gecko-dev/dom/base/CCGCScheduler.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

788 строки
26 KiB
C++
Исходник Обычный вид История

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "CCGCScheduler.h"
#include "mozilla/StaticPrefs_javascript.h"
#include "mozilla/CycleCollectedJSRuntime.h"
#include "mozilla/ProfilerMarkers.h"
#include "mozilla/dom/ScriptSettings.h"
#include "nsRefreshDriver.h"
namespace mozilla {
void CCGCScheduler::NoteGCBegin() {
// Treat all GC as incremental here; non-incremental GC will just appear to
// be one slice.
mInIncrementalGC = true;
mReadyForMajorGC = false;
// Tell the parent process that we've started a GC (it might not know if
// we hit a threshold in the JS engine).
using mozilla::ipc::IdleSchedulerChild;
IdleSchedulerChild* child = IdleSchedulerChild::GetMainThreadIdleScheduler();
if (child) {
child->StartedGC();
}
}
void CCGCScheduler::NoteGCEnd() {
mMajorGCReason = JS::GCReason::NO_REASON;
mInIncrementalGC = false;
mCCBlockStart = TimeStamp();
mReadyForMajorGC = false;
mWantAtLeastRegularGC = false;
mNeedsFullCC = true;
mHasRunGC = true;
mIsCompactingOnUserInactive = false;
mCleanupsSinceLastGC = 0;
mCCollectedWaitingForGC = 0;
mCCollectedZonesWaitingForGC = 0;
mLikelyShortLivingObjectsNeedingGC = 0;
using mozilla::ipc::IdleSchedulerChild;
IdleSchedulerChild* child = IdleSchedulerChild::GetMainThreadIdleScheduler();
if (child) {
child->DoneGC();
}
}
#ifdef MOZ_GECKO_PROFILER
struct CCIntervalMarker {
static constexpr mozilla::Span<const char> MarkerTypeName() {
return mozilla::MakeStringSpan("CC");
}
static void StreamJSONMarkerData(
baseprofiler::SpliceableJSONWriter& aWriter) {}
static mozilla::MarkerSchema MarkerTypeDisplay() {
using MS = mozilla::MarkerSchema;
MS schema{MS::Location::MarkerChart, MS::Location::MarkerTable,
MS::Location::TimelineMemory};
schema.AddStaticLabelValue(
"Description",
"Summary data for the core part of a cycle collection, possibly "
"encompassing a set of incremental slices. The main thread is not "
"blocked for the entire major CC interval, only for the individual "
"slices.");
return schema;
}
};
#endif
void CCGCScheduler::NoteCCBegin(TimeStamp aWhen) {
#ifdef MOZ_GECKO_PROFILER
profiler_add_marker("CC", baseprofiler::category::GCCC,
MarkerOptions(MarkerTiming::IntervalStart(aWhen)),
CCIntervalMarker{});
#endif
mIsCollectingCycles = true;
}
void CCGCScheduler::NoteCCEnd(TimeStamp aWhen) {
#ifdef MOZ_GECKO_PROFILER
profiler_add_marker("CC", baseprofiler::category::GCCC,
MarkerOptions(MarkerTiming::IntervalEnd(aWhen)),
CCIntervalMarker{});
#endif
mIsCollectingCycles = false;
mLastCCEndTime = aWhen;
mNeedsFullCC = false;
// The GC for this CC has already been requested.
mNeedsGCAfterCC = false;
}
void CCGCScheduler::NoteWontGC() {
mReadyForMajorGC = false;
mMajorGCReason = JS::GCReason::NO_REASON;
mWantAtLeastRegularGC = false;
// Don't clear the WantFullGC state, we will do a full GC the next time a
// GC happens for any other reason.
}
bool CCGCScheduler::GCRunnerFired(TimeStamp aDeadline) {
MOZ_ASSERT(!mDidShutdown, "GCRunner still alive during shutdown");
GCRunnerStep step = GetNextGCRunnerAction();
switch (step.mAction) {
case GCRunnerAction::None:
MOZ_CRASH("Unexpected GCRunnerAction");
case GCRunnerAction::WaitToMajorGC: {
RefPtr<CCGCScheduler::MayGCPromise> mbPromise =
CCGCScheduler::MayGCNow(step.mReason);
if (!mbPromise) {
// We can GC now.
break;
}
KillGCRunner();
mbPromise->Then(
GetMainThreadSerialEventTarget(), __func__,
[this](bool aMayGC) {
if (aMayGC) {
if (!NoteReadyForMajorGC()) {
// Another GC started and maybe completed while waiting.
return;
}
// Recreate the GC runner with a 0 delay. The new runner will
// continue in idle time.
KillGCRunner();
EnsureGCRunner(0);
} else if (!InIncrementalGC()) {
// We should kill the GC runner since we're done with it, but
// only if there's no incremental GC.
KillGCRunner();
NoteWontGC();
}
},
[this](mozilla::ipc::ResponseRejectReason r) {
if (!InIncrementalGC()) {
KillGCRunner();
NoteWontGC();
}
});
return true;
}
case GCRunnerAction::StartMajorGC:
case GCRunnerAction::GCSlice:
break;
}
return GCRunnerFiredDoGC(aDeadline, step);
}
bool CCGCScheduler::GCRunnerFiredDoGC(TimeStamp aDeadline,
const GCRunnerStep& aStep) {
// Run a GC slice, possibly the first one of a major GC.
nsJSContext::IsShrinking is_shrinking = nsJSContext::NonShrinkingGC;
if (!InIncrementalGC() && aStep.mReason == JS::GCReason::USER_INACTIVE) {
bool do_gc = mWantAtLeastRegularGC;
if (!mUserIsActive) {
if (!nsRefreshDriver::IsRegularRateTimerTicking()) {
mIsCompactingOnUserInactive = true;
is_shrinking = nsJSContext::ShrinkingGC;
do_gc = true;
} else {
// Poke again to restart the timer.
PokeShrinkingGC();
}
}
if (!do_gc) {
using mozilla::ipc::IdleSchedulerChild;
IdleSchedulerChild* child =
IdleSchedulerChild::GetMainThreadIdleScheduler();
if (child) {
child->DoneGC();
}
NoteWontGC();
KillGCRunner();
return true;
}
}
MOZ_ASSERT(mActiveIntersliceGCBudget);
TimeStamp startTimeStamp = TimeStamp::Now();
TimeDuration budget = ComputeInterSliceGCBudget(aDeadline, startTimeStamp);
TimeDuration duration = mGCUnnotifiedTotalTime;
nsJSContext::GarbageCollectNow(aStep.mReason, nsJSContext::IncrementalGC,
is_shrinking, budget.ToMilliseconds());
mGCUnnotifiedTotalTime = TimeDuration();
TimeStamp now = TimeStamp::Now();
TimeDuration sliceDuration = now - startTimeStamp;
duration += sliceDuration;
if (duration.ToSeconds()) {
TimeDuration idleDuration;
if (!aDeadline.IsNull()) {
if (aDeadline < now) {
// This slice overflowed the idle period.
idleDuration = aDeadline - startTimeStamp;
} else {
// Note, we don't want to use duration here, since it may contain
// data also from JS engine triggered GC slices.
idleDuration = sliceDuration;
}
}
uint32_t percent =
uint32_t(idleDuration.ToSeconds() / duration.ToSeconds() * 100);
Telemetry::Accumulate(Telemetry::GC_SLICE_DURING_IDLE, percent);
}
// If the GC doesn't have any more work to do on the foreground thread (and
// e.g. is waiting for background sweeping to finish) then return false to
// make IdleTaskRunner postpone the next call a bit.
JSContext* cx = dom::danger::GetJSContext();
return JS::IncrementalGCHasForegroundWork(cx);
}
RefPtr<CCGCScheduler::MayGCPromise> CCGCScheduler::MayGCNow(
JS::GCReason reason) {
using namespace mozilla::ipc;
// We ask the parent if we should GC for GCs that aren't too timely,
// with the exception of MEM_PRESSURE, in that case we ask the parent
// because GCing on too many processes at the same time when under
// memory pressure could be a very bad experience for the user.
switch (reason) {
case JS::GCReason::PAGE_HIDE:
case JS::GCReason::MEM_PRESSURE:
case JS::GCReason::USER_INACTIVE:
case JS::GCReason::FULL_GC_TIMER:
case JS::GCReason::CC_FINISHED: {
if (XRE_IsContentProcess()) {
IdleSchedulerChild* child =
IdleSchedulerChild::GetMainThreadIdleScheduler();
if (child) {
return child->MayGCNow();
}
}
// The parent process doesn't ask IdleSchedulerParent if it can GC.
break;
}
default:
break;
}
return MayGCPromise::CreateAndResolve(true, __func__);
}
void CCGCScheduler::RunNextCollectorTimer(JS::GCReason aReason,
mozilla::TimeStamp aDeadline) {
if (mDidShutdown) {
return;
}
// When we're in an incremental GC, we should always have an sGCRunner, so do
// not check CC timers. The CC timers won't do anything during a GC.
MOZ_ASSERT_IF(InIncrementalGC(), mGCRunner);
RefPtr<IdleTaskRunner> runner;
if (mGCRunner) {
SetWantMajorGC(aReason);
runner = mGCRunner;
} else if (mCCRunner) {
runner = mCCRunner;
}
if (runner) {
runner->SetIdleDeadline(aDeadline);
runner->Run();
}
}
void CCGCScheduler::PokeShrinkingGC() {
if (mShrinkingGCTimer || mDidShutdown) {
return;
}
NS_NewTimerWithFuncCallback(
&mShrinkingGCTimer,
[](nsITimer* aTimer, void* aClosure) {
CCGCScheduler* s = static_cast<CCGCScheduler*>(aClosure);
s->KillShrinkingGCTimer();
if (!s->mUserIsActive) {
if (!nsRefreshDriver::IsRegularRateTimerTicking()) {
s->SetWantMajorGC(JS::GCReason::USER_INACTIVE);
s->EnsureGCRunner(0);
} else {
s->PokeShrinkingGC();
}
}
},
this, StaticPrefs::javascript_options_compact_on_user_inactive_delay(),
nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY, "ShrinkingGCTimerFired");
}
void CCGCScheduler::PokeFullGC() {
if (!mFullGCTimer && !mDidShutdown) {
NS_NewTimerWithFuncCallback(
&mFullGCTimer,
[](nsITimer* aTimer, void* aClosure) {
CCGCScheduler* s = static_cast<CCGCScheduler*>(aClosure);
s->KillFullGCTimer();
// Even if the GC is denied by the parent process, because we've
// set that we want a full GC we will get one eventually.
s->SetNeedsFullGC();
s->SetWantMajorGC(JS::GCReason::FULL_GC_TIMER);
s->EnsureGCRunner(0);
},
this, StaticPrefs::javascript_options_gc_delay_full(),
nsITimer::TYPE_ONE_SHOT_LOW_PRIORITY, "FullGCTimerFired");
}
}
void CCGCScheduler::PokeGC(JS::GCReason aReason, JSObject* aObj,
TimeDuration aDelay) {
if (mDidShutdown) {
return;
}
if (aObj) {
JS::Zone* zone = JS::GetObjectZone(aObj);
CycleCollectedJSRuntime::Get()->AddZoneWaitingForGC(zone);
} else if (aReason != JS::GCReason::CC_FINISHED) {
SetNeedsFullGC();
}
if (mGCRunner) {
// There's already a runner for GC'ing, just return
return;
}
SetWantMajorGC(aReason);
if (mCCRunner) {
// Make sure CC is called regardless of the size of the purple buffer, and
// GC after it.
EnsureCCThenGC();
return;
}
// Wait for javascript.options.gc_delay (or delay_first) then start
// looking for idle time to run the initial GC slice.
static bool first = true;
TimeDuration delay =
aDelay ? aDelay
: TimeDuration::FromMilliseconds(
first ? StaticPrefs::javascript_options_gc_delay_first()
: StaticPrefs::javascript_options_gc_delay());
first = false;
EnsureGCRunner(delay);
}
void CCGCScheduler::EnsureGCRunner(TimeDuration aDelay) {
if (mGCRunner) {
return;
}
// Wait at most the interslice GC delay before forcing a run.
mGCRunner = IdleTaskRunner::Create(
[this](TimeStamp aDeadline) { return GCRunnerFired(aDeadline); },
"CCGCScheduler::EnsureGCRunner", aDelay,
TimeDuration::FromMilliseconds(
StaticPrefs::javascript_options_gc_delay_interslice()),
mActiveIntersliceGCBudget, true, [this] { return mDidShutdown; });
}
// nsJSEnvironmentObserver observes the user-interaction-inactive notifications
// and triggers a shrinking a garbage collection if the user is still inactive
// after NS_SHRINKING_GC_DELAY ms later, if the appropriate pref is set.
void CCGCScheduler::UserIsInactive() {
mUserIsActive = false;
if (StaticPrefs::javascript_options_compact_on_user_inactive()) {
PokeShrinkingGC();
}
}
void CCGCScheduler::UserIsActive() {
mUserIsActive = true;
KillShrinkingGCTimer();
if (mIsCompactingOnUserInactive) {
mozilla::dom::AutoJSAPI jsapi;
jsapi.Init();
JS::AbortIncrementalGC(jsapi.cx());
}
MOZ_ASSERT(!mIsCompactingOnUserInactive);
}
void CCGCScheduler::KillShrinkingGCTimer() {
if (mShrinkingGCTimer) {
mShrinkingGCTimer->Cancel();
NS_RELEASE(mShrinkingGCTimer);
}
}
void CCGCScheduler::KillFullGCTimer() {
if (mFullGCTimer) {
mFullGCTimer->Cancel();
NS_RELEASE(mFullGCTimer);
}
}
void CCGCScheduler::KillGCRunner() {
MOZ_ASSERT(!(InIncrementalGC() && !mDidShutdown));
if (mGCRunner) {
mGCRunner->Cancel();
mGCRunner = nullptr;
}
}
void CCGCScheduler::EnsureCCRunner(TimeDuration aDelay, TimeDuration aBudget) {
MOZ_ASSERT(!mDidShutdown);
if (!mCCRunner) {
mCCRunner = IdleTaskRunner::Create(
CCRunnerFired, "EnsureCCRunner::CCRunnerFired", 0, aDelay, aBudget,
true, [this] { return mDidShutdown; });
} else {
mCCRunner->SetMinimumUsefulBudget(aBudget.ToMilliseconds());
nsIEventTarget* target = mozilla::GetCurrentEventTarget();
if (target) {
mCCRunner->SetTimer(aDelay, target);
}
}
}
void CCGCScheduler::MaybePokeCC(TimeStamp aNow, uint32_t aSuspectedCCObjects) {
if (mCCRunner || mDidShutdown) {
return;
}
if (ShouldScheduleCC(aNow, aSuspectedCCObjects)) {
// We can kill some objects before running forgetSkippable.
nsCycleCollector_dispatchDeferredDeletion();
if (!mCCRunner) {
InitCCRunnerStateMachine(CCRunnerState::ReducePurple);
}
EnsureCCRunner(kCCSkippableDelay, kForgetSkippableSliceDuration);
}
}
void CCGCScheduler::KillCCRunner() {
UnblockCC();
DeactivateCCRunner();
if (mCCRunner) {
mCCRunner->Cancel();
mCCRunner = nullptr;
}
}
void CCGCScheduler::KillAllTimersAndRunners() {
KillShrinkingGCTimer();
KillCCRunner();
KillFullGCTimer();
KillGCRunner();
}
js::SliceBudget CCGCScheduler::ComputeCCSliceBudget(
TimeStamp aDeadline, TimeStamp aCCBeginTime, TimeStamp aPrevSliceEndTime,
TimeStamp aNow, bool* aPreferShorterSlices) const {
*aPreferShorterSlices =
aDeadline.IsNull() || (aDeadline - aNow) < kICCSliceBudget;
TimeDuration baseBudget =
aDeadline.IsNull() ? kICCSliceBudget : aDeadline - aNow;
if (aCCBeginTime.IsNull()) {
// If no CC is in progress, use the standard slice time.
return js::SliceBudget(js::TimeBudget(baseBudget),
kNumCCNodesBetweenTimeChecks);
}
// Only run a limited slice if we're within the max running time.
MOZ_ASSERT(aNow >= aCCBeginTime);
TimeDuration runningTime = aNow - aCCBeginTime;
if (runningTime >= kMaxICCDuration) {
return js::SliceBudget::unlimited();
}
const TimeDuration maxSlice =
TimeDuration::FromMilliseconds(MainThreadIdlePeriod::GetLongIdlePeriod());
// Try to make up for a delay in running this slice.
MOZ_ASSERT(aNow >= aPrevSliceEndTime);
double sliceDelayMultiplier =
(aNow - aPrevSliceEndTime) / kICCIntersliceDelay;
TimeDuration delaySliceBudget =
std::min(baseBudget.MultDouble(sliceDelayMultiplier), maxSlice);
// Increase slice budgets up to |maxSlice| as we approach
// half way through the ICC, to avoid large sync CCs.
double percentToHalfDone =
std::min(2.0 * (runningTime / kMaxICCDuration), 1.0);
TimeDuration laterSliceBudget = maxSlice.MultDouble(percentToHalfDone);
// Note: We may have already overshot the deadline, in which case
// baseBudget will be negative and we will end up returning
// laterSliceBudget.
return js::SliceBudget(js::TimeBudget(std::max(
{delaySliceBudget, laterSliceBudget, baseBudget})),
kNumCCNodesBetweenTimeChecks);
}
TimeDuration CCGCScheduler::ComputeInterSliceGCBudget(TimeStamp aDeadline,
TimeStamp aNow) const {
// We use longer budgets when the CC has been locked out but the CC has
// tried to run since that means we may have a significant amount of
// garbage to collect and it's better to GC in several longer slices than
// in a very long one.
TimeDuration budget =
aDeadline.IsNull() ? mActiveIntersliceGCBudget * 2 : aDeadline - aNow;
if (!mCCBlockStart) {
return budget;
}
TimeDuration blockedTime = aNow - mCCBlockStart;
TimeDuration maxSliceGCBudget = mActiveIntersliceGCBudget * 10;
double percentOfBlockedTime =
std::min(blockedTime / kMaxCCLockedoutTime, 1.0);
return std::max(budget, maxSliceGCBudget.MultDouble(percentOfBlockedTime));
}
bool CCGCScheduler::ShouldScheduleCC(TimeStamp aNow,
uint32_t aSuspectedCCObjects) const {
if (!mHasRunGC) {
return false;
}
// Don't run consecutive CCs too often.
if (mCleanupsSinceLastGC && !mLastCCEndTime.IsNull()) {
if (aNow - mLastCCEndTime < kCCDelay) {
return false;
}
}
// If GC hasn't run recently and forget skippable only cycle was run,
// don't start a new cycle too soon.
if ((mCleanupsSinceLastGC > kMajorForgetSkippableCalls) &&
!mLastForgetSkippableCycleEndTime.IsNull()) {
if (aNow - mLastForgetSkippableCycleEndTime <
kTimeBetweenForgetSkippableCycles) {
return false;
}
}
return IsCCNeeded(aNow, aSuspectedCCObjects);
}
CCRunnerStep CCGCScheduler::AdvanceCCRunner(TimeStamp aDeadline, TimeStamp aNow,
uint32_t aSuspectedCCObjects) {
struct StateDescriptor {
// When in this state, should we first check to see if we still have
// enough reason to CC?
bool mCanAbortCC;
// If we do decide to abort the CC, should we still try to forget
// skippables one more time?
bool mTryFinalForgetSkippable;
};
// The state descriptors for Inactive and Canceled will never actually be
// used. We will never call this function while Inactive, and Canceled is
// handled specially at the beginning.
constexpr StateDescriptor stateDescriptors[] = {
{false, false}, /* CCRunnerState::Inactive */
{false, false}, /* CCRunnerState::ReducePurple */
{true, true}, /* CCRunnerState::CleanupChildless */
{true, false}, /* CCRunnerState::CleanupContentUnbinder */
{false, false}, /* CCRunnerState::CleanupDeferred */
{false, false}, /* CCRunnerState::StartCycleCollection */
{false, false}, /* CCRunnerState::CycleCollecting */
{false, false}}; /* CCRunnerState::Canceled */
static_assert(
ArrayLength(stateDescriptors) == size_t(CCRunnerState::NumStates),
"need one state descriptor per state");
const StateDescriptor& desc = stateDescriptors[int(mCCRunnerState)];
// Make sure we initialized the state machine.
MOZ_ASSERT(mCCRunnerState != CCRunnerState::Inactive);
if (mDidShutdown) {
return {CCRunnerAction::StopRunning, Yield};
}
if (mCCRunnerState == CCRunnerState::Canceled) {
// When we cancel a cycle, there may have been a final ForgetSkippable.
return {CCRunnerAction::StopRunning, Yield};
}
if (InIncrementalGC()) {
if (mCCBlockStart.IsNull()) {
BlockCC(aNow);
// If we have reached the CycleCollecting state, then ignore CC timer
// fires while incremental GC is running. (Running ICC during an IGC
// would cause us to synchronously finish the GC, which is bad.)
//
// If we have not yet started cycle collecting, then reset our state so
// that we run forgetSkippable often enough before CC. Because of reduced
// mCCDelay, forgetSkippable will be called just a few times.
//
// The kMaxCCLockedoutTime limit guarantees that we end up calling
// forgetSkippable and CycleCollectNow eventually.
if (mCCRunnerState != CCRunnerState::CycleCollecting) {
mCCRunnerState = CCRunnerState::ReducePurple;
mCCRunnerEarlyFireCount = 0;
mCCDelay = kCCDelay / int64_t(3);
}
return {CCRunnerAction::None, Yield};
}
if (GetCCBlockedTime(aNow) < kMaxCCLockedoutTime) {
return {CCRunnerAction::None, Yield};
}
// Locked out for too long, so proceed and finish the incremental GC
// synchronously.
}
// For states that aren't just continuations of previous states, check
// whether a CC is still needed (after doing various things to reduce the
// purple buffer).
if (desc.mCanAbortCC && !IsCCNeeded(aNow, aSuspectedCCObjects)) {
// If we don't pass the threshold for wanting to cycle collect, stop now
// (after possibly doing a final ForgetSkippable).
mCCRunnerState = CCRunnerState::Canceled;
NoteForgetSkippableOnlyCycle(aNow);
// Preserve the previous code's idea of when to check whether a
// ForgetSkippable should be fired.
if (desc.mTryFinalForgetSkippable &&
ShouldForgetSkippable(aSuspectedCCObjects)) {
// The Canceled state will make us StopRunning after this action is
// performed (see conditional at top of function).
return {CCRunnerAction::ForgetSkippable, Yield, KeepChildless};
}
return {CCRunnerAction::StopRunning, Yield};
}
switch (mCCRunnerState) {
// ReducePurple: a GC ran (or we otherwise decided to try CC'ing). Wait
// for some amount of time (kCCDelay, or less if incremental GC blocked
// this CC) while firing regular ForgetSkippable actions before continuing
// on.
case CCRunnerState::ReducePurple:
++mCCRunnerEarlyFireCount;
if (IsLastEarlyCCTimer(mCCRunnerEarlyFireCount)) {
mCCRunnerState = CCRunnerState::CleanupChildless;
}
if (ShouldForgetSkippable(aSuspectedCCObjects)) {
return {CCRunnerAction::ForgetSkippable, Yield, KeepChildless};
}
if (aDeadline.IsNull()) {
return {CCRunnerAction::None, Yield};
}
// If we're called during idle time, try to find some work to do by
// advancing to the next state, effectively bypassing some possible forget
// skippable calls.
mCCRunnerState = CCRunnerState::CleanupChildless;
// Continue on to CleanupChildless, but only after checking IsCCNeeded
// again.
return {CCRunnerAction::None, Continue};
// CleanupChildless: do a stronger ForgetSkippable that removes nodes with
// no children in the cycle collector graph. This state is split into 3
// parts; the other Cleanup* actions will happen within the same callback
// (unless the ForgetSkippable shrinks the purple buffer enough for the CC
// to be skipped entirely.)
case CCRunnerState::CleanupChildless:
mCCRunnerState = CCRunnerState::CleanupContentUnbinder;
return {CCRunnerAction::ForgetSkippable, Yield, RemoveChildless};
// CleanupContentUnbinder: continuing cleanup, clear out the content
// unbinder.
case CCRunnerState::CleanupContentUnbinder:
if (aDeadline.IsNull()) {
// Non-idle (waiting) callbacks skip the rest of the cleanup, but still
// wait for another fire before the actual CC.
mCCRunnerState = CCRunnerState::StartCycleCollection;
return {CCRunnerAction::None, Yield};
}
// Running in an idle callback.
// The deadline passed, so go straight to CC in the next slice.
if (aNow >= aDeadline) {
mCCRunnerState = CCRunnerState::StartCycleCollection;
return {CCRunnerAction::None, Yield};
}
mCCRunnerState = CCRunnerState::CleanupDeferred;
return {CCRunnerAction::CleanupContentUnbinder, Continue};
// CleanupDeferred: continuing cleanup, do deferred deletion.
case CCRunnerState::CleanupDeferred:
MOZ_ASSERT(!aDeadline.IsNull(),
"Should only be in CleanupDeferred state when idle");
// Our efforts to avoid a CC have failed. Let the timer fire once more
// to trigger a CC.
mCCRunnerState = CCRunnerState::StartCycleCollection;
if (aNow >= aDeadline) {
// The deadline passed, go straight to CC in the next slice.
return {CCRunnerAction::None, Yield};
}
return {CCRunnerAction::CleanupDeferred, Yield};
// StartCycleCollection: start actually doing cycle collection slices.
case CCRunnerState::StartCycleCollection:
// We are in the final timer fire and still meet the conditions for
// triggering a CC. Let RunCycleCollectorSlice finish the current IGC if
// any, because that will allow us to include the GC time in the CC pause.
mCCRunnerState = CCRunnerState::CycleCollecting;
[[fallthrough]];
// CycleCollecting: continue running slices until done.
case CCRunnerState::CycleCollecting:
return {CCRunnerAction::CycleCollect, Yield};
default:
MOZ_CRASH("Unexpected CCRunner state");
};
}
GCRunnerStep CCGCScheduler::GetNextGCRunnerAction() const {
MOZ_ASSERT(mMajorGCReason != JS::GCReason::NO_REASON);
if (InIncrementalGC()) {
return {GCRunnerAction::GCSlice, mMajorGCReason};
}
if (mReadyForMajorGC) {
return {GCRunnerAction::StartMajorGC, mMajorGCReason};
}
return {GCRunnerAction::WaitToMajorGC, mMajorGCReason};
}
js::SliceBudget CCGCScheduler::ComputeForgetSkippableBudget(
TimeStamp aStartTimeStamp, TimeStamp aDeadline) {
if (mForgetSkippableFrequencyStartTime.IsNull()) {
mForgetSkippableFrequencyStartTime = aStartTimeStamp;
} else if (aStartTimeStamp - mForgetSkippableFrequencyStartTime >
kOneMinute) {
TimeStamp startPlusMinute = mForgetSkippableFrequencyStartTime + kOneMinute;
// If we had forget skippables only at the beginning of the interval, we
// still want to use the whole time, minute or more, for frequency
// calculation. mLastForgetSkippableEndTime is needed if forget skippable
// takes enough time to push the interval to be over a minute.
TimeStamp endPoint = std::max(startPlusMinute, mLastForgetSkippableEndTime);
// Duration in minutes.
double duration =
(endPoint - mForgetSkippableFrequencyStartTime).ToSeconds() / 60;
uint32_t frequencyPerMinute = uint32_t(mForgetSkippableCounter / duration);
Telemetry::Accumulate(Telemetry::FORGET_SKIPPABLE_FREQUENCY,
frequencyPerMinute);
mForgetSkippableCounter = 0;
mForgetSkippableFrequencyStartTime = aStartTimeStamp;
}
++mForgetSkippableCounter;
TimeDuration budgetTime =
aDeadline ? (aDeadline - aStartTimeStamp) : kForgetSkippableSliceDuration;
return js::SliceBudget(budgetTime);
}
} // namespace mozilla