gecko-dev/gfx/2d/BaseRect.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

683 строки
24 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
2012-05-21 15:12:37 +04:00
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_BASERECT_H_
#define MOZILLA_GFX_BASERECT_H_
#include <algorithm>
#include <cmath>
#include <ostream>
#include <type_traits>
#include "mozilla/Assertions.h"
#include "mozilla/FloatingPoint.h"
#include "Types.h"
namespace mozilla {
namespace gfx {
/**
* Rectangles have two interpretations: a set of (zero-size) points,
* and a rectangular area of the plane. Most rectangle operations behave
* the same no matter what interpretation is being used, but some operations
* differ:
* -- Equality tests behave differently. When a rectangle represents an area,
* all zero-width and zero-height rectangles are equal to each other since they
* represent the empty area. But when a rectangle represents a set of
* mathematical points, zero-width and zero-height rectangles can be unequal.
* -- The union operation can behave differently. When rectangles represent
* areas, taking the union of a zero-width or zero-height rectangle with
* another rectangle can just ignore the empty rectangle. But when rectangles
* represent sets of mathematical points, we may need to extend the latter
* rectangle to include the points of a zero-width or zero-height rectangle.
*
* To ensure that these interpretations are explicitly disambiguated, we
* deny access to the == and != operators and require use of IsEqualEdges and
* IsEqualInterior instead. Similarly we provide separate Union and UnionEdges
* methods.
*
* Do not use this class directly. Subclass it, pass that subclass as the
* Sub parameter, and only use that subclass.
*/
template <class T, class Sub, class Point, class SizeT, class MarginT>
struct BaseRect {
T x, y, width, height;
// Constructors
BaseRect() : x(0), y(0), width(0), height(0) {}
BaseRect(const Point& aOrigin, const SizeT& aSize)
: x(aOrigin.x), y(aOrigin.y), width(aSize.width), height(aSize.height) {}
BaseRect(T aX, T aY, T aWidth, T aHeight)
: x(aX), y(aY), width(aWidth), height(aHeight) {}
// Emptiness. An empty rect is one that has no area, i.e. its height or width
// is <= 0. Zero rect is the one with height and width set to zero. Note
// that SetEmpty() may change a rectangle that identified as IsEmpty().
MOZ_ALWAYS_INLINE bool IsZeroArea() const {
return height == 0 || width == 0;
}
MOZ_ALWAYS_INLINE bool IsEmpty() const { return height <= 0 || width <= 0; }
void SetEmpty() { width = height = 0; }
// "Finite" means not inf and not NaN
bool IsFinite() const {
using FloatType =
std::conditional_t<std::is_same_v<T, float>, float, double>;
return (mozilla::IsFinite(FloatType(x)) &&
mozilla::IsFinite(FloatType(y)) &&
mozilla::IsFinite(FloatType(width)) &&
mozilla::IsFinite(FloatType(height)));
}
// Returns true if this rectangle contains the interior of aRect. Always
// returns true if aRect is empty, and always returns false is aRect is
// nonempty but this rect is empty.
bool Contains(const Sub& aRect) const {
return aRect.IsEmpty() || (x <= aRect.x && aRect.XMost() <= XMost() &&
y <= aRect.y && aRect.YMost() <= YMost());
}
// Returns true if this rectangle contains the point. Points are considered
// in the rectangle if they are on the left or top edge, but outside if they
// are on the right or bottom edge.
MOZ_ALWAYS_INLINE bool Contains(T aX, T aY) const {
return x <= aX && aX < XMost() && y <= aY && aY < YMost();
}
MOZ_ALWAYS_INLINE bool ContainsX(T aX) const {
return x <= aX && aX < XMost();
}
MOZ_ALWAYS_INLINE bool ContainsY(T aY) const {
return y <= aY && aY < YMost();
}
// Returns true if this rectangle contains the point. Points are considered
// in the rectangle if they are on the left or top edge, but outside if they
// are on the right or bottom edge.
bool Contains(const Point& aPoint) const {
return Contains(aPoint.x, aPoint.y);
}
// Intersection. Returns TRUE if the receiver's area has non-empty
// intersection with aRect's area, and FALSE otherwise.
// Always returns false if aRect is empty or 'this' is empty.
bool Intersects(const Sub& aRect) const {
return !IsEmpty() && !aRect.IsEmpty() && x < aRect.XMost() &&
aRect.x < XMost() && y < aRect.YMost() && aRect.y < YMost();
}
// Returns the rectangle containing the intersection of the points
// (including edges) of *this and aRect. If there are no points in that
// intersection, returns an empty rectangle with x/y set to the std::max of
// the x/y of *this and aRect.
[[nodiscard]] Sub Intersect(const Sub& aRect) const {
Sub result;
result.x = std::max<T>(x, aRect.x);
result.y = std::max<T>(y, aRect.y);
result.width =
std::min<T>(x - result.x + width, aRect.x - result.x + aRect.width);
result.height =
std::min<T>(y - result.y + height, aRect.y - result.y + aRect.height);
// See bug 1457110, this function expects to -only- size to 0,0 if the
// width/height is explicitly negative.
if (result.width < 0 || result.height < 0) {
result.SizeTo(0, 0);
}
return result;
}
// Sets *this to be the rectangle containing the intersection of the points
// (including edges) of *this and aRect. If there are no points in that
// intersection, sets *this to be an empty rectangle with x/y set to the
// std::max of the x/y of *this and aRect.
//
// 'this' can be the same object as either aRect1 or aRect2
bool IntersectRect(const Sub& aRect1, const Sub& aRect2) {
T newX = std::max<T>(aRect1.x, aRect2.x);
T newY = std::max<T>(aRect1.y, aRect2.y);
width = std::min<T>(aRect1.x - newX + aRect1.width,
aRect2.x - newX + aRect2.width);
height = std::min<T>(aRect1.y - newY + aRect1.height,
aRect2.y - newY + aRect2.height);
x = newX;
y = newY;
if (width <= 0 || height <= 0) {
SizeTo(0, 0);
return false;
}
return true;
}
// Returns the smallest rectangle that contains both the area of both
// this and aRect2.
// Thus, empty input rectangles are ignored.
// If both rectangles are empty, returns this.
// WARNING! This is not safe against overflow, prefer using SafeUnion instead
// when dealing with int-based rects.
[[nodiscard]] Sub Union(const Sub& aRect) const {
if (IsEmpty()) {
return aRect;
} else if (aRect.IsEmpty()) {
return *static_cast<const Sub*>(this);
} else {
return UnionEdges(aRect);
}
}
// Returns the smallest rectangle that contains both the points (including
// edges) of both aRect1 and aRect2.
// Thus, empty input rectangles are allowed to affect the result.
// WARNING! This is not safe against overflow, prefer using SafeUnionEdges
// instead when dealing with int-based rects.
[[nodiscard]] Sub UnionEdges(const Sub& aRect) const {
Sub result;
result.x = std::min(x, aRect.x);
result.y = std::min(y, aRect.y);
result.width = std::max(XMost(), aRect.XMost()) - result.x;
result.height = std::max(YMost(), aRect.YMost()) - result.y;
return result;
}
// Computes the smallest rectangle that contains both the area of both
// aRect1 and aRect2, and fills 'this' with the result.
// Thus, empty input rectangles are ignored.
// If both rectangles are empty, sets 'this' to aRect2.
//
// 'this' can be the same object as either aRect1 or aRect2
void UnionRect(const Sub& aRect1, const Sub& aRect2) {
*static_cast<Sub*>(this) = aRect1.Union(aRect2);
}
void OrWith(const Sub& aRect1) {
UnionRect(*static_cast<Sub*>(this), aRect1);
}
// Computes the smallest rectangle that contains both the points (including
// edges) of both aRect1 and aRect2.
// Thus, empty input rectangles are allowed to affect the result.
//
// 'this' can be the same object as either aRect1 or aRect2
void UnionRectEdges(const Sub& aRect1, const Sub& aRect2) {
*static_cast<Sub*>(this) = aRect1.UnionEdges(aRect2);
}
// Expands the rect to include the point
void ExpandToEnclose(const Point& aPoint) {
if (aPoint.x < x) {
width = XMost() - aPoint.x;
x = aPoint.x;
} else if (aPoint.x > XMost()) {
width = aPoint.x - x;
}
if (aPoint.y < y) {
height = YMost() - aPoint.y;
y = aPoint.y;
} else if (aPoint.y > YMost()) {
height = aPoint.y - y;
}
}
MOZ_ALWAYS_INLINE void SetRect(T aX, T aY, T aWidth, T aHeight) {
x = aX;
y = aY;
width = aWidth;
height = aHeight;
}
MOZ_ALWAYS_INLINE void SetRectX(T aX, T aWidth) {
x = aX;
width = aWidth;
}
MOZ_ALWAYS_INLINE void SetRectY(T aY, T aHeight) {
y = aY;
height = aHeight;
}
MOZ_ALWAYS_INLINE void SetBox(T aX, T aY, T aXMost, T aYMost) {
x = aX;
y = aY;
width = aXMost - aX;
height = aYMost - aY;
}
MOZ_ALWAYS_INLINE void SetNonEmptyBox(T aX, T aY, T aXMost, T aYMost) {
x = aX;
y = aY;
width = std::max(0, aXMost - aX);
height = std::max(0, aYMost - aY);
}
MOZ_ALWAYS_INLINE void SetBoxX(T aX, T aXMost) {
x = aX;
width = aXMost - aX;
}
MOZ_ALWAYS_INLINE void SetBoxY(T aY, T aYMost) {
y = aY;
height = aYMost - aY;
}
void SetRect(const Point& aPt, const SizeT& aSize) {
SetRect(aPt.x, aPt.y, aSize.width, aSize.height);
}
MOZ_ALWAYS_INLINE void GetRect(T* aX, T* aY, T* aWidth, T* aHeight) const {
*aX = x;
*aY = y;
*aWidth = width;
*aHeight = height;
}
MOZ_ALWAYS_INLINE void MoveTo(T aX, T aY) {
x = aX;
y = aY;
}
MOZ_ALWAYS_INLINE void MoveToX(T aX) { x = aX; }
MOZ_ALWAYS_INLINE void MoveToY(T aY) { y = aY; }
MOZ_ALWAYS_INLINE void MoveTo(const Point& aPoint) {
x = aPoint.x;
y = aPoint.y;
}
MOZ_ALWAYS_INLINE void MoveBy(T aDx, T aDy) {
x += aDx;
y += aDy;
}
MOZ_ALWAYS_INLINE void MoveByX(T aDx) { x += aDx; }
MOZ_ALWAYS_INLINE void MoveByY(T aDy) { y += aDy; }
MOZ_ALWAYS_INLINE void MoveBy(const Point& aPoint) {
x += aPoint.x;
y += aPoint.y;
}
MOZ_ALWAYS_INLINE void SizeTo(T aWidth, T aHeight) {
width = aWidth;
height = aHeight;
}
MOZ_ALWAYS_INLINE void SizeTo(const SizeT& aSize) {
width = aSize.width;
height = aSize.height;
}
void Inflate(T aD) { Inflate(aD, aD); }
void Inflate(T aDx, T aDy) {
x -= aDx;
y -= aDy;
width += 2 * aDx;
height += 2 * aDy;
}
void Inflate(const MarginT& aMargin) {
x -= aMargin.left;
y -= aMargin.top;
width += aMargin.LeftRight();
height += aMargin.TopBottom();
}
void Inflate(const SizeT& aSize) { Inflate(aSize.width, aSize.height); }
void Deflate(T aD) { Deflate(aD, aD); }
void Deflate(T aDx, T aDy) {
x += aDx;
y += aDy;
width = std::max(T(0), width - 2 * aDx);
height = std::max(T(0), height - 2 * aDy);
}
void Deflate(const MarginT& aMargin) {
x += aMargin.left;
y += aMargin.top;
width = std::max(T(0), width - aMargin.LeftRight());
height = std::max(T(0), height - aMargin.TopBottom());
}
void Deflate(const SizeT& aSize) { Deflate(aSize.width, aSize.height); }
// Return true if the rectangles contain the same set of points, including
// points on the edges.
// Use when we care about the exact x/y/width/height values being
// equal (i.e. we care about differences in empty rectangles).
bool IsEqualEdges(const Sub& aRect) const {
return x == aRect.x && y == aRect.y && width == aRect.width &&
height == aRect.height;
}
MOZ_ALWAYS_INLINE bool IsEqualRect(T aX, T aY, T aW, T aH) {
return x == aX && y == aY && width == aW && height == aH;
}
MOZ_ALWAYS_INLINE bool IsEqualXY(T aX, T aY) { return x == aX && y == aY; }
MOZ_ALWAYS_INLINE bool IsEqualSize(T aW, T aH) {
return width == aW && height == aH;
}
// Return true if the rectangles contain the same area of the plane.
// Use when we do not care about differences in empty rectangles.
bool IsEqualInterior(const Sub& aRect) const {
return IsEqualEdges(aRect) || (IsEmpty() && aRect.IsEmpty());
}
friend Sub operator+(Sub aSub, const Point& aPoint) {
aSub += aPoint;
return aSub;
}
friend Sub operator-(Sub aSub, const Point& aPoint) {
aSub -= aPoint;
return aSub;
}
friend Sub operator+(Sub aSub, const SizeT& aSize) {
aSub += aSize;
return aSub;
}
friend Sub operator-(Sub aSub, const SizeT& aSize) {
aSub -= aSize;
return aSub;
}
Sub& operator+=(const Point& aPoint) {
MoveBy(aPoint);
return *static_cast<Sub*>(this);
}
Sub& operator-=(const Point& aPoint) {
MoveBy(-aPoint);
return *static_cast<Sub*>(this);
}
Sub& operator+=(const SizeT& aSize) {
width += aSize.width;
height += aSize.height;
return *static_cast<Sub*>(this);
}
Sub& operator-=(const SizeT& aSize) {
width -= aSize.width;
height -= aSize.height;
return *static_cast<Sub*>(this);
}
// Find difference as a Margin
MarginT operator-(const Sub& aRect) const {
return MarginT(aRect.y - y, XMost() - aRect.XMost(),
YMost() - aRect.YMost(), aRect.x - x);
}
// Helpers for accessing the vertices
Point TopLeft() const { return Point(x, y); }
Point TopRight() const { return Point(XMost(), y); }
Point BottomLeft() const { return Point(x, YMost()); }
Point BottomRight() const { return Point(XMost(), YMost()); }
Point AtCorner(Corner aCorner) const {
switch (aCorner) {
case eCornerTopLeft:
return TopLeft();
case eCornerTopRight:
return TopRight();
case eCornerBottomRight:
return BottomRight();
case eCornerBottomLeft:
return BottomLeft();
}
MOZ_CRASH("GFX: Incomplete switch");
}
Point CCWCorner(mozilla::Side side) const {
switch (side) {
case eSideTop:
return TopLeft();
case eSideRight:
return TopRight();
case eSideBottom:
return BottomRight();
case eSideLeft:
return BottomLeft();
}
MOZ_CRASH("GFX: Incomplete switch");
}
Point CWCorner(mozilla::Side side) const {
switch (side) {
case eSideTop:
return TopRight();
case eSideRight:
return BottomRight();
case eSideBottom:
return BottomLeft();
case eSideLeft:
return TopLeft();
}
MOZ_CRASH("GFX: Incomplete switch");
}
Point Center() const { return Point(x, y) + Point(width, height) / 2; }
SizeT Size() const { return SizeT(width, height); }
T Area() const { return width * height; }
// Helper methods for computing the extents
MOZ_ALWAYS_INLINE T X() const { return x; }
MOZ_ALWAYS_INLINE T Y() const { return y; }
MOZ_ALWAYS_INLINE T Width() const { return width; }
MOZ_ALWAYS_INLINE T Height() const { return height; }
MOZ_ALWAYS_INLINE T XMost() const { return x + width; }
MOZ_ALWAYS_INLINE T YMost() const { return y + height; }
// Set width and height. SizeTo() sets them together.
MOZ_ALWAYS_INLINE void SetWidth(T aWidth) { width = aWidth; }
MOZ_ALWAYS_INLINE void SetHeight(T aHeight) { height = aHeight; }
// Get the coordinate of the edge on the given side.
T Edge(mozilla::Side aSide) const {
switch (aSide) {
case eSideTop:
return Y();
case eSideRight:
return XMost();
case eSideBottom:
return YMost();
case eSideLeft:
return X();
}
MOZ_CRASH("GFX: Incomplete switch");
}
// Moves one edge of the rect without moving the opposite edge.
void SetLeftEdge(T aX) {
width = XMost() - aX;
x = aX;
}
void SetRightEdge(T aXMost) { width = aXMost - x; }
void SetTopEdge(T aY) {
height = YMost() - aY;
y = aY;
}
void SetBottomEdge(T aYMost) { height = aYMost - y; }
void Swap() {
std::swap(x, y);
std::swap(width, height);
}
// Round the rectangle edges to integer coordinates, such that the rounded
// rectangle has the same set of pixel centers as the original rectangle.
// Edges at offset 0.5 round up.
// Suitable for most places where integral device coordinates
// are needed, but note that any translation should be applied first to
// avoid pixel rounding errors.
// Note that this is *not* rounding to nearest integer if the values are
// negative. They are always rounding as floor(n + 0.5). See
// https://bugzilla.mozilla.org/show_bug.cgi?id=410748#c14 If you need similar
// method which is using NS_round(), you should create new
// |RoundAwayFromZero()| method.
void Round() {
T x0 = static_cast<T>(std::floor(T(X()) + 0.5f));
T y0 = static_cast<T>(std::floor(T(Y()) + 0.5f));
T x1 = static_cast<T>(std::floor(T(XMost()) + 0.5f));
T y1 = static_cast<T>(std::floor(T(YMost()) + 0.5f));
x = x0;
y = y0;
width = x1 - x0;
height = y1 - y0;
}
// Snap the rectangle edges to integer coordinates, such that the
// original rectangle contains the resulting rectangle.
void RoundIn() {
T x0 = static_cast<T>(std::ceil(T(X())));
T y0 = static_cast<T>(std::ceil(T(Y())));
T x1 = static_cast<T>(std::floor(T(XMost())));
T y1 = static_cast<T>(std::floor(T(YMost())));
x = x0;
y = y0;
width = x1 - x0;
height = y1 - y0;
}
// Snap the rectangle edges to integer coordinates, such that the
// resulting rectangle contains the original rectangle.
void RoundOut() {
T x0 = static_cast<T>(std::floor(T(X())));
T y0 = static_cast<T>(std::floor(T(Y())));
T x1 = static_cast<T>(std::ceil(T(XMost())));
T y1 = static_cast<T>(std::ceil(T(YMost())));
x = x0;
y = y0;
width = x1 - x0;
height = y1 - y0;
}
// Scale 'this' by aScale without doing any rounding.
void Scale(T aScale) { Scale(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, without doing any rounding.
void Scale(T aXScale, T aYScale) {
T right = XMost() * aXScale;
T bottom = YMost() * aYScale;
x = x * aXScale;
y = y * aYScale;
width = right - x;
height = bottom - y;
}
// Scale 'this' by aScale, converting coordinates to integers so that the
// result is the smallest integer-coordinate rectangle containing the
// unrounded result. Note: this can turn an empty rectangle into a non-empty
// rectangle
void ScaleRoundOut(double aScale) { ScaleRoundOut(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
// that the result is the smallest integer-coordinate rectangle containing the
// unrounded result.
// Note: this can turn an empty rectangle into a non-empty rectangle
void ScaleRoundOut(double aXScale, double aYScale) {
T right = static_cast<T>(ceil(double(XMost()) * aXScale));
T bottom = static_cast<T>(ceil(double(YMost()) * aYScale));
x = static_cast<T>(floor(double(x) * aXScale));
y = static_cast<T>(floor(double(y) * aYScale));
width = right - x;
height = bottom - y;
}
// Scale 'this' by aScale, converting coordinates to integers so that the
// result is the largest integer-coordinate rectangle contained by the
// unrounded result.
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 16:11:27 +04:00
void ScaleRoundIn(double aScale) { ScaleRoundIn(aScale, aScale); }
// Scale 'this' by aXScale and aYScale, converting coordinates to integers so
// that the result is the largest integer-coordinate rectangle contained by
// the unrounded result.
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 16:11:27 +04:00
void ScaleRoundIn(double aXScale, double aYScale) {
T right = static_cast<T>(floor(double(XMost()) * aXScale));
T bottom = static_cast<T>(floor(double(YMost()) * aYScale));
x = static_cast<T>(ceil(double(x) * aXScale));
y = static_cast<T>(ceil(double(y) * aYScale));
width = std::max<T>(0, right - x);
height = std::max<T>(0, bottom - y);
Bug 637852. Part 6: Implement resolution scaling in FrameLayerBuilder. r=tnikkel FrameLayerBuilder::BuildContainerLayerFor takes responsibility for resolution scaling. The ContainerParameters passed in are added to any transform requested. Then we extract the scale part of the transform, round the scale up to the nearest power of two if the transform may be actively animated (so we don't have to redraw layer contents constantly), pass that scale down to be applied by each child and set the residual transform on the ContainerLayer. For child layers built via BuildLayer, we just pass the requested scale factor in via the ContainerParameters. If the returned layer is a ContainerLayer then BuildLayer is guaranteed to have already done necessary scaling. If the returned layer is not a ContainerLayer then we apply the scale ourselves by adding the scale to the child layer's transform. For child ThebesLayers containing non-layer display items, we scale the drawing of those display items so that the child ThebesLayers are simply larger or smaller (larger or smaller visible regions). We have to scale all visible rects, clip rects etc that are in the coordinates of ThebesLayers or the parent ContainerLayer. To keep things simple we do this whenever we convert from appunits to integer layer coordinates. When a ThebesLayer's resolution changes we need to rerender the whole thing. nsDisplayList::PaintForFrame needs to respect the presshell's resolution setting. We do that by building a layer tree with a ContainerParameters requesting a scale up by the presshell resolution; once that layer tree is built, we adjust the root layer transform to scale back down by the resolution.
2011-06-22 16:11:27 +04:00
}
// Scale 'this' by 1/aScale, converting coordinates to integers so that the
// result is the smallest integer-coordinate rectangle containing the
// unrounded result. Note: this can turn an empty rectangle into a non-empty
// rectangle
void ScaleInverseRoundOut(double aScale) {
ScaleInverseRoundOut(aScale, aScale);
}
// Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
// so that the result is the smallest integer-coordinate rectangle containing
// the unrounded result. Note: this can turn an empty rectangle into a
// non-empty rectangle
void ScaleInverseRoundOut(double aXScale, double aYScale) {
T right = static_cast<T>(ceil(double(XMost()) / aXScale));
T bottom = static_cast<T>(ceil(double(YMost()) / aYScale));
x = static_cast<T>(floor(double(x) / aXScale));
y = static_cast<T>(floor(double(y) / aYScale));
width = right - x;
height = bottom - y;
}
// Scale 'this' by 1/aScale, converting coordinates to integers so that the
// result is the largest integer-coordinate rectangle contained by the
// unrounded result.
void ScaleInverseRoundIn(double aScale) {
ScaleInverseRoundIn(aScale, aScale);
}
// Scale 'this' by 1/aXScale and 1/aYScale, converting coordinates to integers
// so that the result is the largest integer-coordinate rectangle contained by
// the unrounded result.
void ScaleInverseRoundIn(double aXScale, double aYScale) {
T right = static_cast<T>(floor(double(XMost()) / aXScale));
T bottom = static_cast<T>(floor(double(YMost()) / aYScale));
x = static_cast<T>(ceil(double(x) / aXScale));
y = static_cast<T>(ceil(double(y) / aYScale));
width = std::max<T>(0, right - x);
height = std::max<T>(0, bottom - y);
}
/**
* Clamp aPoint to this rectangle. It is allowed to end up on any
* edge of the rectangle.
*/
[[nodiscard]] Point ClampPoint(const Point& aPoint) const {
return Point(std::max(x, std::min(XMost(), aPoint.x)),
std::max(y, std::min(YMost(), aPoint.y)));
}
/**
* Translate this rectangle to be inside aRect. If it doesn't fit inside
* aRect then the dimensions that don't fit will be shrunk so that they
* do fit. The resulting rect is returned.
*/
[[nodiscard]] Sub MoveInsideAndClamp(const Sub& aRect) const {
Sub rect(std::max(aRect.x, x), std::max(aRect.y, y),
std::min(aRect.width, width), std::min(aRect.height, height));
rect.x = std::min(rect.XMost(), aRect.XMost()) - rect.width;
rect.y = std::min(rect.YMost(), aRect.YMost()) - rect.height;
return rect;
}
// Returns the largest rectangle that can be represented with 32-bit
// signed integers, centered around a point at 0,0. As BaseRect's represent
// the dimensions as a top-left point with a width and height, the width
// and height will be the largest positive 32-bit value. The top-left
// position coordinate is divided by two to center the rectangle around a
// point at 0,0.
static Sub MaxIntRect() {
return Sub(static_cast<T>(-std::numeric_limits<int32_t>::max() * 0.5),
static_cast<T>(-std::numeric_limits<int32_t>::max() * 0.5),
static_cast<T>(std::numeric_limits<int32_t>::max()),
static_cast<T>(std::numeric_limits<int32_t>::max()));
};
// Returns a point representing the distance, along each dimension, of the
// given point from this rectangle. The distance along a dimension is defined
// as zero if the point is within the bounds of the rectangle in that
// dimension; otherwise, it's the distance to the closer endpoint of the
// rectangle in that dimension.
Point DistanceTo(const Point& aPoint) const {
return {DistanceFromInterval(aPoint.x, x, XMost()),
DistanceFromInterval(aPoint.y, y, YMost())};
}
friend std::ostream& operator<<(
std::ostream& stream,
const BaseRect<T, Sub, Point, SizeT, MarginT>& aRect) {
return stream << '(' << aRect.x << ',' << aRect.y << ',' << aRect.width
<< ',' << aRect.height << ')';
}
private:
// Do not use the default operator== or operator!= !
// Use IsEqualEdges or IsEqualInterior explicitly.
bool operator==(const Sub& aRect) const { return false; }
bool operator!=(const Sub& aRect) const { return false; }
// Helper function for DistanceTo() that computes the distance of a
// coordinate along one dimension from an interval in that dimension.
static T DistanceFromInterval(T aCoord, T aIntervalStart, T aIntervalEnd) {
if (aCoord < aIntervalStart) {
return aIntervalStart - aCoord;
}
if (aCoord > aIntervalEnd) {
return aCoord - aIntervalEnd;
}
return 0;
}
};
} // namespace gfx
} // namespace mozilla
#endif /* MOZILLA_GFX_BASERECT_H_ */