aom/vp10/common/vp10_inv_txfm2d.c

211 строки
8.2 KiB
C
Исходник Обычный вид История

/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp10/common/enums.h"
#include "vp10/common/vp10_txfm.h"
#include "vp10/common/vp10_inv_txfm1d.h"
#include "vp10/common/vp10_inv_txfm2d_cfg.h"
static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
switch (txfm_type) {
case TXFM_TYPE_DCT4:
return vp10_idct4_new;
case TXFM_TYPE_DCT8:
return vp10_idct8_new;
case TXFM_TYPE_DCT16:
return vp10_idct16_new;
case TXFM_TYPE_DCT32:
return vp10_idct32_new;
case TXFM_TYPE_DCT64:
return vp10_idct64_new;
case TXFM_TYPE_ADST4:
return vp10_iadst4_new;
case TXFM_TYPE_ADST8:
return vp10_iadst8_new;
case TXFM_TYPE_ADST16:
return vp10_iadst16_new;
case TXFM_TYPE_ADST32:
return vp10_iadst32_new;
default:
assert(0);
return NULL;
}
}
#if CONFIG_EXT_TX
static const TXFM_2D_CFG* inv_txfm_cfg_ls[FLIPADST_ADST + 1][TX_SIZES] = {
{&inv_txfm_2d_cfg_dct_dct_4 , &inv_txfm_2d_cfg_dct_dct_8,
&inv_txfm_2d_cfg_dct_dct_16 , &inv_txfm_2d_cfg_dct_dct_32},
{&inv_txfm_2d_cfg_adst_dct_4 , &inv_txfm_2d_cfg_adst_dct_8,
&inv_txfm_2d_cfg_adst_dct_16 , &inv_txfm_2d_cfg_adst_dct_32},
{&inv_txfm_2d_cfg_dct_adst_4 , &inv_txfm_2d_cfg_dct_adst_8,
&inv_txfm_2d_cfg_dct_adst_16 , &inv_txfm_2d_cfg_dct_adst_32},
{&inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8,
&inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32},
{&inv_txfm_2d_cfg_adst_dct_4 , &inv_txfm_2d_cfg_adst_dct_8,
&inv_txfm_2d_cfg_adst_dct_16 , &inv_txfm_2d_cfg_adst_dct_32},
{&inv_txfm_2d_cfg_dct_adst_4 , &inv_txfm_2d_cfg_dct_adst_8,
&inv_txfm_2d_cfg_dct_adst_16 , &inv_txfm_2d_cfg_dct_adst_32},
{&inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8,
&inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32},
{&inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8,
&inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32},
{&inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8,
&inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32},
};
#else
static const TXFM_2D_CFG* inv_txfm_cfg_ls[TX_TYPES][TX_SIZES] = {
{&inv_txfm_2d_cfg_dct_dct_4 , &inv_txfm_2d_cfg_dct_dct_8,
&inv_txfm_2d_cfg_dct_dct_16 , &inv_txfm_2d_cfg_dct_dct_32},
{&inv_txfm_2d_cfg_adst_dct_4 , &inv_txfm_2d_cfg_adst_dct_8,
&inv_txfm_2d_cfg_adst_dct_16 , &inv_txfm_2d_cfg_adst_dct_32},
{&inv_txfm_2d_cfg_dct_adst_4 , &inv_txfm_2d_cfg_dct_adst_8,
&inv_txfm_2d_cfg_dct_adst_16 , &inv_txfm_2d_cfg_dct_adst_32},
{&inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8,
&inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32},
};
#endif
TXFM_2D_FLIP_CFG vp10_get_inv_txfm_cfg(int tx_type, int tx_size) {
TXFM_2D_FLIP_CFG cfg;
set_flip_cfg(tx_type, &cfg);
cfg.cfg = inv_txfm_cfg_ls[tx_type][tx_size];
return cfg;
}
TXFM_2D_FLIP_CFG vp10_get_inv_txfm_64x64_cfg(int tx_type) {
TXFM_2D_FLIP_CFG cfg;
switch (tx_type) {
case DCT_DCT:
cfg.cfg = &inv_txfm_2d_cfg_dct_dct_64;
set_flip_cfg(tx_type, &cfg);
break;
default:
assert(0);
}
return cfg;
}
static INLINE void inv_txfm2d_add_c(const int32_t *input, int16_t *output,
int stride, TXFM_2D_FLIP_CFG *cfg,
int32_t *txfm_buf) {
const int txfm_size = cfg->cfg->txfm_size;
const int8_t *shift = cfg->cfg->shift;
const int8_t *stage_range_col = cfg->cfg->stage_range_col;
const int8_t *stage_range_row = cfg->cfg->stage_range_row;
const int8_t *cos_bit_col = cfg->cfg->cos_bit_col;
const int8_t *cos_bit_row = cfg->cfg->cos_bit_row;
const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->cfg->txfm_type_col);
const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->cfg->txfm_type_row);
// txfm_buf's length is txfm_size * txfm_size + 2 * txfm_size
// it is used for intermediate data buffering
int32_t *temp_in = txfm_buf;
int32_t *temp_out = temp_in + txfm_size;
int32_t *buf = temp_out + txfm_size;
int32_t *buf_ptr = buf;
int c, r;
// Rows
for (r = 0; r < txfm_size; ++r) {
txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row);
round_shift_array(buf_ptr, txfm_size, -shift[0]);
input += txfm_size;
buf_ptr += txfm_size;
}
// Columns
for (c = 0; c < txfm_size; ++c) {
if (cfg->lr_flip == 0) {
for (r = 0; r < txfm_size; ++r)
temp_in[r] = buf[r * txfm_size + c];
} else {
// flip left right
for (r = 0; r < txfm_size; ++r)
temp_in[r] = buf[r * txfm_size + (txfm_size - c - 1)];
}
txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
round_shift_array(temp_out, txfm_size, -shift[1]);
if (cfg->ud_flip == 0) {
for (r = 0; r < txfm_size; ++r)
output[r * stride + c] += temp_out[r];
} else {
// flip upside down
for (r = 0; r < txfm_size; ++r)
output[r * stride + c] += temp_out[txfm_size - r - 1];
}
}
}
void vp10_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
int stride, int tx_type,
int bd) {
int txfm_buf[4 * 4 + 4 + 4];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
TXFM_2D_FLIP_CFG cfg = vp10_get_inv_txfm_cfg(tx_type, TX_4X4);
inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf);
clamp_block((int16_t *)output, 4, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
int stride, int tx_type,
int bd) {
int txfm_buf[8 * 8 + 8 + 8];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
TXFM_2D_FLIP_CFG cfg = vp10_get_inv_txfm_cfg(tx_type, TX_8X8);
inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf);
clamp_block((int16_t *)output, 8, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
int stride, int tx_type,
int bd) {
int txfm_buf[16 * 16 + 16 + 16];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
TXFM_2D_FLIP_CFG cfg = vp10_get_inv_txfm_cfg(tx_type, TX_16X16);
inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf);
clamp_block((int16_t *)output, 16, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
int stride, int tx_type,
int bd) {
int txfm_buf[32 * 32 + 32 + 32];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
TXFM_2D_FLIP_CFG cfg = vp10_get_inv_txfm_cfg(tx_type, TX_32X32);
inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf);
clamp_block((int16_t *)output, 32, stride, 0, (1 << bd) - 1);
}
void vp10_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
int stride, int tx_type,
int bd) {
int txfm_buf[64 * 64 + 64 + 64];
// output contains the prediction signal which is always positive and smaller
// than (1 << bd) - 1
// since bd < 16-1, therefore we can treat the uint16_t* output buffer as an
// int16_t*
TXFM_2D_FLIP_CFG cfg = vp10_get_inv_txfm_64x64_cfg(tx_type);
inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf);
clamp_block((int16_t *)output, 64, stride, 0, (1 << bd) - 1);
}