:
|
|
\code{\link{meeting_tm_report}()},
|
|
\code{\link{tm_clean}()},
|
|
\code{\link{tm_freq}()},
|
|
\code{\link{tm_wordcloud}()}
|
|
}
|
|
\concept{Text-mining}
|