gecko-dev/js/public/HeapAPI.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

656 строки
21 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef js_HeapAPI_h
#define js_HeapAPI_h
#include <limits.h>
#include "jspubtd.h"
#include "js/TraceKind.h"
#include "js/Utility.h"
struct JSStringFinalizer;
/* These values are private to the JS engine. */
namespace js {
JS_FRIEND_API bool CurrentThreadCanAccessZone(JS::Zone* zone);
namespace gc {
struct Cell;
const size_t ArenaShift = 12;
const size_t ArenaSize = size_t(1) << ArenaShift;
const size_t ArenaMask = ArenaSize - 1;
#ifdef JS_GC_SMALL_CHUNK_SIZE
const size_t ChunkShift = 18;
#else
const size_t ChunkShift = 20;
#endif
const size_t ChunkSize = size_t(1) << ChunkShift;
const size_t ChunkMask = ChunkSize - 1;
const size_t CellAlignShift = 3;
const size_t CellAlignBytes = size_t(1) << CellAlignShift;
const size_t CellAlignMask = CellAlignBytes - 1;
const size_t CellBytesPerMarkBit = CellAlignBytes;
/*
* We sometimes use an index to refer to a cell in an arena. The index for a
* cell is found by dividing by the cell alignment so not all indicies refer to
* valid cells.
*/
const size_t ArenaCellIndexBytes = CellAlignBytes;
const size_t MaxArenaCellIndex = ArenaSize / CellAlignBytes;
/* These are magic constants derived from actual offsets in gc/Heap.h. */
#ifdef JS_GC_SMALL_CHUNK_SIZE
const size_t ChunkMarkBitmapOffset = 258104;
const size_t ChunkMarkBitmapBits = 31744;
#else
const size_t ChunkMarkBitmapOffset = 1032352;
const size_t ChunkMarkBitmapBits = 129024;
#endif
const size_t ChunkRuntimeOffset = ChunkSize - sizeof(void*);
const size_t ChunkTrailerSize = 2 * sizeof(uintptr_t) + sizeof(uint64_t);
const size_t ChunkLocationOffset = ChunkSize - ChunkTrailerSize;
const size_t ChunkStoreBufferOffset =
ChunkSize - ChunkTrailerSize + sizeof(uint64_t);
const size_t ArenaZoneOffset = sizeof(size_t);
const size_t ArenaHeaderSize =
sizeof(size_t) + 2 * sizeof(uintptr_t) + sizeof(size_t) + sizeof(uintptr_t);
/*
* Live objects are marked black or gray. Everything reachable from a JS root is
* marked black. Objects marked gray are eligible for cycle collection.
*
* BlackBit: GrayOrBlackBit: Color:
* 0 0 white
* 0 1 gray
* 1 0 black
* 1 1 black
*/
enum class ColorBit : uint32_t { BlackBit = 0, GrayOrBlackBit = 1 };
/*
* The "location" field in the Chunk trailer is a enum indicating various roles
* of the chunk.
*/
enum class ChunkLocation : uint32_t {
Invalid = 0,
Nursery = 1,
TenuredHeap = 2
};
#ifdef JS_DEBUG
/* When downcasting, ensure we are actually the right type. */
extern JS_FRIEND_API void AssertGCThingHasType(js::gc::Cell* cell,
JS::TraceKind kind);
#else
inline void AssertGCThingHasType(js::gc::Cell* cell, JS::TraceKind kind) {}
#endif
MOZ_ALWAYS_INLINE bool IsInsideNursery(const js::gc::Cell* cell);
} /* namespace gc */
} /* namespace js */
namespace JS {
/*
* This list enumerates the different types of conceptual stacks we have in
* SpiderMonkey. In reality, they all share the C stack, but we allow different
* stack limits depending on the type of code running.
*/
enum StackKind {
StackForSystemCode, // C++, such as the GC, running on behalf of the VM.
StackForTrustedScript, // Script running with trusted principals.
StackForUntrustedScript, // Script running with untrusted principals.
StackKindCount
};
/*
* Default size for the generational nursery in bytes.
* This is the initial nursery size, when running in the browser this is
* updated by JS_SetGCParameter().
*/
const uint32_t DefaultNurseryBytes = 16 * js::gc::ChunkSize;
/* Default maximum heap size in bytes to pass to JS_NewContext(). */
const uint32_t DefaultHeapMaxBytes = 32 * 1024 * 1024;
namespace shadow {
struct Zone {
enum GCState : uint8_t {
NoGC,
MarkBlackOnly,
MarkBlackAndGray,
Sweep,
Finished,
Compact
};
protected:
JSRuntime* const runtime_;
JSTracer* const barrierTracer_; // A pointer to the JSRuntime's |gcMarker|.
uint32_t needsIncrementalBarrier_;
GCState gcState_;
Zone(JSRuntime* runtime, JSTracer* barrierTracerArg)
: runtime_(runtime),
barrierTracer_(barrierTracerArg),
needsIncrementalBarrier_(0),
gcState_(NoGC) {}
public:
bool needsIncrementalBarrier() const { return needsIncrementalBarrier_; }
JSTracer* barrierTracer() {
MOZ_ASSERT(needsIncrementalBarrier_);
MOZ_ASSERT(js::CurrentThreadCanAccessRuntime(runtime_));
return barrierTracer_;
}
JSRuntime* runtimeFromMainThread() const {
MOZ_ASSERT(js::CurrentThreadCanAccessRuntime(runtime_));
return runtime_;
}
// Note: Unrestricted access to the zone's runtime from an arbitrary
// thread can easily lead to races. Use this method very carefully.
JSRuntime* runtimeFromAnyThread() const { return runtime_; }
GCState gcState() const { return gcState_; }
bool wasGCStarted() const { return gcState_ != NoGC; }
bool isGCMarkingBlackOnly() const { return gcState_ == MarkBlackOnly; }
bool isGCMarkingBlackAndGray() const { return gcState_ == MarkBlackAndGray; }
bool isGCSweeping() const { return gcState_ == Sweep; }
bool isGCFinished() const { return gcState_ == Finished; }
bool isGCCompacting() const { return gcState_ == Compact; }
bool isGCMarking() const {
return isGCMarkingBlackOnly() || isGCMarkingBlackAndGray();
}
bool isGCSweepingOrCompacting() const {
return gcState_ == Sweep || gcState_ == Compact;
}
static MOZ_ALWAYS_INLINE JS::shadow::Zone* asShadowZone(JS::Zone* zone) {
return reinterpret_cast<JS::shadow::Zone*>(zone);
}
};
struct String {
static const uint32_t NON_ATOM_BIT = JS_BIT(1);
static const uint32_t LINEAR_BIT = JS_BIT(4);
static const uint32_t INLINE_CHARS_BIT = JS_BIT(6);
static const uint32_t LATIN1_CHARS_BIT = JS_BIT(9);
static const uint32_t EXTERNAL_FLAGS = LINEAR_BIT | NON_ATOM_BIT | JS_BIT(8);
static const uint32_t TYPE_FLAGS_MASK = JS_BITMASK(9) - JS_BIT(2) - JS_BIT(0);
static const uint32_t PERMANENT_ATOM_MASK = NON_ATOM_BIT | JS_BIT(8);
static const uint32_t PERMANENT_ATOM_FLAGS = JS_BIT(8);
uintptr_t flags_;
#if JS_BITS_PER_WORD == 32
uint32_t length_;
#endif
union {
const JS::Latin1Char* nonInlineCharsLatin1;
const char16_t* nonInlineCharsTwoByte;
JS::Latin1Char inlineStorageLatin1[1];
char16_t inlineStorageTwoByte[1];
};
const JSStringFinalizer* externalFinalizer;
inline uint32_t flags() const { return uint32_t(flags_); }
inline uint32_t length() const {
#if JS_BITS_PER_WORD == 32
return length_;
#else
return uint32_t(flags_ >> 32);
#endif
}
static bool isPermanentAtom(const js::gc::Cell* cell) {
uint32_t flags = reinterpret_cast<const String*>(cell)->flags();
return (flags & PERMANENT_ATOM_MASK) == PERMANENT_ATOM_FLAGS;
}
};
struct Symbol {
void* _1;
uint32_t code_;
static const uint32_t WellKnownAPILimit = 0x80000000;
static bool isWellKnownSymbol(const js::gc::Cell* cell) {
return reinterpret_cast<const Symbol*>(cell)->code_ < WellKnownAPILimit;
}
};
} /* namespace shadow */
/**
* A GC pointer, tagged with the trace kind.
*
* In general, a GC pointer should be stored with an exact type. This class
* is for use when that is not possible because a single pointer must point
* to several kinds of GC thing.
*/
class JS_FRIEND_API GCCellPtr {
public:
// Construction from a void* and trace kind.
GCCellPtr(void* gcthing, JS::TraceKind traceKind)
: ptr(checkedCast(gcthing, traceKind)) {}
// Automatically construct a null GCCellPtr from nullptr.
MOZ_IMPLICIT GCCellPtr(decltype(nullptr))
: ptr(checkedCast(nullptr, JS::TraceKind::Null)) {}
// Construction from an explicit type.
template <typename T>
explicit GCCellPtr(T* p)
: ptr(checkedCast(p, JS::MapTypeToTraceKind<T>::kind)) {}
explicit GCCellPtr(JSFunction* p)
: ptr(checkedCast(p, JS::TraceKind::Object)) {}
explicit GCCellPtr(JSFlatString* str)
: ptr(checkedCast(str, JS::TraceKind::String)) {}
explicit GCCellPtr(const Value& v);
JS::TraceKind kind() const {
JS::TraceKind traceKind = JS::TraceKind(ptr & OutOfLineTraceKindMask);
if (uintptr_t(traceKind) != OutOfLineTraceKindMask) {
return traceKind;
}
return outOfLineKind();
}
// Allow GCCellPtr to be used in a boolean context.
explicit operator bool() const {
MOZ_ASSERT(bool(asCell()) == (kind() != JS::TraceKind::Null));
return asCell();
}
// Simplify checks to the kind.
template <typename T>
bool is() const {
return kind() == JS::MapTypeToTraceKind<T>::kind;
}
// Conversions to more specific types must match the kind. Access to
// further refined types is not allowed directly from a GCCellPtr.
template <typename T>
T& as() const {
MOZ_ASSERT(kind() == JS::MapTypeToTraceKind<T>::kind);
// We can't use static_cast here, because the fact that JSObject
// inherits from js::gc::Cell is not part of the public API.
return *reinterpret_cast<T*>(asCell());
}
// Return a pointer to the cell this |GCCellPtr| refers to, or |nullptr|.
// (It would be more symmetrical with |to| for this to return a |Cell&|, but
// the result can be |nullptr|, and null references are undefined behavior.)
js::gc::Cell* asCell() const {
return reinterpret_cast<js::gc::Cell*>(ptr & ~OutOfLineTraceKindMask);
}
// The CC's trace logger needs an identity that is XPIDL serializable.
uint64_t unsafeAsInteger() const {
return static_cast<uint64_t>(unsafeAsUIntPtr());
}
// Inline mark bitmap access requires direct pointer arithmetic.
uintptr_t unsafeAsUIntPtr() const {
MOZ_ASSERT(asCell());
MOZ_ASSERT(!js::gc::IsInsideNursery(asCell()));
return reinterpret_cast<uintptr_t>(asCell());
}
MOZ_ALWAYS_INLINE bool mayBeOwnedByOtherRuntime() const {
if (!is<JSString>() && !is<JS::Symbol>()) {
return false;
}
if (is<JSString>()) {
return JS::shadow::String::isPermanentAtom(asCell());
}
MOZ_ASSERT(is<JS::Symbol>());
return JS::shadow::Symbol::isWellKnownSymbol(asCell());
}
private:
static uintptr_t checkedCast(void* p, JS::TraceKind traceKind) {
js::gc::Cell* cell = static_cast<js::gc::Cell*>(p);
MOZ_ASSERT((uintptr_t(p) & OutOfLineTraceKindMask) == 0);
AssertGCThingHasType(cell, traceKind);
// Note: the OutOfLineTraceKindMask bits are set on all out-of-line kinds
// so that we can mask instead of branching.
MOZ_ASSERT_IF(uintptr_t(traceKind) >= OutOfLineTraceKindMask,
(uintptr_t(traceKind) & OutOfLineTraceKindMask) ==
OutOfLineTraceKindMask);
return uintptr_t(p) | (uintptr_t(traceKind) & OutOfLineTraceKindMask);
}
bool mayBeOwnedByOtherRuntimeSlow() const;
JS::TraceKind outOfLineKind() const;
uintptr_t ptr;
};
// Unwraps the given GCCellPtr, calls the functor |f| with a template argument
// of the actual type of the pointer, and returns the result.
template <typename F>
auto MapGCThingTyped(GCCellPtr thing, F&& f) {
switch (thing.kind()) {
#define JS_EXPAND_DEF(name, type, _) \
case JS::TraceKind::name: \
return f(&thing.as<type>());
JS_FOR_EACH_TRACEKIND(JS_EXPAND_DEF);
#undef JS_EXPAND_DEF
default:
MOZ_CRASH("Invalid trace kind in MapGCThingTyped for GCCellPtr.");
}
}
// Unwraps the given GCCellPtr and calls the functor |f| with a template
// argument of the actual type of the pointer. Doesn't return anything.
template <typename F>
void ApplyGCThingTyped(GCCellPtr thing, F&& f) {
// This function doesn't do anything but is supplied for symmetry with other
// MapGCThingTyped/ApplyGCThingTyped implementations that have to wrap the
// functor to return a dummy value that is ignored.
MapGCThingTyped(thing, f);
}
} /* namespace JS */
// These are defined in the toplevel namespace instead of within JS so that
// they won't shadow other operator== overloads (see bug 1456512.)
inline bool operator==(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) {
return ptr1.asCell() == ptr2.asCell();
}
inline bool operator!=(const JS::GCCellPtr& ptr1, const JS::GCCellPtr& ptr2) {
return !(ptr1 == ptr2);
}
namespace js {
namespace gc {
namespace detail {
static MOZ_ALWAYS_INLINE uintptr_t* GetGCThingMarkBitmap(const uintptr_t addr) {
// Note: the JIT pre-barrier trampolines inline this code. Update that
// code too when making changes here!
MOZ_ASSERT(addr);
const uintptr_t bmap_addr = (addr & ~ChunkMask) | ChunkMarkBitmapOffset;
return reinterpret_cast<uintptr_t*>(bmap_addr);
}
static MOZ_ALWAYS_INLINE void GetGCThingMarkWordAndMask(const uintptr_t addr,
ColorBit colorBit,
uintptr_t** wordp,
uintptr_t* maskp) {
// Note: the JIT pre-barrier trampolines inline this code. Update that
// code too when making changes here!
MOZ_ASSERT(addr);
const size_t bit = (addr & js::gc::ChunkMask) / js::gc::CellBytesPerMarkBit +
static_cast<uint32_t>(colorBit);
MOZ_ASSERT(bit < js::gc::ChunkMarkBitmapBits);
uintptr_t* bitmap = GetGCThingMarkBitmap(addr);
const uintptr_t nbits = sizeof(*bitmap) * CHAR_BIT;
*maskp = uintptr_t(1) << (bit % nbits);
*wordp = &bitmap[bit / nbits];
}
static MOZ_ALWAYS_INLINE JS::Zone* GetGCThingZone(const uintptr_t addr) {
MOZ_ASSERT(addr);
const uintptr_t zone_addr = (addr & ~ArenaMask) | ArenaZoneOffset;
return *reinterpret_cast<JS::Zone**>(zone_addr);
}
static MOZ_ALWAYS_INLINE bool TenuredCellIsMarkedGray(const Cell* cell) {
// Return true if GrayOrBlackBit is set and BlackBit is not set.
MOZ_ASSERT(cell);
MOZ_ASSERT(!js::gc::IsInsideNursery(cell));
uintptr_t *grayWord, grayMask;
js::gc::detail::GetGCThingMarkWordAndMask(
uintptr_t(cell), js::gc::ColorBit::GrayOrBlackBit, &grayWord, &grayMask);
if (!(*grayWord & grayMask)) {
return false;
}
uintptr_t *blackWord, blackMask;
js::gc::detail::GetGCThingMarkWordAndMask(
uintptr_t(cell), js::gc::ColorBit::BlackBit, &blackWord, &blackMask);
return !(*blackWord & blackMask);
}
static MOZ_ALWAYS_INLINE bool CellIsMarkedGray(const Cell* cell) {
MOZ_ASSERT(cell);
if (js::gc::IsInsideNursery(cell)) {
return false;
}
return TenuredCellIsMarkedGray(cell);
}
extern JS_PUBLIC_API bool CellIsMarkedGrayIfKnown(const Cell* cell);
#ifdef DEBUG
extern JS_PUBLIC_API void AssertCellIsNotGray(const Cell* cell);
extern JS_PUBLIC_API bool ObjectIsMarkedBlack(const JSObject* obj);
#endif
MOZ_ALWAYS_INLINE ChunkLocation GetCellLocation(const void* cell) {
uintptr_t addr = uintptr_t(cell);
addr &= ~js::gc::ChunkMask;
addr |= js::gc::ChunkLocationOffset;
return *reinterpret_cast<ChunkLocation*>(addr);
}
MOZ_ALWAYS_INLINE bool NurseryCellHasStoreBuffer(const void* cell) {
uintptr_t addr = uintptr_t(cell);
addr &= ~js::gc::ChunkMask;
addr |= js::gc::ChunkStoreBufferOffset;
return *reinterpret_cast<void**>(addr) != nullptr;
}
} /* namespace detail */
MOZ_ALWAYS_INLINE bool IsInsideNursery(const js::gc::Cell* cell) {
if (!cell) {
return false;
}
auto location = detail::GetCellLocation(cell);
MOZ_ASSERT(location == ChunkLocation::Nursery ||
location == ChunkLocation::TenuredHeap);
return location == ChunkLocation::Nursery;
}
MOZ_ALWAYS_INLINE bool IsCellPointerValid(const void* cell) {
auto addr = uintptr_t(cell);
if (addr < ChunkSize || addr % CellAlignBytes != 0) {
return false;
}
auto location = detail::GetCellLocation(cell);
if (location == ChunkLocation::TenuredHeap) {
return !!detail::GetGCThingZone(addr);
}
if (location == ChunkLocation::Nursery) {
return detail::NurseryCellHasStoreBuffer(cell);
}
return false;
}
MOZ_ALWAYS_INLINE bool IsCellPointerValidOrNull(const void* cell) {
if (!cell) {
return true;
}
return IsCellPointerValid(cell);
}
} /* namespace gc */
} /* namespace js */
namespace JS {
static MOZ_ALWAYS_INLINE Zone* GetTenuredGCThingZone(GCCellPtr thing) {
MOZ_ASSERT(!js::gc::IsInsideNursery(thing.asCell()));
return js::gc::detail::GetGCThingZone(thing.unsafeAsUIntPtr());
}
extern JS_PUBLIC_API Zone* GetNurseryStringZone(JSString* str);
static MOZ_ALWAYS_INLINE Zone* GetStringZone(JSString* str) {
if (!js::gc::IsInsideNursery(reinterpret_cast<js::gc::Cell*>(str))) {
return js::gc::detail::GetGCThingZone(reinterpret_cast<uintptr_t>(str));
}
return GetNurseryStringZone(str);
}
extern JS_PUBLIC_API Zone* GetObjectZone(JSObject* obj);
static MOZ_ALWAYS_INLINE bool GCThingIsMarkedGray(GCCellPtr thing) {
if (thing.mayBeOwnedByOtherRuntime()) {
return false;
}
return js::gc::detail::CellIsMarkedGrayIfKnown(thing.asCell());
}
extern JS_PUBLIC_API JS::TraceKind GCThingTraceKind(void* thing);
extern JS_PUBLIC_API void EnableNurseryStrings(JSContext* cx);
extern JS_PUBLIC_API void DisableNurseryStrings(JSContext* cx);
/*
* Returns true when writes to GC thing pointers (and reads from weak pointers)
* must call an incremental barrier. This is generally only true when running
* mutator code in-between GC slices. At other times, the barrier may be elided
* for performance.
*/
extern JS_PUBLIC_API bool IsIncrementalBarrierNeeded(JSContext* cx);
/*
* Notify the GC that a reference to a JSObject is about to be overwritten.
* This method must be called if IsIncrementalBarrierNeeded.
*/
extern JS_PUBLIC_API void IncrementalPreWriteBarrier(JSObject* obj);
/*
* Notify the GC that a reference to a tenured GC cell is about to be
* overwritten. This method must be called if IsIncrementalBarrierNeeded.
*/
extern JS_PUBLIC_API void IncrementalPreWriteBarrier(GCCellPtr thing);
/*
* Notify the GC that a weak reference to a GC thing has been read.
* This method must be called if IsIncrementalBarrierNeeded.
*/
extern JS_PUBLIC_API void IncrementalReadBarrier(GCCellPtr thing);
/**
* Unsets the gray bit for anything reachable from |thing|. |kind| should not be
* JS::TraceKind::Shape. |thing| should be non-null. The return value indicates
* if anything was unmarked.
*/
extern JS_FRIEND_API bool UnmarkGrayGCThingRecursively(GCCellPtr thing);
} // namespace JS
namespace js {
namespace gc {
static MOZ_ALWAYS_INLINE bool IsIncrementalBarrierNeededOnTenuredGCThing(
const JS::GCCellPtr thing) {
MOZ_ASSERT(thing);
MOZ_ASSERT(!js::gc::IsInsideNursery(thing.asCell()));
// TODO: I'd like to assert !RuntimeHeapIsBusy() here but this gets
// called while we are tracing the heap, e.g. during memory reporting
// (see bug 1313318).
MOZ_ASSERT(!JS::RuntimeHeapIsCollecting());
JS::Zone* zone = JS::GetTenuredGCThingZone(thing);
return JS::shadow::Zone::asShadowZone(zone)->needsIncrementalBarrier();
}
static MOZ_ALWAYS_INLINE void ExposeGCThingToActiveJS(JS::GCCellPtr thing) {
// GC things residing in the nursery cannot be gray: they have no mark bits.
// All live objects in the nursery are moved to tenured at the beginning of
// each GC slice, so the gray marker never sees nursery things.
if (IsInsideNursery(thing.asCell())) {
return;
}
// There's nothing to do for permanent GC things that might be owned by
// another runtime.
if (thing.mayBeOwnedByOtherRuntime()) {
return;
}
if (IsIncrementalBarrierNeededOnTenuredGCThing(thing)) {
JS::IncrementalReadBarrier(thing);
} else if (js::gc::detail::TenuredCellIsMarkedGray(thing.asCell())) {
JS::UnmarkGrayGCThingRecursively(thing);
}
MOZ_ASSERT(!js::gc::detail::TenuredCellIsMarkedGray(thing.asCell()));
}
template <typename T>
extern JS_PUBLIC_API bool EdgeNeedsSweepUnbarrieredSlow(T* thingp);
static MOZ_ALWAYS_INLINE bool EdgeNeedsSweepUnbarriered(JSObject** objp) {
// This function does not handle updating nursery pointers. Raw JSObject
// pointers should be updated separately or replaced with
// JS::Heap<JSObject*> which handles this automatically.
MOZ_ASSERT(!JS::RuntimeHeapIsMinorCollecting());
if (IsInsideNursery(reinterpret_cast<Cell*>(*objp))) {
return false;
}
auto zone =
JS::shadow::Zone::asShadowZone(detail::GetGCThingZone(uintptr_t(*objp)));
if (!zone->isGCSweepingOrCompacting()) {
return false;
}
return EdgeNeedsSweepUnbarrieredSlow(objp);
}
} // namespace gc
} // namespace js
namespace JS {
/*
* This should be called when an object that is marked gray is exposed to the JS
* engine (by handing it to running JS code or writing it into live JS
* data). During incremental GC, since the gray bits haven't been computed yet,
* we conservatively mark the object black.
*/
static MOZ_ALWAYS_INLINE void ExposeObjectToActiveJS(JSObject* obj) {
MOZ_ASSERT(obj);
MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&obj));
js::gc::ExposeGCThingToActiveJS(GCCellPtr(obj));
}
static MOZ_ALWAYS_INLINE void ExposeScriptToActiveJS(JSScript* script) {
MOZ_ASSERT(!js::gc::EdgeNeedsSweepUnbarrieredSlow(&script));
js::gc::ExposeGCThingToActiveJS(GCCellPtr(script));
}
} /* namespace JS */
#endif /* js_HeapAPI_h */