aom/vpx_dsp/x86/sad_avx2.c

182 строки
6.6 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <immintrin.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx_ports/mem.h"
#define FSAD64_H(h) \
unsigned int vpx_sad64x##h##_avx2(const uint8_t *src_ptr, \
int src_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
int i, res; \
__m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \
__m256i sum_sad = _mm256_setzero_si256(); \
__m256i sum_sad_h; \
__m128i sum_sad128; \
for (i = 0 ; i < h ; i++) { \
ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \
ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + 32)); \
sad1_reg = _mm256_sad_epu8(ref1_reg, \
_mm256_loadu_si256((__m256i const *)src_ptr)); \
sad2_reg = _mm256_sad_epu8(ref2_reg, \
_mm256_loadu_si256((__m256i const *)(src_ptr + 32))); \
sum_sad = _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \
ref_ptr+= ref_stride; \
src_ptr+= src_stride; \
} \
sum_sad_h = _mm256_srli_si256(sum_sad, 8); \
sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \
sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \
sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \
res = _mm_cvtsi128_si32(sum_sad128); \
return res; \
}
#define FSAD32_H(h) \
unsigned int vpx_sad32x##h##_avx2(const uint8_t *src_ptr, \
int src_stride, \
const uint8_t *ref_ptr, \
int ref_stride) { \
int i, res; \
__m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \
__m256i sum_sad = _mm256_setzero_si256(); \
__m256i sum_sad_h; \
__m128i sum_sad128; \
int ref2_stride = ref_stride << 1; \
int src2_stride = src_stride << 1; \
int max = h >> 1; \
for (i = 0 ; i < max ; i++) { \
ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \
ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + ref_stride)); \
sad1_reg = _mm256_sad_epu8(ref1_reg, \
_mm256_loadu_si256((__m256i const *)src_ptr)); \
sad2_reg = _mm256_sad_epu8(ref2_reg, \
_mm256_loadu_si256((__m256i const *)(src_ptr + src_stride))); \
sum_sad = _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \
ref_ptr+= ref2_stride; \
src_ptr+= src2_stride; \
} \
sum_sad_h = _mm256_srli_si256(sum_sad, 8); \
sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \
sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \
sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \
res = _mm_cvtsi128_si32(sum_sad128); \
return res; \
}
#define FSAD64 \
FSAD64_H(64); \
FSAD64_H(32);
#define FSAD32 \
FSAD32_H(64); \
FSAD32_H(32); \
FSAD32_H(16);
FSAD64;
FSAD32;
#undef FSAD64
#undef FSAD32
#undef FSAD64_H
#undef FSAD32_H
#define FSADAVG64_H(h) \
unsigned int vpx_sad64x##h##_avg_avx2(const uint8_t *src_ptr, \
int src_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
int i, res; \
__m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \
__m256i sum_sad = _mm256_setzero_si256(); \
__m256i sum_sad_h; \
__m128i sum_sad128; \
for (i = 0 ; i < h ; i++) { \
ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \
ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + 32)); \
ref1_reg = _mm256_avg_epu8(ref1_reg, \
_mm256_loadu_si256((__m256i const *)second_pred)); \
ref2_reg = _mm256_avg_epu8(ref2_reg, \
_mm256_loadu_si256((__m256i const *)(second_pred +32))); \
sad1_reg = _mm256_sad_epu8(ref1_reg, \
_mm256_loadu_si256((__m256i const *)src_ptr)); \
sad2_reg = _mm256_sad_epu8(ref2_reg, \
_mm256_loadu_si256((__m256i const *)(src_ptr + 32))); \
sum_sad = _mm256_add_epi32(sum_sad, _mm256_add_epi32(sad1_reg, sad2_reg)); \
ref_ptr+= ref_stride; \
src_ptr+= src_stride; \
second_pred+= 64; \
} \
sum_sad_h = _mm256_srli_si256(sum_sad, 8); \
sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \
sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \
sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \
res = _mm_cvtsi128_si32(sum_sad128); \
return res; \
}
#define FSADAVG32_H(h) \
unsigned int vpx_sad32x##h##_avg_avx2(const uint8_t *src_ptr, \
int src_stride, \
const uint8_t *ref_ptr, \
int ref_stride, \
const uint8_t *second_pred) { \
int i, res; \
__m256i sad1_reg, sad2_reg, ref1_reg, ref2_reg; \
__m256i sum_sad = _mm256_setzero_si256(); \
__m256i sum_sad_h; \
__m128i sum_sad128; \
int ref2_stride = ref_stride << 1; \
int src2_stride = src_stride << 1; \
int max = h >> 1; \
for (i = 0 ; i < max ; i++) { \
ref1_reg = _mm256_loadu_si256((__m256i const *)ref_ptr); \
ref2_reg = _mm256_loadu_si256((__m256i const *)(ref_ptr + ref_stride)); \
ref1_reg = _mm256_avg_epu8(ref1_reg, \
_mm256_loadu_si256((__m256i const *)second_pred)); \
ref2_reg = _mm256_avg_epu8(ref2_reg, \
_mm256_loadu_si256((__m256i const *)(second_pred +32))); \
sad1_reg = _mm256_sad_epu8(ref1_reg, \
_mm256_loadu_si256((__m256i const *)src_ptr)); \
sad2_reg = _mm256_sad_epu8(ref2_reg, \
_mm256_loadu_si256((__m256i const *)(src_ptr + src_stride))); \
sum_sad = _mm256_add_epi32(sum_sad, \
_mm256_add_epi32(sad1_reg, sad2_reg)); \
ref_ptr+= ref2_stride; \
src_ptr+= src2_stride; \
second_pred+= 64; \
} \
sum_sad_h = _mm256_srli_si256(sum_sad, 8); \
sum_sad = _mm256_add_epi32(sum_sad, sum_sad_h); \
sum_sad128 = _mm256_extracti128_si256(sum_sad, 1); \
sum_sad128 = _mm_add_epi32(_mm256_castsi256_si128(sum_sad), sum_sad128); \
res = _mm_cvtsi128_si32(sum_sad128); \
return res; \
}
#define FSADAVG64 \
FSADAVG64_H(64); \
FSADAVG64_H(32);
#define FSADAVG32 \
FSADAVG32_H(64); \
FSADAVG32_H(32); \
FSADAVG32_H(16);
FSADAVG64;
FSADAVG32;
#undef FSADAVG64
#undef FSADAVG32
#undef FSADAVG64_H
#undef FSADAVG32_H