aom/av1/encoder/pickrst.c

1170 строки
45 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include "./aom_scale_rtcd.h"
#include "aom_dsp/psnr.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/quant_common.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/picklpf.h"
#include "av1/encoder/pickrst.h"
#include "av1/encoder/quantize.h"
typedef double (*search_restore_type)(const YV12_BUFFER_CONFIG *src,
AV1_COMP *cpi, int filter_level,
int partial_frame, RestorationInfo *info,
double *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame);
const int frame_level_restore_bits[RESTORE_TYPES] = { 2, 2, 3, 3, 2 };
static int64_t sse_restoration_tile(const YV12_BUFFER_CONFIG *src,
const YV12_BUFFER_CONFIG *dst,
const AV1_COMMON *cm, int h_start,
int width, int v_start, int height) {
int64_t filt_err;
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
filt_err =
aom_highbd_get_y_sse_part(src, dst, h_start, width, v_start, height);
} else {
filt_err = aom_get_y_sse_part(src, dst, h_start, width, v_start, height);
}
#else
(void)cm;
filt_err = aom_get_y_sse_part(src, dst, h_start, width, v_start, height);
#endif // CONFIG_AOM_HIGHBITDEPTH
return filt_err;
}
static int64_t try_restoration_tile(const YV12_BUFFER_CONFIG *src,
AV1_COMP *const cpi, RestorationInfo *rsi,
int partial_frame, int tile_idx,
int subtile_idx, int subtile_bits,
YV12_BUFFER_CONFIG *dst_frame) {
AV1_COMMON *const cm = &cpi->common;
int64_t filt_err;
int tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
(void)ntiles;
av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, 1, partial_frame,
dst_frame);
av1_get_rest_tile_limits(tile_idx, subtile_idx, subtile_bits, nhtiles,
nvtiles, tile_width, tile_height, cm->width,
cm->height, 0, 0, &h_start, &h_end, &v_start,
&v_end);
filt_err = sse_restoration_tile(src, dst_frame, cm, h_start, h_end - h_start,
v_start, v_end - v_start);
return filt_err;
}
static int64_t try_restoration_frame(const YV12_BUFFER_CONFIG *src,
AV1_COMP *const cpi, RestorationInfo *rsi,
int partial_frame,
YV12_BUFFER_CONFIG *dst_frame) {
AV1_COMMON *const cm = &cpi->common;
int64_t filt_err;
av1_loop_restoration_frame(cm->frame_to_show, cm, rsi, 1, partial_frame,
dst_frame);
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth) {
filt_err = aom_highbd_get_y_sse(src, dst_frame);
} else {
filt_err = aom_get_y_sse(src, dst_frame);
}
#else
filt_err = aom_get_y_sse(src, dst_frame);
#endif // CONFIG_AOM_HIGHBITDEPTH
return filt_err;
}
static int64_t get_pixel_proj_error(int64_t *src, int width, int height,
int src_stride, int64_t *dgd,
int dgd_stride, int64_t *flt1,
int flt1_stride, int64_t *flt2,
int flt2_stride, int *xqd) {
int i, j;
int64_t err = 0;
int xq[2];
decode_xq(xqd, xq);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int64_t s = (int64_t)src[i * src_stride + j];
const int64_t u = (int64_t)dgd[i * dgd_stride + j];
const int64_t f1 = (int64_t)flt1[i * flt1_stride + j] - u;
const int64_t f2 = (int64_t)flt2[i * flt2_stride + j] - u;
const int64_t v = xq[0] * f1 + xq[1] * f2 + (u << SGRPROJ_PRJ_BITS);
const int64_t e =
ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) -
ROUND_POWER_OF_TWO(s, SGRPROJ_RST_BITS);
err += e * e;
}
}
return err;
}
static void get_proj_subspace(int64_t *src, int width, int height,
int src_stride, int64_t *dgd, int dgd_stride,
int64_t *flt1, int flt1_stride, int64_t *flt2,
int flt2_stride, int *xq) {
int i, j;
double H[2][2] = { { 0, 0 }, { 0, 0 } };
double C[2] = { 0, 0 };
double Det;
double x[2];
const int size = width * height;
xq[0] = -(1 << SGRPROJ_PRJ_BITS) / 4;
xq[1] = (1 << SGRPROJ_PRJ_BITS) - xq[0];
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const double u = (double)dgd[i * dgd_stride + j];
const double s = (double)src[i * src_stride + j] - u;
const double f1 = (double)flt1[i * flt1_stride + j] - u;
const double f2 = (double)flt2[i * flt2_stride + j] - u;
H[0][0] += f1 * f1;
H[1][1] += f2 * f2;
H[0][1] += f1 * f2;
C[0] += f1 * s;
C[1] += f2 * s;
}
}
H[0][0] /= size;
H[0][1] /= size;
H[1][1] /= size;
H[1][0] = H[0][1];
C[0] /= size;
C[1] /= size;
Det = (H[0][0] * H[1][1] - H[0][1] * H[1][0]);
if (Det < 1e-8) return; // ill-posed, return default values
x[0] = (H[1][1] * C[0] - H[0][1] * C[1]) / Det;
x[1] = (H[0][0] * C[1] - H[1][0] * C[0]) / Det;
xq[0] = (int)rint(x[0] * (1 << SGRPROJ_PRJ_BITS));
xq[1] = (int)rint(x[1] * (1 << SGRPROJ_PRJ_BITS));
}
void encode_xq(int *xq, int *xqd) {
xqd[0] = -xq[0];
xqd[0] = clamp(xqd[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0);
xqd[1] = (1 << SGRPROJ_PRJ_BITS) + xqd[0] - xq[1];
xqd[1] = clamp(xqd[1], SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
}
static void search_selfguided_restoration(uint8_t *dat8, int width, int height,
int dat_stride, uint8_t *src8,
int src_stride, int bit_depth,
int *eps, int *xqd, void *tmpbuf) {
int64_t *srd = (int64_t *)tmpbuf;
int64_t *dgd = srd + RESTORATION_TILEPELS_MAX;
int64_t *flt1 = dgd + RESTORATION_TILEPELS_MAX;
int64_t *flt2 = flt1 + RESTORATION_TILEPELS_MAX;
uint8_t *tmpbuf2 = (uint8_t *)(flt2 + RESTORATION_TILEPELS_MAX);
int i, j, ep, bestep = 0;
int64_t err, besterr = -1;
int exqd[2], bestxqd[2] = { 0, 0 };
for (ep = 0; ep < SGRPROJ_PARAMS; ep++) {
int exq[2];
if (bit_depth > 8) {
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
flt1[i * width + j] = (int64_t)dat[i * dat_stride + j];
flt2[i * width + j] = (int64_t)dat[i * dat_stride + j];
dgd[i * width + j] = (int64_t)dat[i * dat_stride + j]
<< SGRPROJ_RST_BITS;
srd[i * width + j] = (int64_t)src[i * src_stride + j]
<< SGRPROJ_RST_BITS;
}
}
} else {
uint8_t *src = src8;
uint8_t *dat = dat8;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int k = i * width + j;
const int l = i * dat_stride + j;
flt1[k] = (int64_t)dat[l];
flt2[k] = (int64_t)dat[l];
dgd[k] = (int64_t)dat[l] << SGRPROJ_RST_BITS;
srd[k] = (int64_t)src[i * src_stride + j] << SGRPROJ_RST_BITS;
}
}
}
av1_selfguided_restoration(flt1, width, height, width, bit_depth,
sgr_params[ep].r1, sgr_params[ep].e1, tmpbuf2);
av1_selfguided_restoration(flt2, width, height, width, bit_depth,
sgr_params[ep].r2, sgr_params[ep].e2, tmpbuf2);
get_proj_subspace(srd, width, height, width, dgd, width, flt1, width, flt2,
width, exq);
encode_xq(exq, exqd);
err = get_pixel_proj_error(srd, width, height, width, dgd, width, flt1,
width, flt2, width, exqd);
if (besterr == -1 || err < besterr) {
bestep = ep;
besterr = err;
bestxqd[0] = exqd[0];
bestxqd[1] = exqd[1];
}
}
*eps = bestep;
xqd[0] = bestxqd[0];
xqd[1] = bestxqd[1];
}
static double search_sgrproj(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int filter_level, int partial_frame,
RestorationInfo *info, double *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame) {
SgrprojInfo *sgrproj_info = info->sgrproj_info;
double err, cost_norestore, cost_sgrproj;
int bits;
MACROBLOCK *x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
RestorationInfo rsi;
int tile_idx, tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
uint8_t *tmpbuf = aom_malloc(SGRPROJ_TMPBUF_SIZE +
RESTORATION_TILEPELS_MAX * sizeof(int64_t) * 2);
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
rsi.frame_restoration_type = RESTORE_SGRPROJ;
rsi.sgrproj_info =
(SgrprojInfo *)aom_malloc(sizeof(*rsi.sgrproj_info) * ntiles);
assert(rsi.sgrproj_info != NULL);
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx)
rsi.sgrproj_info[tile_idx].level = 0;
// Compute best Sgrproj filters for each tile
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, cm->width, cm->height, 0, 0, &h_start,
&h_end, &v_start, &v_end);
err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start,
h_end - h_start, v_start, v_end - v_start);
// #bits when a tile is not restored
bits = av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 0);
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
best_tile_cost[tile_idx] = DBL_MAX;
search_selfguided_restoration(
dgd->y_buffer + v_start * dgd->y_stride + h_start, h_end - h_start,
v_end - v_start, dgd->y_stride,
src->y_buffer + v_start * src->y_stride + h_start, src->y_stride,
#if CONFIG_AOM_HIGHBITDEPTH
cm->bit_depth,
#else
8,
#endif // CONFIG_AOM_HIGHBITDEPTH
&rsi.sgrproj_info[tile_idx].ep, rsi.sgrproj_info[tile_idx].xqd, tmpbuf);
rsi.sgrproj_info[tile_idx].level = 1;
err = try_restoration_tile(src, cpi, &rsi, partial_frame, tile_idx, 0, 0,
dst_frame);
bits = SGRPROJ_BITS << AV1_PROB_COST_SHIFT;
bits += av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, 1);
cost_sgrproj = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
if (cost_sgrproj >= cost_norestore) {
sgrproj_info[tile_idx].level = 0;
} else {
memcpy(&sgrproj_info[tile_idx], &rsi.sgrproj_info[tile_idx],
sizeof(sgrproj_info[tile_idx]));
bits = SGRPROJ_BITS << AV1_PROB_COST_SHIFT;
best_tile_cost[tile_idx] = RDCOST_DBL(
x->rdmult, x->rddiv,
(bits + cpi->switchable_restore_cost[RESTORE_SGRPROJ]) >> 4, err);
}
rsi.sgrproj_info[tile_idx].level = 0;
}
// Cost for Sgrproj filtering
bits = frame_level_restore_bits[rsi.frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
bits +=
av1_cost_bit(RESTORE_NONE_SGRPROJ_PROB, sgrproj_info[tile_idx].level);
memcpy(&rsi.sgrproj_info[tile_idx], &sgrproj_info[tile_idx],
sizeof(sgrproj_info[tile_idx]));
if (sgrproj_info[tile_idx].level) {
bits += (SGRPROJ_BITS << AV1_PROB_COST_SHIFT);
}
}
err = try_restoration_frame(src, cpi, &rsi, partial_frame, dst_frame);
cost_sgrproj = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
aom_free(rsi.sgrproj_info);
aom_free(tmpbuf);
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
return cost_sgrproj;
}
static int64_t compute_sse(uint8_t *dgd, int width, int height, int dgd_stride,
uint8_t *src, int src_stride) {
int64_t sse = 0;
int i, j;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int diff =
(int)dgd[i * dgd_stride + j] - (int)src[i * src_stride + j];
sse += diff * diff;
}
}
return sse;
}
#if CONFIG_AOM_HIGHBITDEPTH
static int64_t compute_sse_highbd(uint16_t *dgd, int width, int height,
int dgd_stride, uint16_t *src,
int src_stride) {
int64_t sse = 0;
int i, j;
for (i = 0; i < height; ++i) {
for (j = 0; j < width; ++j) {
const int diff =
(int)dgd[i * dgd_stride + j] - (int)src[i * src_stride + j];
sse += diff * diff;
}
}
return sse;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
static void search_domaintxfmrf_restoration(uint8_t *dgd8, int width,
int height, int dgd_stride,
uint8_t *src8, int src_stride,
int bit_depth, int *sigma_r) {
const int first_p_step = 8;
const int second_p_range = first_p_step >> 1;
const int second_p_step = 2;
const int third_p_range = second_p_step >> 1;
const int third_p_step = 1;
int p, best_p0, best_p = -1;
int64_t best_sse = INT64_MAX, sse;
if (bit_depth == 8) {
uint8_t *tmp = (uint8_t *)aom_malloc(width * height * sizeof(*tmp));
int32_t *tmpbuf =
(int32_t *)aom_malloc(RESTORATION_TILEPELS_MAX * sizeof(*tmpbuf));
uint8_t *dgd = dgd8;
uint8_t *src = src8;
// First phase
for (p = first_p_step / 2; p < DOMAINTXFMRF_PARAMS; p += first_p_step) {
av1_domaintxfmrf_restoration(dgd, width, height, dgd_stride, p, tmp,
width, tmpbuf);
sse = compute_sse(tmp, width, height, width, src, src_stride);
if (sse < best_sse || best_p == -1) {
best_p = p;
best_sse = sse;
}
}
// Second Phase
best_p0 = best_p;
for (p = best_p0 - second_p_range; p <= best_p0 + second_p_range;
p += second_p_step) {
if (p < 0 || p == best_p || p >= DOMAINTXFMRF_PARAMS) continue;
av1_domaintxfmrf_restoration(dgd, width, height, dgd_stride, p, tmp,
width, tmpbuf);
sse = compute_sse(tmp, width, height, width, src, src_stride);
if (sse < best_sse) {
best_p = p;
best_sse = sse;
}
}
// Third Phase
best_p0 = best_p;
for (p = best_p0 - third_p_range; p <= best_p0 + third_p_range;
p += third_p_step) {
if (p < 0 || p == best_p || p >= DOMAINTXFMRF_PARAMS) continue;
av1_domaintxfmrf_restoration(dgd, width, height, dgd_stride, p, tmp,
width, tmpbuf);
sse = compute_sse(tmp, width, height, width, src, src_stride);
if (sse < best_sse) {
best_p = p;
best_sse = sse;
}
}
aom_free(tmp);
} else {
#if CONFIG_AOM_HIGHBITDEPTH
uint16_t *tmp = (uint16_t *)aom_malloc(width * height * sizeof(*tmp));
int32_t *tmpbuf =
(int32_t *)aom_malloc(RESTORATION_TILEPELS_MAX * sizeof(*tmpbuf));
uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
// First phase
for (p = first_p_step / 2; p < DOMAINTXFMRF_PARAMS; p += first_p_step) {
av1_domaintxfmrf_restoration_highbd(dgd, width, height, dgd_stride, p,
bit_depth, tmp, width, tmpbuf);
sse = compute_sse_highbd(tmp, width, height, width, src, src_stride);
if (sse < best_sse || best_p == -1) {
best_p = p;
best_sse = sse;
}
}
// Second Phase
best_p0 = best_p;
for (p = best_p0 - second_p_range; p <= best_p0 + second_p_range;
p += second_p_step) {
if (p < 0 || p == best_p || p >= DOMAINTXFMRF_PARAMS) continue;
av1_domaintxfmrf_restoration_highbd(dgd, width, height, dgd_stride, p,
bit_depth, tmp, width, tmpbuf);
sse = compute_sse_highbd(tmp, width, height, width, src, src_stride);
if (sse < best_sse) {
best_p = p;
best_sse = sse;
}
}
// Third Phase
best_p0 = best_p;
for (p = best_p0 - third_p_range; p <= best_p0 + third_p_range;
p += third_p_step) {
if (p < 0 || p == best_p || p >= DOMAINTXFMRF_PARAMS) continue;
av1_domaintxfmrf_restoration_highbd(dgd, width, height, dgd_stride, p,
bit_depth, tmp, width, tmpbuf);
sse = compute_sse_highbd(tmp, width, height, width, src, src_stride);
if (sse < best_sse) {
best_p = p;
best_sse = sse;
}
}
aom_free(tmp);
#else
assert(0);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
*sigma_r = best_p;
}
static double search_domaintxfmrf(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int filter_level, int partial_frame,
RestorationInfo *info, double *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame) {
DomaintxfmrfInfo *domaintxfmrf_info = info->domaintxfmrf_info;
double cost_norestore, cost_domaintxfmrf;
int64_t err;
int bits;
MACROBLOCK *x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
RestorationInfo rsi;
int tile_idx, tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
rsi.frame_restoration_type = RESTORE_DOMAINTXFMRF;
rsi.domaintxfmrf_info =
(DomaintxfmrfInfo *)aom_malloc(sizeof(*rsi.domaintxfmrf_info) * ntiles);
assert(rsi.domaintxfmrf_info != NULL);
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx)
rsi.domaintxfmrf_info[tile_idx].level = 0;
// Compute best Domaintxfm filters for each tile
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, cm->width, cm->height, 0, 0, &h_start,
&h_end, &v_start, &v_end);
err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start,
h_end - h_start, v_start, v_end - v_start);
// #bits when a tile is not restored
bits = av1_cost_bit(RESTORE_NONE_DOMAINTXFMRF_PROB, 0);
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
best_tile_cost[tile_idx] = DBL_MAX;
search_domaintxfmrf_restoration(
dgd->y_buffer + v_start * dgd->y_stride + h_start, h_end - h_start,
v_end - v_start, dgd->y_stride,
src->y_buffer + v_start * src->y_stride + h_start, src->y_stride,
#if CONFIG_AOM_HIGHBITDEPTH
cm->bit_depth,
#else
8,
#endif // CONFIG_AOM_HIGHBITDEPTH
&rsi.domaintxfmrf_info[tile_idx].sigma_r);
rsi.domaintxfmrf_info[tile_idx].level = 1;
err = try_restoration_tile(src, cpi, &rsi, partial_frame, tile_idx, 0, 0,
dst_frame);
bits = DOMAINTXFMRF_PARAMS_BITS << AV1_PROB_COST_SHIFT;
bits += av1_cost_bit(RESTORE_NONE_DOMAINTXFMRF_PROB, 1);
cost_domaintxfmrf = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
if (cost_domaintxfmrf >= cost_norestore) {
domaintxfmrf_info[tile_idx].level = 0;
} else {
memcpy(&domaintxfmrf_info[tile_idx], &rsi.domaintxfmrf_info[tile_idx],
sizeof(domaintxfmrf_info[tile_idx]));
bits = DOMAINTXFMRF_PARAMS_BITS << AV1_PROB_COST_SHIFT;
best_tile_cost[tile_idx] = RDCOST_DBL(
x->rdmult, x->rddiv,
(bits + cpi->switchable_restore_cost[RESTORE_DOMAINTXFMRF]) >> 4,
err);
}
rsi.domaintxfmrf_info[tile_idx].level = 0;
}
// Cost for Domaintxfmrf filtering
bits = frame_level_restore_bits[rsi.frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
bits += av1_cost_bit(RESTORE_NONE_DOMAINTXFMRF_PROB,
domaintxfmrf_info[tile_idx].level);
memcpy(&rsi.domaintxfmrf_info[tile_idx], &domaintxfmrf_info[tile_idx],
sizeof(domaintxfmrf_info[tile_idx]));
if (domaintxfmrf_info[tile_idx].level) {
bits += (DOMAINTXFMRF_PARAMS_BITS << AV1_PROB_COST_SHIFT);
}
}
err = try_restoration_frame(src, cpi, &rsi, partial_frame, dst_frame);
cost_domaintxfmrf = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
aom_free(rsi.domaintxfmrf_info);
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
return cost_domaintxfmrf;
}
static double find_average(uint8_t *src, int h_start, int h_end, int v_start,
int v_end, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
for (i = v_start; i < v_end; i++)
for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
return avg;
}
static void compute_stats(uint8_t *dgd, uint8_t *src, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, double *M, double *H) {
int i, j, k, l;
double Y[RESTORATION_WIN2];
const double avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
for (k = 0; k < RESTORATION_WIN2; ++k) {
M[k] += Y[k] * X;
H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
for (l = k + 1; l < RESTORATION_WIN2; ++l) {
double value = Y[k] * Y[l];
H[k * RESTORATION_WIN2 + l] += value;
H[l * RESTORATION_WIN2 + k] += value;
}
}
}
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static double find_average_highbd(uint16_t *src, int h_start, int h_end,
int v_start, int v_end, int stride) {
uint64_t sum = 0;
double avg = 0;
int i, j;
for (i = v_start; i < v_end; i++)
for (j = h_start; j < h_end; j++) sum += src[i * stride + j];
avg = (double)sum / ((v_end - v_start) * (h_end - h_start));
return avg;
}
static void compute_stats_highbd(uint8_t *dgd8, uint8_t *src8, int h_start,
int h_end, int v_start, int v_end,
int dgd_stride, int src_stride, double *M,
double *H) {
int i, j, k, l;
double Y[RESTORATION_WIN2];
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
const double avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
memset(M, 0, sizeof(*M) * RESTORATION_WIN2);
memset(H, 0, sizeof(*H) * RESTORATION_WIN2 * RESTORATION_WIN2);
for (i = v_start; i < v_end; i++) {
for (j = h_start; j < h_end; j++) {
const double X = (double)src[i * src_stride + j] - avg;
int idx = 0;
for (k = -RESTORATION_HALFWIN; k <= RESTORATION_HALFWIN; k++) {
for (l = -RESTORATION_HALFWIN; l <= RESTORATION_HALFWIN; l++) {
Y[idx] = (double)dgd[(i + l) * dgd_stride + (j + k)] - avg;
idx++;
}
}
for (k = 0; k < RESTORATION_WIN2; ++k) {
M[k] += Y[k] * X;
H[k * RESTORATION_WIN2 + k] += Y[k] * Y[k];
for (l = k + 1; l < RESTORATION_WIN2; ++l) {
double value = Y[k] * Y[l];
H[k * RESTORATION_WIN2 + l] += value;
H[l * RESTORATION_WIN2 + k] += value;
}
}
}
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
// Solves Ax = b, where x and b are column vectors
static int linsolve(int n, double *A, int stride, double *b, double *x) {
int i, j, k;
double c;
// Partial pivoting
for (i = n - 1; i > 0; i--) {
if (A[(i - 1) * stride] < A[i * stride]) {
for (j = 0; j < n; j++) {
c = A[i * stride + j];
A[i * stride + j] = A[(i - 1) * stride + j];
A[(i - 1) * stride + j] = c;
}
c = b[i];
b[i] = b[i - 1];
b[i - 1] = c;
}
}
// Forward elimination
for (k = 0; k < n - 1; k++) {
for (i = k; i < n - 1; i++) {
c = A[(i + 1) * stride + k] / A[k * stride + k];
for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j];
b[i + 1] -= c * b[k];
}
}
// Backward substitution
for (i = n - 1; i >= 0; i--) {
if (fabs(A[i * stride + i]) < 1e-10) return 0;
c = 0;
for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j];
x[i] = (b[i] - c) / A[i * stride + i];
}
return 1;
}
static INLINE int wrap_index(int i) {
return (i >= RESTORATION_HALFWIN1 ? RESTORATION_WIN - 1 - i : i);
}
// Fix vector b, update vector a
static void update_a_sep_sym(double **Mc, double **Hc, double *a, double *b) {
int i, j;
double S[RESTORATION_WIN];
double A[RESTORATION_WIN], B[RESTORATION_WIN2];
int w, w2;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < RESTORATION_WIN; i++) {
for (j = 0; j < RESTORATION_WIN; ++j) {
const int jj = wrap_index(j);
A[jj] += Mc[i][j] * b[i];
}
}
for (i = 0; i < RESTORATION_WIN; i++) {
for (j = 0; j < RESTORATION_WIN; j++) {
int k, l;
for (k = 0; k < RESTORATION_WIN; ++k)
for (l = 0; l < RESTORATION_WIN; ++l) {
const int kk = wrap_index(k);
const int ll = wrap_index(l);
B[ll * RESTORATION_HALFWIN1 + kk] +=
Hc[j * RESTORATION_WIN + i][k * RESTORATION_WIN2 + l] * b[i] *
b[j];
}
}
}
// Normalization enforcement in the system of equations itself
w = RESTORATION_WIN;
w2 = (w >> 1) + 1;
for (i = 0; i < w2 - 1; ++i)
A[i] -=
A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
for (i = 0; i < w2 - 1; ++i)
for (j = 0; j < w2 - 1; ++j)
B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
2 * B[(w2 - 1) * w2 + (w2 - 1)]);
if (linsolve(w2 - 1, B, w2, A, S)) {
S[w2 - 1] = 1.0;
for (i = w2; i < w; ++i) {
S[i] = S[w - 1 - i];
S[w2 - 1] -= 2 * S[i];
}
memcpy(a, S, w * sizeof(*a));
}
}
// Fix vector a, update vector b
static void update_b_sep_sym(double **Mc, double **Hc, double *a, double *b) {
int i, j;
double S[RESTORATION_WIN];
double A[RESTORATION_WIN], B[RESTORATION_WIN2];
int w, w2;
memset(A, 0, sizeof(A));
memset(B, 0, sizeof(B));
for (i = 0; i < RESTORATION_WIN; i++) {
const int ii = wrap_index(i);
for (j = 0; j < RESTORATION_WIN; j++) A[ii] += Mc[i][j] * a[j];
}
for (i = 0; i < RESTORATION_WIN; i++) {
for (j = 0; j < RESTORATION_WIN; j++) {
const int ii = wrap_index(i);
const int jj = wrap_index(j);
int k, l;
for (k = 0; k < RESTORATION_WIN; ++k)
for (l = 0; l < RESTORATION_WIN; ++l)
B[jj * RESTORATION_HALFWIN1 + ii] +=
Hc[i * RESTORATION_WIN + j][k * RESTORATION_WIN2 + l] * a[k] *
a[l];
}
}
// Normalization enforcement in the system of equations itself
w = RESTORATION_WIN;
w2 = RESTORATION_HALFWIN1;
for (i = 0; i < w2 - 1; ++i)
A[i] -=
A[w2 - 1] * 2 + B[i * w2 + w2 - 1] - 2 * B[(w2 - 1) * w2 + (w2 - 1)];
for (i = 0; i < w2 - 1; ++i)
for (j = 0; j < w2 - 1; ++j)
B[i * w2 + j] -= 2 * (B[i * w2 + (w2 - 1)] + B[(w2 - 1) * w2 + j] -
2 * B[(w2 - 1) * w2 + (w2 - 1)]);
if (linsolve(w2 - 1, B, w2, A, S)) {
S[w2 - 1] = 1.0;
for (i = w2; i < w; ++i) {
S[i] = S[w - 1 - i];
S[w2 - 1] -= 2 * S[i];
}
memcpy(b, S, w * sizeof(*b));
}
}
static int wiener_decompose_sep_sym(double *M, double *H, double *a,
double *b) {
static const double init_filt[RESTORATION_WIN] = {
0.035623, -0.127154, 0.211436, 0.760190, 0.211436, -0.127154, 0.035623,
};
int i, j, iter;
double *Hc[RESTORATION_WIN2];
double *Mc[RESTORATION_WIN];
for (i = 0; i < RESTORATION_WIN; i++) {
Mc[i] = M + i * RESTORATION_WIN;
for (j = 0; j < RESTORATION_WIN; j++) {
Hc[i * RESTORATION_WIN + j] =
H + i * RESTORATION_WIN * RESTORATION_WIN2 + j * RESTORATION_WIN;
}
}
memcpy(a, init_filt, sizeof(*a) * RESTORATION_WIN);
memcpy(b, init_filt, sizeof(*b) * RESTORATION_WIN);
iter = 1;
while (iter < 10) {
update_a_sep_sym(Mc, Hc, a, b);
update_b_sep_sym(Mc, Hc, a, b);
iter++;
}
return 1;
}
// Computes the function x'*A*x - x'*b for the learned filters, and compares
// against identity filters; Final score is defined as the difference between
// the function values
static double compute_score(double *M, double *H, int *vfilt, int *hfilt) {
double ab[RESTORATION_WIN * RESTORATION_WIN];
int i, k, l;
double P = 0, Q = 0;
double iP = 0, iQ = 0;
double Score, iScore;
int w;
double a[RESTORATION_WIN], b[RESTORATION_WIN];
w = RESTORATION_WIN;
a[RESTORATION_HALFWIN] = b[RESTORATION_HALFWIN] = 1.0;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
a[i] = a[RESTORATION_WIN - i - 1] =
(double)vfilt[i] / RESTORATION_FILT_STEP;
b[i] = b[RESTORATION_WIN - i - 1] =
(double)hfilt[i] / RESTORATION_FILT_STEP;
a[RESTORATION_HALFWIN] -= 2 * a[i];
b[RESTORATION_HALFWIN] -= 2 * b[i];
}
for (k = 0; k < w; ++k) {
for (l = 0; l < w; ++l) ab[k * w + l] = a[l] * b[k];
}
for (k = 0; k < w * w; ++k) {
P += ab[k] * M[k];
for (l = 0; l < w * w; ++l) Q += ab[k] * H[k * w * w + l] * ab[l];
}
Score = Q - 2 * P;
iP = M[(w * w) >> 1];
iQ = H[((w * w) >> 1) * w * w + ((w * w) >> 1)];
iScore = iQ - 2 * iP;
return Score - iScore;
}
static void quantize_sym_filter(double *f, int *fi) {
int i;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
fi[i] = RINT(f[i] * RESTORATION_FILT_STEP);
}
// Specialize for 7-tap filter
fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV);
fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV);
fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV);
}
static double search_wiener(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int filter_level, int partial_frame,
RestorationInfo *info, double *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame) {
WienerInfo *wiener_info = info->wiener_info;
AV1_COMMON *const cm = &cpi->common;
RestorationInfo rsi;
int64_t err;
int bits;
double cost_wiener, cost_norestore;
MACROBLOCK *x = &cpi->td.mb;
double M[RESTORATION_WIN2];
double H[RESTORATION_WIN2 * RESTORATION_WIN2];
double vfilterd[RESTORATION_WIN], hfilterd[RESTORATION_WIN];
const YV12_BUFFER_CONFIG *dgd = cm->frame_to_show;
const int width = cm->width;
const int height = cm->height;
const int src_stride = src->y_stride;
const int dgd_stride = dgd->y_stride;
double score;
int tile_idx, tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
int i;
const int ntiles = av1_get_rest_ntiles(width, height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
assert(width == dgd->y_crop_width);
assert(height == dgd->y_crop_height);
assert(width == src->y_crop_width);
assert(height == src->y_crop_height);
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
rsi.frame_restoration_type = RESTORE_WIENER;
rsi.wiener_info = (WienerInfo *)aom_malloc(sizeof(*rsi.wiener_info) * ntiles);
assert(rsi.wiener_info != NULL);
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx)
rsi.wiener_info[tile_idx].level = 0;
// Compute best Wiener filters for each tile
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, width, height, 0, 0, &h_start, &h_end,
&v_start, &v_end);
err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start,
h_end - h_start, v_start, v_end - v_start);
// #bits when a tile is not restored
bits = av1_cost_bit(RESTORE_NONE_WIENER_PROB, 0);
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
best_tile_cost[tile_idx] = DBL_MAX;
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, width, height, 1, 1, &h_start, &h_end,
&v_start, &v_end);
#if CONFIG_AOM_HIGHBITDEPTH
if (cm->use_highbitdepth)
compute_stats_highbd(dgd->y_buffer, src->y_buffer, h_start, h_end,
v_start, v_end, dgd_stride, src_stride, M, H);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
compute_stats(dgd->y_buffer, src->y_buffer, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H);
wiener_info[tile_idx].level = 1;
if (!wiener_decompose_sep_sym(M, H, vfilterd, hfilterd)) {
wiener_info[tile_idx].level = 0;
continue;
}
quantize_sym_filter(vfilterd, rsi.wiener_info[tile_idx].vfilter);
quantize_sym_filter(hfilterd, rsi.wiener_info[tile_idx].hfilter);
// Filter score computes the value of the function x'*A*x - x'*b for the
// learned filter and compares it against identity filer. If there is no
// reduction in the function, the filter is reverted back to identity
score = compute_score(M, H, rsi.wiener_info[tile_idx].vfilter,
rsi.wiener_info[tile_idx].hfilter);
if (score > 0.0) {
wiener_info[tile_idx].level = 0;
continue;
}
rsi.wiener_info[tile_idx].level = 1;
err = try_restoration_tile(src, cpi, &rsi, partial_frame, tile_idx, 0, 0,
dst_frame);
bits = WIENER_FILT_BITS << AV1_PROB_COST_SHIFT;
bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, 1);
cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
if (cost_wiener >= cost_norestore) {
wiener_info[tile_idx].level = 0;
} else {
wiener_info[tile_idx].level = 1;
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
wiener_info[tile_idx].vfilter[i] = rsi.wiener_info[tile_idx].vfilter[i];
wiener_info[tile_idx].hfilter[i] = rsi.wiener_info[tile_idx].hfilter[i];
}
bits = WIENER_FILT_BITS << AV1_PROB_COST_SHIFT;
best_tile_cost[tile_idx] = RDCOST_DBL(
x->rdmult, x->rddiv,
(bits + cpi->switchable_restore_cost[RESTORE_WIENER]) >> 4, err);
}
rsi.wiener_info[tile_idx].level = 0;
}
// Cost for Wiener filtering
bits = frame_level_restore_bits[rsi.frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
bits += av1_cost_bit(RESTORE_NONE_WIENER_PROB, wiener_info[tile_idx].level);
rsi.wiener_info[tile_idx].level = wiener_info[tile_idx].level;
if (wiener_info[tile_idx].level) {
bits += (WIENER_FILT_BITS << AV1_PROB_COST_SHIFT);
for (i = 0; i < RESTORATION_HALFWIN; ++i) {
rsi.wiener_info[tile_idx].vfilter[i] = wiener_info[tile_idx].vfilter[i];
rsi.wiener_info[tile_idx].hfilter[i] = wiener_info[tile_idx].hfilter[i];
}
}
}
err = try_restoration_frame(src, cpi, &rsi, partial_frame, dst_frame);
cost_wiener = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
aom_free(rsi.wiener_info);
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
return cost_wiener;
}
static double search_norestore(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
int filter_level, int partial_frame,
RestorationInfo *info, double *best_tile_cost,
YV12_BUFFER_CONFIG *dst_frame) {
double err, cost_norestore;
int bits;
MACROBLOCK *x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
int tile_idx, tile_width, tile_height, nhtiles, nvtiles;
int h_start, h_end, v_start, v_end;
const int ntiles = av1_get_rest_ntiles(cm->width, cm->height, &tile_width,
&tile_height, &nhtiles, &nvtiles);
(void)info;
(void)dst_frame;
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
av1_get_rest_tile_limits(tile_idx, 0, 0, nhtiles, nvtiles, tile_width,
tile_height, cm->width, cm->height, 0, 0, &h_start,
&h_end, &v_start, &v_end);
err = sse_restoration_tile(src, cm->frame_to_show, cm, h_start,
h_end - h_start, v_start, v_end - v_start);
best_tile_cost[tile_idx] =
RDCOST_DBL(x->rdmult, x->rddiv,
(cpi->switchable_restore_cost[RESTORE_NONE] >> 4), err);
}
// RD cost associated with no restoration
err = sse_restoration_tile(src, cm->frame_to_show, cm, 0, cm->width, 0,
cm->height);
bits = frame_level_restore_bits[RESTORE_NONE] << AV1_PROB_COST_SHIFT;
cost_norestore = RDCOST_DBL(x->rdmult, x->rddiv, (bits >> 4), err);
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
return cost_norestore;
}
static double search_switchable_restoration(
AV1_COMP *cpi, int filter_level, int partial_frame, RestorationInfo *rsi,
double *tile_cost[RESTORE_SWITCHABLE_TYPES]) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *x = &cpi->td.mb;
double cost_switchable = 0;
int r, bits, tile_idx;
const int ntiles =
av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL);
// Make a copy of the unfiltered / processed recon buffer
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_uf);
av1_loop_filter_frame(cm->frame_to_show, cm, &cpi->td.mb.e_mbd, filter_level,
1, partial_frame);
aom_yv12_copy_y(cm->frame_to_show, &cpi->last_frame_db);
rsi->frame_restoration_type = RESTORE_SWITCHABLE;
bits = frame_level_restore_bits[rsi->frame_restoration_type]
<< AV1_PROB_COST_SHIFT;
cost_switchable = RDCOST_DBL(x->rdmult, x->rddiv, bits >> 4, 0);
for (tile_idx = 0; tile_idx < ntiles; ++tile_idx) {
double best_cost = tile_cost[RESTORE_NONE][tile_idx];
rsi->restoration_type[tile_idx] = RESTORE_NONE;
for (r = 1; r < RESTORE_SWITCHABLE_TYPES; r++) {
if (tile_cost[r][tile_idx] < best_cost) {
rsi->restoration_type[tile_idx] = r;
best_cost = tile_cost[r][tile_idx];
}
}
cost_switchable += best_cost;
}
aom_yv12_copy_y(&cpi->last_frame_uf, cm->frame_to_show);
return cost_switchable;
}
void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi,
LPF_PICK_METHOD method) {
static search_restore_type search_restore_fun[RESTORE_SWITCHABLE_TYPES] = {
search_norestore, search_wiener, search_sgrproj, search_domaintxfmrf,
};
AV1_COMMON *const cm = &cpi->common;
struct loopfilter *const lf = &cm->lf;
double cost_restore[RESTORE_TYPES];
double *tile_cost[RESTORE_SWITCHABLE_TYPES];
double best_cost_restore;
RestorationType r, best_restore;
YV12_BUFFER_CONFIG dst_frame;
const int ntiles =
av1_get_rest_ntiles(cm->width, cm->height, NULL, NULL, NULL, NULL);
cm->rst_info.restoration_type = (RestorationType *)aom_realloc(
cm->rst_info.restoration_type,
sizeof(*cm->rst_info.restoration_type) * ntiles);
cm->rst_info.wiener_info = (WienerInfo *)aom_realloc(
cm->rst_info.wiener_info, sizeof(*cm->rst_info.wiener_info) * ntiles);
assert(cm->rst_info.wiener_info != NULL);
cm->rst_info.sgrproj_info = (SgrprojInfo *)aom_realloc(
cm->rst_info.sgrproj_info, sizeof(*cm->rst_info.sgrproj_info) * ntiles);
assert(cm->rst_info.sgrproj_info != NULL);
cm->rst_info.domaintxfmrf_info = (DomaintxfmrfInfo *)aom_realloc(
cm->rst_info.domaintxfmrf_info,
sizeof(*cm->rst_info.domaintxfmrf_info) * ntiles);
assert(cm->rst_info.domaintxfmrf_info != NULL);
for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++)
tile_cost[r] = (double *)aom_malloc(sizeof(*tile_cost[0]) * ntiles);
memset(&dst_frame, 0, sizeof(YV12_BUFFER_CONFIG));
if (aom_realloc_frame_buffer(&dst_frame, cm->width, cm->height,
cm->subsampling_x, cm->subsampling_y,
#if CONFIG_AOM_HIGHBITDEPTH
cm->use_highbitdepth,
#endif
AOM_BORDER_IN_PIXELS, cm->byte_alignment, NULL,
NULL, NULL) < 0)
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate restoration dst buffer");
lf->sharpness_level = cm->frame_type == KEY_FRAME ? 0 : cpi->oxcf.sharpness;
if (method == LPF_PICK_MINIMAL_LPF && lf->filter_level) {
lf->filter_level = 0;
cm->rst_info.frame_restoration_type = RESTORE_NONE;
} else if (method >= LPF_PICK_FROM_Q) {
const int min_filter_level = 0;
const int max_filter_level = av1_get_max_filter_level(cpi);
const int q = av1_ac_quant(cm->base_qindex, 0, cm->bit_depth);
// These values were determined by linear fitting the result of the
// searched level, filt_guess = q * 0.316206 + 3.87252
#if CONFIG_AOM_HIGHBITDEPTH
int filt_guess;
switch (cm->bit_depth) {
case AOM_BITS_8:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
break;
case AOM_BITS_10:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20);
break;
case AOM_BITS_12:
filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22);
break;
default:
assert(0 &&
"bit_depth should be AOM_BITS_8, AOM_BITS_10 "
"or AOM_BITS_12");
return;
}
#else
int filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 1015158, 18);
#endif // CONFIG_AOM_HIGHBITDEPTH
if (cm->frame_type == KEY_FRAME) filt_guess -= 4;
lf->filter_level = clamp(filt_guess, min_filter_level, max_filter_level);
} else {
lf->filter_level =
av1_search_filter_level(src, cpi, method == LPF_PICK_FROM_SUBIMAGE,
&cost_restore[RESTORE_NONE]);
}
for (r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) {
cost_restore[r] = search_restore_fun[r](
src, cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE,
&cm->rst_info, tile_cost[r], &dst_frame);
}
cost_restore[RESTORE_SWITCHABLE] = search_switchable_restoration(
cpi, lf->filter_level, method == LPF_PICK_FROM_SUBIMAGE, &cm->rst_info,
tile_cost);
best_cost_restore = DBL_MAX;
best_restore = 0;
for (r = 0; r < RESTORE_TYPES; ++r) {
if (cost_restore[r] < best_cost_restore) {
best_restore = r;
best_cost_restore = cost_restore[r];
}
}
cm->rst_info.frame_restoration_type = best_restore;
/*
printf("Frame %d/%d frame_restore_type %d : %f %f %f %f %f\n",
cm->current_video_frame, cm->show_frame,
cm->rst_info.frame_restoration_type, cost_restore[0], cost_restore[1],
cost_restore[2], cost_restore[3], cost_restore[4]);
*/
for (r = 0; r < RESTORE_SWITCHABLE_TYPES; r++) aom_free(tile_cost[r]);
}