gecko-dev/memory/build/rb.h

792 строки
22 KiB
C
Исходник Обычный вид История

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* Portions of this file were originally under the following license:
*
* Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice(s), this list of conditions and the following disclaimer
* unmodified other than the allowable addition of one or more
* copyright notices.
* 2. Redistributions in binary form must reproduce the above copyright
* notice(s), this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*
* C++ template implementation of left-leaning red-black trees.
*
* All operations are done non-recursively. Parent pointers are not used, and
* color bits are stored in the least significant bit of right-child pointers,
* thus making node linkage as compact as is possible for red-black trees.
*
* The RedBlackTree template expects two type arguments: the type of the nodes,
* containing a RedBlackTreeNode, and a trait providing two methods:
* - a GetTreeNode method that returns a reference to the RedBlackTreeNode
* corresponding to a given node with the following signature:
* static RedBlackTreeNode<T>& GetTreeNode(T*)
* - a Compare function with the following signature:
* static int Compare(T* aNode, T* aOther)
* ^^^^^
* or aKey
*
* Interpretation of comparision function return values:
*
* -1 : aNode < aOther
* 0 : aNode == aOther
* 1 : aNode > aOther
*
* In all cases, the aNode or aKey argument is the first argument to the
* comparison function, which makes it possible to write comparison functions
* that treat the first argument specially.
*
******************************************************************************/
#ifndef RB_H_
#define RB_H_
#include "Utils.h"
enum NodeColor
{
Black = 0,
Red = 1,
};
/* Node structure. */
template <typename T>
class RedBlackTreeNode
{
T* mLeft;
/* The lowest bit is the color */
T* mRightAndColor;
public:
T* Left()
{
return mLeft;
}
void SetLeft(T* aValue)
{
mLeft = aValue;
}
T* Right()
{
return reinterpret_cast<T*>(
reinterpret_cast<uintptr_t>(mRightAndColor) & uintptr_t(~1));
}
void SetRight(T* aValue)
{
mRightAndColor = reinterpret_cast<T*>(
(reinterpret_cast<uintptr_t>(aValue) & uintptr_t(~1)) | Color());
}
NodeColor Color()
{
return static_cast<NodeColor>(reinterpret_cast<uintptr_t>(mRightAndColor) & 1);
}
bool IsBlack()
{
return Color() == NodeColor::Black;
}
bool IsRed()
{
return Color() == NodeColor::Red;
}
void SetColor(NodeColor aColor)
{
mRightAndColor = reinterpret_cast<T*>(
(reinterpret_cast<uintptr_t>(mRightAndColor) & uintptr_t(~1)) | aColor);
}
};
/* Tree structure. */
template<typename T, typename Trait>
class RedBlackTree
{
public:
void Init() { mRoot = nullptr; }
T* First(T* aStart = nullptr)
{
return First(reinterpret_cast<TreeNode*>(aStart));
}
T* Last(T* aStart = nullptr)
{
return Last(reinterpret_cast<TreeNode*>(aStart));
}
T* Next(T* aNode)
{
return Next(reinterpret_cast<TreeNode*>(aNode));
}
T* Prev(T* aNode)
{
return Prev(reinterpret_cast<TreeNode*>(aNode));
}
T* Search(T* aKey)
{
return Search(reinterpret_cast<TreeNode*>(aKey));
}
/* Find a match if it exists. Otherwise, find the next greater node, if one
* exists */
T* SearchOrNext(T* aKey)
{
return SearchOrNext(reinterpret_cast<TreeNode*>(aKey));
}
void Insert(T* aNode)
{
Insert(reinterpret_cast<TreeNode*>(aNode));
}
void Remove(T* aNode)
{
return Remove(reinterpret_cast<TreeNode*>(aNode));
}
private:
/* Helper class to avoid having all the tree traversal code further below
* have to use Trait::GetTreeNode, adding visual noise. */
struct TreeNode : public T
{
TreeNode* Left()
{
return (TreeNode*)Trait::GetTreeNode(this).Left();
}
void SetLeft(T* aValue)
{
Trait::GetTreeNode(this).SetLeft(aValue);
}
TreeNode* Right()
{
return (TreeNode*)Trait::GetTreeNode(this).Right();
}
void SetRight(T* aValue)
{
Trait::GetTreeNode(this).SetRight(aValue);
}
NodeColor Color()
{
return Trait::GetTreeNode(this).Color();
}
bool IsRed()
{
return Trait::GetTreeNode(this).IsRed();
}
bool IsBlack()
{
return Trait::GetTreeNode(this).IsBlack();
}
void SetColor(NodeColor aColor)
{
Trait::GetTreeNode(this).SetColor(aColor);
}
};
TreeNode* mRoot;
TreeNode* First(TreeNode* aStart)
{
TreeNode* ret;
for (ret = aStart ? aStart : mRoot; ret && ret->Left(); ret = ret->Left()) {
}
return ret;
}
TreeNode* Last(TreeNode* aStart)
{
TreeNode* ret;
for (ret = aStart ? aStart : mRoot; ret && ret->Right();
ret = ret->Right()) {
}
return ret;
}
TreeNode* Next(TreeNode* aNode)
{
TreeNode* ret;
if (aNode->Right()) {
ret = First(aNode->Right());
} else {
TreeNode* rbp_n_t = mRoot;
MOZ_ASSERT(rbp_n_t);
ret = nullptr;
while (true) {
int rbp_n_cmp = Trait::Compare(aNode, rbp_n_t);
if (rbp_n_cmp < 0) {
ret = rbp_n_t;
rbp_n_t = rbp_n_t->Left();
} else if (rbp_n_cmp > 0) {
rbp_n_t = rbp_n_t->Right();
} else {
break;
}
MOZ_ASSERT(rbp_n_t);
}
}
return ret;
}
TreeNode* Prev(TreeNode* aNode)
{
TreeNode* ret;
if (aNode->Left()) {
ret = Last(aNode->Left());
} else {
TreeNode* rbp_p_t = mRoot;
MOZ_ASSERT(rbp_p_t);
ret = nullptr;
while (true) {
int rbp_p_cmp = Trait::Compare(aNode, rbp_p_t);
if (rbp_p_cmp < 0) {
rbp_p_t = rbp_p_t->Left();
} else if (rbp_p_cmp > 0) {
ret = rbp_p_t;
rbp_p_t = rbp_p_t->Right();
} else {
break;
}
MOZ_ASSERT(rbp_p_t);
}
}
return ret;
}
TreeNode* Search(TreeNode* aKey)
{
TreeNode* ret = mRoot;
int rbp_se_cmp;
while (ret && (rbp_se_cmp = Trait::Compare(aKey, ret)) != 0) {
if (rbp_se_cmp < 0) {
ret = ret->Left();
} else {
ret = ret->Right();
}
}
return ret;
}
TreeNode* SearchOrNext(TreeNode* aKey)
{
TreeNode* ret = nullptr;
TreeNode* rbp_ns_t = mRoot;
while (rbp_ns_t) {
int rbp_ns_cmp = Trait::Compare(aKey, rbp_ns_t);
if (rbp_ns_cmp < 0) {
ret = rbp_ns_t;
rbp_ns_t = rbp_ns_t->Left();
} else if (rbp_ns_cmp > 0) {
rbp_ns_t = rbp_ns_t->Right();
} else {
ret = rbp_ns_t;
break;
}
}
return ret;
}
void Insert(TreeNode* aNode)
{
TreeNode rbp_i_s;
TreeNode *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u;
int rbp_i_cmp = 0;
rbp_i_g = nullptr;
rbp_i_s.SetLeft(mRoot);
rbp_i_s.SetRight(nullptr);
rbp_i_s.SetColor(NodeColor::Black);
rbp_i_p = &rbp_i_s;
rbp_i_c = mRoot;
/* Iteratively search down the tree for the insertion point,
* splitting 4-nodes as they are encountered. At the end of each
* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down
* the tree, assuming a sufficiently deep tree. */
while (rbp_i_c) {
rbp_i_t = rbp_i_c->Left();
rbp_i_u = rbp_i_t ? rbp_i_t->Left() : nullptr;
if (rbp_i_t && rbp_i_u && rbp_i_t->IsRed() && rbp_i_u->IsRed()) {
/* rbp_i_c is the top of a logical 4-node, so split it.
* This iteration does not move down the tree, due to the
* disruptiveness of node splitting.
*
* Rotate right. */
rbp_i_t = RotateRight(rbp_i_c);
/* Pass red links up one level. */
rbp_i_u = rbp_i_t->Left();
rbp_i_u->SetColor(NodeColor::Black);
if (rbp_i_p->Left() == rbp_i_c) {
rbp_i_p->SetLeft(rbp_i_t);
rbp_i_c = rbp_i_t;
} else {
/* rbp_i_c was the right child of rbp_i_p, so rotate
* left in order to maintain the left-leaning invariant. */
MOZ_ASSERT(rbp_i_p->Right() == rbp_i_c);
rbp_i_p->SetRight(rbp_i_t);
rbp_i_u = LeanLeft(rbp_i_p);
if (rbp_i_g->Left() == rbp_i_p) {
rbp_i_g->SetLeft(rbp_i_u);
} else {
MOZ_ASSERT(rbp_i_g->Right() == rbp_i_p);
rbp_i_g->SetRight(rbp_i_u);
}
rbp_i_p = rbp_i_u;
rbp_i_cmp = Trait::Compare(aNode, rbp_i_p);
if (rbp_i_cmp < 0) {
rbp_i_c = rbp_i_p->Left();
} else {
MOZ_ASSERT(rbp_i_cmp > 0);
rbp_i_c = rbp_i_p->Right();
}
continue;
}
}
rbp_i_g = rbp_i_p;
rbp_i_p = rbp_i_c;
rbp_i_cmp = Trait::Compare(aNode, rbp_i_c);
if (rbp_i_cmp < 0) {
rbp_i_c = rbp_i_c->Left();
} else {
MOZ_ASSERT(rbp_i_cmp > 0);
rbp_i_c = rbp_i_c->Right();
}
}
/* rbp_i_p now refers to the node under which to insert. */
aNode->SetLeft(nullptr);
aNode->SetRight(nullptr);
aNode->SetColor(NodeColor::Red);
if (rbp_i_cmp > 0) {
rbp_i_p->SetRight(aNode);
rbp_i_t = LeanLeft(rbp_i_p);
if (rbp_i_g->Left() == rbp_i_p) {
rbp_i_g->SetLeft(rbp_i_t);
} else if (rbp_i_g->Right() == rbp_i_p) {
rbp_i_g->SetRight(rbp_i_t);
}
} else {
rbp_i_p->SetLeft(aNode);
}
/* Update the root and make sure that it is black. */
mRoot = rbp_i_s.Left();
mRoot->SetColor(NodeColor::Black);
}
void Remove(TreeNode* aNode)
{
TreeNode rbp_r_s;
TreeNode *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u;
int rbp_r_cmp;
rbp_r_s.SetLeft(mRoot);
rbp_r_s.SetRight(nullptr);
rbp_r_s.SetColor(NodeColor::Black);
rbp_r_p = &rbp_r_s;
rbp_r_c = mRoot;
rbp_r_xp = nullptr;
/* Iterate down the tree, but always transform 2-nodes to 3- or
* 4-nodes in order to maintain the invariant that the current
* node is not a 2-node. This allows simple deletion once a leaf
* is reached. Handle the root specially though, since there may
* be no way to convert it from a 2-node to a 3-node. */
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
if (rbp_r_cmp < 0) {
rbp_r_t = rbp_r_c->Left();
rbp_r_u = rbp_r_t ? rbp_r_t->Left() : nullptr;
if ((!rbp_r_t || rbp_r_t->IsBlack()) &&
(!rbp_r_u || rbp_r_u->IsBlack())) {
/* Apply standard transform to prepare for left move. */
rbp_r_t = MoveRedLeft(rbp_r_c);
rbp_r_t->SetColor(NodeColor::Black);
rbp_r_p->SetLeft(rbp_r_t);
rbp_r_c = rbp_r_t;
} else {
/* Move left. */
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Left();
}
} else {
if (rbp_r_cmp == 0) {
MOZ_ASSERT(aNode == rbp_r_c);
if (!rbp_r_c->Right()) {
/* Delete root node (which is also a leaf node). */
if (rbp_r_c->Left()) {
rbp_r_t = LeanRight(rbp_r_c);
rbp_r_t->SetRight(nullptr);
} else {
rbp_r_t = nullptr;
}
rbp_r_p->SetLeft(rbp_r_t);
} else {
/* This is the node we want to delete, but we will
* instead swap it with its successor and delete the
* successor. Record enough information to do the
* swap later. rbp_r_xp is the aNode's parent. */
rbp_r_xp = rbp_r_p;
rbp_r_cmp = 1; /* Note that deletion is incomplete. */
}
}
if (rbp_r_cmp == 1) {
if (rbp_r_c->Right() && (!rbp_r_c->Right()->Left() ||
rbp_r_c->Right()->Left()->IsBlack())) {
rbp_r_t = rbp_r_c->Left();
if (rbp_r_t->IsRed()) {
/* Standard transform. */
rbp_r_t = MoveRedRight(rbp_r_c);
} else {
/* Root-specific transform. */
rbp_r_c->SetColor(NodeColor::Red);
rbp_r_u = rbp_r_t->Left();
if (rbp_r_u && rbp_r_u->IsRed()) {
rbp_r_u->SetColor(NodeColor::Black);
rbp_r_t = RotateRight(rbp_r_c);
rbp_r_u = RotateLeft(rbp_r_c);
rbp_r_t->SetRight(rbp_r_u);
} else {
rbp_r_t->SetColor(NodeColor::Red);
rbp_r_t = RotateLeft(rbp_r_c);
}
}
rbp_r_p->SetLeft(rbp_r_t);
rbp_r_c = rbp_r_t;
} else {
/* Move right. */
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Right();
}
}
}
if (rbp_r_cmp != 0) {
while (true) {
MOZ_ASSERT(rbp_r_p);
rbp_r_cmp = Trait::Compare(aNode, rbp_r_c);
if (rbp_r_cmp < 0) {
rbp_r_t = rbp_r_c->Left();
if (!rbp_r_t) {
/* rbp_r_c now refers to the successor node to
* relocate, and rbp_r_xp/aNode refer to the
* context for the relocation. */
if (rbp_r_xp->Left() == aNode) {
rbp_r_xp->SetLeft(rbp_r_c);
} else {
MOZ_ASSERT(rbp_r_xp->Right() == (aNode));
rbp_r_xp->SetRight(rbp_r_c);
}
rbp_r_c->SetLeft(aNode->Left());
rbp_r_c->SetRight(aNode->Right());
rbp_r_c->SetColor(aNode->Color());
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(nullptr);
} else {
MOZ_ASSERT(rbp_r_p->Right() == rbp_r_c);
rbp_r_p->SetRight(nullptr);
}
break;
}
rbp_r_u = rbp_r_t->Left();
if (rbp_r_t->IsBlack() && (!rbp_r_u || rbp_r_u->IsBlack())) {
rbp_r_t = MoveRedLeft(rbp_r_c);
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(rbp_r_t);
} else {
rbp_r_p->SetRight(rbp_r_t);
}
rbp_r_c = rbp_r_t;
} else {
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Left();
}
} else {
/* Check whether to delete this node (it has to be
* the correct node and a leaf node). */
if (rbp_r_cmp == 0) {
MOZ_ASSERT(aNode == rbp_r_c);
if (!rbp_r_c->Right()) {
/* Delete leaf node. */
if (rbp_r_c->Left()) {
rbp_r_t = LeanRight(rbp_r_c);
rbp_r_t->SetRight(nullptr);
} else {
rbp_r_t = nullptr;
}
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(rbp_r_t);
} else {
rbp_r_p->SetRight(rbp_r_t);
}
break;
}
/* This is the node we want to delete, but we
* will instead swap it with its successor
* and delete the successor. Record enough
* information to do the swap later.
* rbp_r_xp is aNode's parent. */
rbp_r_xp = rbp_r_p;
}
rbp_r_t = rbp_r_c->Right();
rbp_r_u = rbp_r_t->Left();
if (!rbp_r_u || rbp_r_u->IsBlack()) {
rbp_r_t = MoveRedRight(rbp_r_c);
if (rbp_r_p->Left() == rbp_r_c) {
rbp_r_p->SetLeft(rbp_r_t);
} else {
rbp_r_p->SetRight(rbp_r_t);
}
rbp_r_c = rbp_r_t;
} else {
rbp_r_p = rbp_r_c;
rbp_r_c = rbp_r_c->Right();
}
}
}
}
/* Update root. */
mRoot = rbp_r_s.Left();
}
TreeNode* RotateLeft(TreeNode* aNode)
{
TreeNode* node = aNode->Right();
aNode->SetRight(node->Left());
node->SetLeft(aNode);
return node;
}
TreeNode* RotateRight(TreeNode* aNode)
{
TreeNode* node = aNode->Left();
aNode->SetLeft(node->Right());
node->SetRight(aNode);
return node;
}
TreeNode* LeanLeft(TreeNode* aNode)
{
TreeNode* node = RotateLeft(aNode);
NodeColor color = aNode->Color();
node->SetColor(color);
aNode->SetColor(NodeColor::Red);
return node;
}
TreeNode* LeanRight(TreeNode* aNode)
{
TreeNode* node = RotateRight(aNode);
NodeColor color = aNode->Color();
node->SetColor(color);
aNode->SetColor(NodeColor::Red);
return node;
}
TreeNode* MoveRedLeft(TreeNode* aNode)
{
TreeNode* node;
TreeNode *rbp_mrl_t, *rbp_mrl_u;
rbp_mrl_t = aNode->Left();
rbp_mrl_t->SetColor(NodeColor::Red);
rbp_mrl_t = aNode->Right();
rbp_mrl_u = rbp_mrl_t ? rbp_mrl_t->Left() : nullptr;
if (rbp_mrl_u && rbp_mrl_u->IsRed()) {
rbp_mrl_u = RotateRight(rbp_mrl_t);
aNode->SetRight(rbp_mrl_u);
node = RotateLeft(aNode);
rbp_mrl_t = aNode->Right();
if (rbp_mrl_t && rbp_mrl_t->IsRed()) {
rbp_mrl_t->SetColor(NodeColor::Black);
aNode->SetColor(NodeColor::Red);
rbp_mrl_t = RotateLeft(aNode);
node->SetLeft(rbp_mrl_t);
} else {
aNode->SetColor(NodeColor::Black);
}
} else {
aNode->SetColor(NodeColor::Red);
node = RotateLeft(aNode);
}
return node;
}
TreeNode* MoveRedRight(TreeNode* aNode)
{
TreeNode* node;
TreeNode* rbp_mrr_t;
rbp_mrr_t = aNode->Left();
if (rbp_mrr_t && rbp_mrr_t->IsRed()) {
TreeNode *rbp_mrr_u, *rbp_mrr_v;
rbp_mrr_u = rbp_mrr_t->Right();
rbp_mrr_v = rbp_mrr_u ? rbp_mrr_u->Left() : nullptr;
if (rbp_mrr_v && rbp_mrr_v->IsRed()) {
rbp_mrr_u->SetColor(aNode->Color());
rbp_mrr_v->SetColor(NodeColor::Black);
rbp_mrr_u = RotateLeft(rbp_mrr_t);
aNode->SetLeft(rbp_mrr_u);
node = RotateRight(aNode);
rbp_mrr_t = RotateLeft(aNode);
node->SetRight(rbp_mrr_t);
} else {
rbp_mrr_t->SetColor(aNode->Color());
rbp_mrr_u->SetColor(NodeColor::Red);
node = RotateRight(aNode);
rbp_mrr_t = RotateLeft(aNode);
node->SetRight(rbp_mrr_t);
}
aNode->SetColor(NodeColor::Red);
} else {
rbp_mrr_t->SetColor(NodeColor::Red);
rbp_mrr_t = rbp_mrr_t->Left();
if (rbp_mrr_t && rbp_mrr_t->IsRed()) {
rbp_mrr_t->SetColor(NodeColor::Black);
node = RotateRight(aNode);
rbp_mrr_t = RotateLeft(aNode);
node->SetRight(rbp_mrr_t);
} else {
node = RotateLeft(aNode);
}
}
return node;
}
/*
* The iterator simulates recursion via an array of pointers that store the
* current path. This is critical to performance, since a series of calls to
* rb_{next,prev}() would require time proportional to (n lg n), whereas this
* implementation only requires time proportional to (n).
*
* Since the iterator caches a path down the tree, any tree modification may
* cause the cached path to become invalid. Don't modify the tree during an
* iteration.
*/
/*
* Size the path arrays such that they are always large enough, even if a
* tree consumes all of memory. Since each node must contain a minimum of
* two pointers, there can never be more nodes than:
*
* 1 << ((sizeof(void*)<<3) - (log2(sizeof(void*))+1))
*
* Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
* is:
*
* (3 * ((sizeof(void*)<<3) - (log2(sizeof(void*))+1)))
*
* This works out to a maximum depth of 87 and 180 for 32- and 64-bit
* systems, respectively (approximately 348 and 1440 bytes, respectively).
*/
public:
class Iterator
{
TreeNode* mPath[3 * ((sizeof(void*) << 3) - (LOG2(sizeof(void*)) + 1))];
unsigned mDepth;
public:
explicit Iterator(RedBlackTree<T, Trait>* aTree)
: mDepth(0)
{
/* Initialize the path to contain the left spine. */
if (aTree->mRoot) {
TreeNode* node;
mPath[mDepth++] = aTree->mRoot;
while ((node = mPath[mDepth - 1]->Left())) {
mPath[mDepth++] = node;
}
}
}
class Item
{
Iterator* mIterator;
T* mItem;
public:
Item(Iterator* aIterator, T* aItem)
: mIterator(aIterator)
, mItem(aItem)
{ }
bool operator!=(const Item& aOther) const
{
return (mIterator != aOther.mIterator) || (mItem != aOther.mItem);
}
T* operator*() const { return mItem; }
const Item& operator++()
{
mItem = mIterator->Next();
return *this;
}
};
Item begin()
{
return Item(this, mDepth > 0 ? mPath[mDepth - 1] : nullptr);
}
Item end()
{
return Item(this, nullptr);
}
TreeNode* Next()
{
TreeNode* node;
if ((node = mPath[mDepth - 1]->Right())) {
/* The successor is the left-most node in the right subtree. */
mPath[mDepth++] = node;
while ((node = mPath[mDepth - 1]->Left())) {
mPath[mDepth++] = node;
}
} else {
/* The successor is above the current node. Unwind until a
* left-leaning edge is removed from the path, of the path is empty. */
for (mDepth--; mDepth > 0; mDepth--) {
if (mPath[mDepth - 1]->Left() == mPath[mDepth]) {
break;
}
}
}
return mDepth > 0 ? mPath[mDepth - 1] : nullptr;
}
};
Iterator iter() { return Iterator(this); }
};
#endif /* RB_H_ */